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INTRODUCTION

The extensive use of generalized autoregressive conditional heteroscedasticity
(GARCH) models in financial economics is testimony to their success in cap-
turing volatility dynamics. As low-order GARCH and exponential GARCH
(EGARCH) models typically perform well relative to more complex specifica-
tions (see, e.g., Hansen & Lunde, 2005a), researchers often use these models to
investigate the relation between changes in return volatility and various stochas-
tic variables. In particular, they assess whether the stochastic variables explain
changes in volatility by including the variables as covariates in a GARCH(1, 1)
or EGARCH(1, 1) model. The variables considered in the literature include
interest rate levels (Engle & Patton, 2001; Glosten, Jagannathan, & Runkle,
1993), interest rate spreads (Dominguez, 1998; Hagiwara & Herce, 1999), for-
ward-spot spreads (Hodrick, 1989), implied volatilities (Blair, Poon, & Taylor,
2001; Day & Lewis, 1992; Lamoureux & Lastrapes, 1993), futures open inter-
est (Girma & Mougoue, 2002), a proxy for the information flow during the
overnight market closure (Gallo & Pacini, 2000), and contemporaneous trading
volume (Fujihara & Mougoue, 1997; Lamoureux & Lastrapes, 1990; Marsh &
Wagner, 2005).

Here a closer look is taken at the specification of GARCH models with
stochastic covariates, highlighting a specification issue that makes it difficult to
draw reliable inferences from many of the models considered in the literature.
These models impose an implicit constraint that requires the coefficients on
the lagged squared returns and the lagged stochastic variables to decline with
the lag length at the same rate. This constraint is problematic for cases in
which the stochastic variables provide little information about future return
volatility beyond that contained in lagged squared returns. Obtaining precise
fitted volatilities in such cases requires giving little weight to the lagged sto-
chastic variables, but owing to the implicit constraint, this also requires giving
little weight to lagged squared returns. Hence, if there is a strong contempora-
neous relation between the stochastic variables and return volatility, the covari-
ates can drive ARCH effects out of the fitted models regardless of whether they
capture volatility persistence.

The problem is illustrated by reconsidering the role of contemporaneous
trading volume in explaining ARCH effects in daily stock returns. Lamoureux
and Lastrapes (1990) examined this issue by fitting a stochastic-covariate
GARCH (SC-GARCH) model for 20 firms. They found that the coefficient on
contemporaneous trading volume is highly significant and concluded that
lagged squared returns provide little if any information about return volatility
beyond that contained in volume. The most common criticism of this approach
is that it requires treating volume as exogenous to establish consistency of the
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SC-GARCH estimator (see, e.g., Fleming, Kirby, & Ostdiek, 2006). However,
regardless of whether the estimator is consistent, using a SC-GARCH(1, 1)
model to investigate the extent to which volume explains ARCH effects may be
inappropriate in light of the implicit constraint. To investigate this issue, the
performance of an SC-EGARCH(1, 1) model is compared with that of a higher-
order SC-GARCH model that has the flexibility to simultaneously capture
both transitory and persistent volatility shocks. As the model is a version of a
standard SC-EGARCH(2, 2) process that nests the SC-EGARCH(1, 1) model
as a special case, it allows one to directly test the impact of relaxing the
constraint.

The SC-EGARCHY(2, 2) model is fitted to daily returns for the 20 stocks in
the major market index (MMI). The results of the analysis are consistent with
those reported by Fleming et al. (2006). Specifically, it is found that volume is
strongly correlated with contemporaneous return volatility, but the correlation
is driven by transitory shocks to the volatility process, that are largely unrelated to
the persistent component of volatility captured by standard volatility models. No
support is found for the hypothesis that inserting volume into the conditional vari-
ance function of the model reduces the importance of lagged squared returns in
capturing volatility dynamics. Similar findings were obtained by Liesenfeld
(2001) using a generalized bivariate mixture model and by Gillemot, Farmer,
and Lillo (2005) using a nonparametric specification.

The relative forecasting performance of the various models is also investi-
gated. Following Andersen and Bollerslev (1998), a regression of the realized
variances constructed from intraday returns on the fitted variances produced by
each model confirms that the SC-EGARCH(1, 1) model does a poor job of
capturing the relation between volume and ARCH effects. When the realized
variances are regressed on the fitted variances from the SC-GARCH(1, 1)
model, much lower R? values are obtained than when the fitted variances from
the basic EGARCH(1, 1) model are used. In contrast, the fitted variances from
the SC-EGARCHY(2, 2) model outperform those from both of these models as
well as those from the basic EGARCH(2, 2) model. The R? values are in line
with those generated by the bivariate stochastic autoregressive volatility specifi-
cation examined in Fleming et al. (2006). As the superior performance of the
SC-EGARCHY(2, 2) model is primarily attributable to the undiminished role of
ARCH effects, the results suggest that one must look beyond volume to identify
the features of the trading process that give rise to ARCH effects in daily stock
returns.

The rest of the study is organized as follows. In the second section the spec-
ification of GARCH models with stochastic covariates is discussed, the potential
problems with the SC-GARCH(1, 1) specification are highlighted, and the
two-component SC-EGARCH(2, 2) model used in the empirical analysis is
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introduced. In the third section the data set is described, the construction of the
realized variances used for the model comparisons is explained, and the empiri-
cal results are presented. The last section offers a few concluding remarks.

BACKGROUND AND METHODOLOGY

Low-order GARCH and EGARCH models are among the most widely applied
models in economics and finance. Indeed, they have become benchmarks in
the volatility forecasting literature.' It is not surprising, therefore, that a num-
ber of studies investigate whether various stochastic variables explain changes
in return volatility by including them as covariates in a GARCH(1, 1) or
EGARCH(1, 1) model. Despite the appeal of the methodology, it is subject to a
specification issue that has gone unrecognized in the literature. The issue
arises from an implicit constraint that makes it difficult to draw reliable inferences
from the model-fitting results. To illustrate, suppose a model of the following form
is specified:

R,=un+ Vhgz (1)
h,

o+ Bh,_, + ar’_, + X, (2)

where R, is the daily stock return, X, is the covariate of interest, z, is an i.i.d.
N(0, 1) standardized innovation, and r, = R, — w is the demeaned return.
Expanding the expression for h, via recursive substitution yields

h=0XB "+ DB ari + yBX, ;) + X, (3)
i=1 i=1

Thus, the coefficient on X,_; is constrained to decline with the lag length i at
the same rate as the coefficient on r7_,.

To see why this constraint is an important issue, suppose there is a positive
correlation between the volatility of daily stock returns and the contemporane-
ous realization of the covariate. This is consistent with y > 0. If one fits the
model and finds that the estimate of vy is positive and statistically significant,
but the estimates of @ and B are statistically indistinguishable from zero,
should this be interpreted as support for the hypothesis that the covariate
explains ARCH effects? The answer is unclear given the constraint. Suppose

"Hansen and Lunde (2005a), for example, compared the forecasting performance of 330 ARCH-type models
to that of the GARCH(1, 1) model. They found no evidence that more sophisticated models outperform the
GARCH(1, 1) model in forecasting the volatility of daily currency returns.
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that the lags of X, provide no information about return volatility beyond that
contained in lagged squared returns. In this case, putting any weight on the
lags of X, adds noise to the conditional variances. However, if one wants to
allow for a relation between h, and X, while giving zero weight to the lagged X;s,
the constraint forces B to equal zero. Therefore, if the relation between h, and
X, is strong enough, the covariate can drive ARCH effects out of the model even
if it does not capture volatility persistence. This specification issue is a concern
for any investigation based on an SC-GARCH(1, 1) or SC-EGARCH(1, 1)

model.

Using a Two-Component Model to
Relax the Constraint

The problem with the model in Equations (1) and (2) is that it constrains
the joint dynamics of return volatility and the covariate in a way that may not be
empirically plausible. A straightforward remedy is proposed: base the analysis on
a higher-order GARCH model that allows for more complex dynamics. As the
attention is restricted to the case of a single covariate, a model with two sources
of volatility shocks that could potentially generate two different levels of volatil-
ity persistence is developed. Specifically, a two-component SC-GARCH model
that is both parsimonious and capable of producing the necessary complex
dynamics is proposed.

The SC-GARCH model is specified in terms of logarithms to avoid prob-
lems with enforcing nonnegativity. In particular, an SC-EGARCH model of the
following form is considered:

r, = \/ﬁtzﬂ (4)
Alogh, = Am, + k,(m,_, — logh,_,) + ou,_, + y,w, (5)

Amt = Km(g - mt*l> +o Uiy + y1nwt (6)

m

where A denotes the first-difference operator, u, = (| z,,| — El|z,|])/ Vvar(] z,, |),
and w, = (log X, — E[log X,])/ Vwvar(log X,). To see the origins of the model,
suppose k,, = Kk, and y, = o,, = v,, = 0. In this case, Equations (4)—(6) col-
lapse to

n=Vha, (7)
Alogh, = k,(s — logh,_,) + o,u,_, (8)
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which is simply an EGARCH(1, 1) model expressed in a form that lends a con-
venient interpretation to each parameter.” Specifically, s is the unconditional
mean of log h,, k; determines the speed at which log h, reverts toward s, and o7,
is the volatility of the innovations to log h,.?

Now consider the full model in Equations (4)—(6). Its underlying structure
is still that of an EGARCH specification, but instead of reverting toward a fixed
mean s, the log variance is pulled toward a stochastic mean m, whose dynamics
are described by an autoregressive process. The idea behind this generalization,
which follows Engle and Lee (1999), is that m, captures low-frequency varia-
tions in volatility, whereas high-frequency variations are captured by log h, —
m,. This gives the model the flexibility to incorporate volatility shocks that
decay at a different rate than ARCH effects. Suppose, for example, that the
covariate has a very transitory impact on volatility, with most of the volatility
persistence owing to ARCH effects. One would expect to find that k;, is large

relative to k,, o, is small relative to y,, and o, is large relative to vy,,.

m?

Additional insights into the dynamic properties of the model are gained by
expressing the conditional variance function in a way that eliminates m, from
explicit consideration. This is accomplished by substituting Equation (6) into
Equation (5), and then substituting for m,_, in the resulting expression using

the original Equation (5). After consolidating terms

Alogh, = k(s — logh,_,) + ky(s — logh,_,) + ou,_; + ou,_, + yow, + y,w,_, (9)

is obtained, where k;, =k, + k,, — 1, kK, = (1 — k,)(1 — k,,), 0, = 0}, + 7,
o, = —(k,0, +K,0,), Y1 = Yn T V,, and vy, = —(k,y,, T k,,v;,). Hence, the
model has an SC-EGARCH(2, 2) representation. This representation highlights
both the similarities and the differences between the methodology used here and
the approach used in earlier research. Both add stochastic covariates to a stan-
dard GARCH model, but the approach here specifies a model with sufficient
flexibility to simultaneously capture both transitory and persistent volatility

shocks. This flexibility should produce more robust results.

Model Comparisons Using Realized Variances

Ultimately the objective is to compare how well the different models capture the
dynamics of volatility. In the empirical investigation these comparisons are con-
ducted using realized variances. The concept of realized variance was introduced

2Unlike the EGARCH specification of Nelson (1991), the model above does not allow for leverage effects.
This is simply for ease of exposition; allowing them does not have much impact on the findings.

?| z,, | and log X, are standardized to make it easier to compare the coefficient estimates across firms. This has
no effect on the dynamic implications of the model.
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by Merton (1980). Let R, ,i=1,...,m, denote the intraday returns on day
t over m equally spaced intervals. The realized variance on day t is the sum of
the squared returns:

m

RV,= > R;.. (10)
i=1

The realized variance should be close to the true variance provided that certain
conditions are satisfied. For example, if returns are generated by a continuous-
time process with instantaneous volatility o, then it is natural to use the inte-
grated variance IV, = [} 07;,d7 as a measure of the daily variance. Under weak
regularity conditions, RV, — IV, — 0 almost surely as m — @ (for details, see
Andersen, Bollerslev, Diebold, & Labys, 2001; Barndorff-Nielsen & Shephard,
2002). This suggests that by increasing the frequency at which the returns are
sampled, consistent nonparametric estimates of the integrated variance that in
principle are arbitrarily efficient can be constructed.*

Andersen and Bollerslev (1998) used realized variances to assess whether
standard volatility models generate accurate forecasts. Their approach consisted
of regressing the realized variances on the fitted variances produced by a
volatility model estimated using daily returns.’ To apply their approach, regres-
sions of the following form are fitted:

logRV, = a + b logh, + e, (11)

where logit, denotes the fitted log variance for day t produced by one of the
EGARCH models. Although the regression R* will be biased toward zero
because the variance of log RV, is greater than the variance of the true log
volatility (for details, see Andersen, Bollerslev, & Meddahi, 2005), this does not
affect the model comparisons because the ratio of the R* values produced by
different models is bias free.

EMPIRICAL ILLUSTRATION USING
TRADING VOLUME

The importance of the constraint in practice is illustrated by reexamining the
role of trading volume in explaining ARCH effects in daily stock returns. This

*Obviously the true price process is unobservable in practice and realized variances constructed according to
Equation (10) can be biased by the influence of microstructure effects on observed prices and the absence of
high-frequency returns during the nontrading periods overnight and on weekends. The approach for dealing
with these issues is discussed in the next section.

>An alternative approach would be to use measures based on absolute values (realized absolute value or real-
ized power) for this purpose. Some researchers argue that these measures outperform realized variances in
predicting changes in quadratic variation. See, for example, Forsberg and Ghysels (2007) and Ghysels,
Santa-Clara, and Valkanov (2006).
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application is especially interesting because conflicting results reported in the
literature can potentially be explained by the presence of the constraint. In an
early and influential study, Lamoureux and Lastrapes (1990) added contempo-
raneous trading volume to a GARCH(1, 1) model and found that the coeffi-
cients on lagged squared returns become statistically insignificant for 16 of the
20 firms in their sample. They concluded that lagged squared returns contain
little information about return volatility beyond that contained in trading
volume. Other studies, such as Liesenfeld (1998) and Fleming et al. (2006),
used different methodologies and found starkly different results. Although
these researchers take issue with the Lamoureux and Lastrapes (1990) analysis
by arguing that trading volume is endogenous, the question of whether the
SC-GARCH(1, 1) model used by Lamoureux and Lastrapes (1990) delivers
reliable inferences apart from the bias induced by endogeneity has not been
considered. This question is addressed by investigating the impact of relaxing
the constraint.®

The Data Set

The 20 stocks in the MMI are used for the empirical analysis.” These stocks are
widely held by both individual and institutional investors and generally exhibit
a high level of trading activity. The data set consists of daily returns, trading
volumes, and realized variances. Intraday observations are obtained on transac-
tion prices and trading volume from the Trade and Quote (TAQ) database of
the New York Stock Exchange and information on daily returns, stock splits,
and dividends from the Center for Research in Security Prices (CRSP) daily
stock price file. The sample period is January 4, 1993—December 31, 2003
(2,770 observations).®

In the TAQ database, records with an out-of-sequence time stamp, a zero
price, a correction code greater than two (indicating errors and corrections), or
a condition code (indicating nonstandard settlement) are deleted. In addition,
two screens intended to identify and eliminate price reporting errors are

°As the consequences of ignoring endogeneity are well known, the attention is confined to the impact of
relaxing the constraint. Like any GARCH model with contemporaneous volume as a covariate, the specifica-
tion may produce biased parameter estimates. However, the dynamics implied by the SC-EGARCH(2, 2)
estimates are similar to those documented by Fleming et al. (2006) using a state-space approach that
accounts for the endogeneity of volume, and any bias should have little impact on the model comparisons
that are the main focus of the analysis.

"These firms are American Express (AXP), AT&T (T), ChevronTexaco (CVX), Coca-Cola (KO), Disney (DIS),
Dow Chemical (DOW), DuPont (DD), Eastman Kodak (EK), Exxon-Mobil (XOM), General Electric (GE),
General Motors (GM), International Business Machines (IBM), International Paper (IP), Johnson &
Johnson (JNJ), McDonald’s (MCD), Merck (MRK), 3M (MMM), Philip Morris (MO), Procter and Gamble
(PG), and Sears (S).

8Philip Morris did not open on May 25, 1994, in advance of a board meeting regarding a proposal to split the
firm’s food and tobacco businesses. This date is excluded from the sample.
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applied. First, prices that are more than 20% higher or lower than the previous
transaction price are excluded. Second, prices that imply a price change greater
than two percent in magnitude that are immediately followed by a price rever-
sal greater than two percent in magnitude are flagged. The flagged price is
excluded if the implied price change is more than two times the next largest
price change for the day, or if the price falls outside the day’s high—low range
(ignoring the flagged price) by more than the next largest price change for the
day. The remaining TAQ records are used to construct the data set.

To calculate daily trading volume, the volume for all transactions in the day
is aggregated. This figure is adjusted for stock splits and stock dividends using
information from the CRSP daily stock price file and then detrended to obtain
the volume series used to fit the models.” The daily realized variances are esti-
mated by combining the trading-day realized variance with the overnight
squared return using the approach of Hansen and Lunde (2005b). This is
accomplished in two steps. First, the trading-day realized variance is obtained
using the Newey and West (1987) correction proposed by Hansen and Lunde
(2004). This yields an unbiased estimator of the integrated variance even for
returns sampled at very high frequencies. A 30-second sampling frequency is
used for returns and a 30-minute window length is used for the Newey—West
correction. Second, a weighted sum of the trading-day realized variance and the
squared nontrading-period return is taken to obtain the full-day realized vari-
ance.'® The weights placed on the trading- and nontrading-period variance esti-
mators follow Hansen and Lunde (2005b). Details are in the Appendix.

Estimation and Inference for the
EGARCH(1, 1) Models

The analysis begins by fitting the basic EGARCH(1, 1) model in Equations
(7) and (8). Specifically, the parameters are estimated via maximum likelihood
and the Bollerslev and Wooldridge (1992) approach is used to compute robust
standard errors. Table I reports the parameter estimates and t-ratios along with
several specification diagnostics. As expected, the model only partially accounts
for the fat tails that characterize the distribution of daily returns. The excess

°The volume series is detrended by extracting a quadratic time trend via ordinary least squares regression.
Although other methods would provide more flexibility in fitting the trend, they would be more prone to over-
fitting as well, which could inadvertently remove components of volume that are important to the
volume—volatility relation. Replacing the adjusted volume series with the original series has little impact on
the empirical results.

!The nontrading-period return, which is computed using the last transaction price for the previous day and
the first price on the current day, is adjusted for cash dividends and stock distributions reported in the CRSP
database.
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TABLE |
EGARCH(1, 1) Model

Estimates t-Ratios Diagnostics

Firm S Ky, oy, S K, oy, L R? p Ck

AXP 1.56 0.03 0.11 12.2 2.7 5.5 —5,893.3 0.12 0.98 1.35
CvX 0.89 0.02 0.07 6.8 1.8 3.9 —4,950.8 0.06 0.98 0.87
DD 1.45 0.01 0.07 71 1.2 2.4 —5,5612.3 0.09 0.99 2.01
DIS 1.87 0.01 0.07 7.6 1.3 2.1 —5,873.6 0.09 0.99 5.82
DOW 1.61 0.01 0.08 5.0 1.8 3.9 —5,352.6 0.15 0.99 1.78
EK 1.48 0.34 0.22 12.3 2.3 3.9 —5,820.4 0.03 0.51 15.69
GE 1.05 0.01 0.07 2.9 1.1 3.1 —5,280.5 0.13 0.99 1.26
GM 1.48 0.03 0.08 13.6 2.1 4.3 —5,798.8 0.07 0.98 1.44
IBM 1.92 0.02 0.08 8.7 2.0 3.8 —5,984.5 0.05 0.98 4.02
IP 1.47 0.01 0.05 6.2 1.0 2.1 —5,630.9 0.10 0.99 1.44
JNJ 1.08 0.02 0.09 7.2 2.3 4.3 —5,181.9 0.08 0.98 1.61
KO 1.21 0.01 0.06 4.9 1.6 3.7 —5,173.9 0.10 0.99 1.81
MCD 1.48 0.01 0.06 6.8 2.3 4.0 —5,417.6 0.06 0.99 2.25
MMM 1.20 0.01 0.04 7.4 1.7 2.3 —5,107.4 0.07 0.99 3.98
MO 2.95 0.00 0.04 15 0.7 4.0 —5,870.4 0.05 0.99 10.16
MRK 1.38 0.01 0.04 7.7 1.3 2.7 —5,531.5 0.05 0.99 2.18
PG 1.56 0.00 0.06 2.7 1.9 5.6 —5,175.5 0.09 0.99 10.72
S 1.90 0.03 0.11 11.2 1.9 3.4 —6,150.0 0.07 0.96 4.02
T 2.17 0.01 0.06 6.9 1.1 1.7 —5,909.6 0.13 0.99 7.59
XOM 0.87 0.01 0.07 3.8 2.0 4.4 —4,798.7 0.11 0.99 1.09

Note. The table reports the results of fiting an EGARCH(1, 1) model to daily percentage returns on the MMI stocks. The model is of
the form

= \/Etzrt

Alogh; = k(s — loghy_4) + opU;_y

where r,is the demeaned return for day ¢, u, = (|z,] — El|z4)/V var(|z,), and z, ~ NID(0,1). The model is fitted via maximum like-
lihood. The table reports the parameter estimates, the associated t-ratios, the maximized value of log-likelihood (), the sample R? for
a regression of {|r|}], on the fitted conditional volatilities (R?), the first-order sample autocorrelation of the fitted conditional volatili-
ties (p), and the coefficient of excess kurtosis for the standardized returns (Cy). The t-ratios are based on robust standard errors. The
sample period is January 5, 1993-December 31, 2003. MMI, major market index.

kurtosis of the standardized returns is positive for all firms, with especially large
values for Eastman Kodak, Phillip Morris, and Procter and Gamble. Finding a
few large values is not unusual, however, given the extreme returns that occa-
sionally occur for individual stocks.

The results clearly indicate high levels of volatility persistence. The esti-
mate of kj, is close to zero for all firms except Eastman Kodak and only seven of
the estimates have t-ratios of 2.0 or greater. In addition, the first-order sample
autocorrelation of the fitted conditional volatilities is 0.96 or higher for all
firms except Eastman Kodak. The diagnostics suggest that the low estimate of
persistence for Eastman Kodak is probably due to a small number of influential
observations. Eastman Kodak has the largest excess kurtosis of any firm, and an
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examination of the data reveals several instances of daily returns between 10
and 20% in magnitude. Overall, the model-fitting results are consistent with
those of previous studies in the volatility modeling literature (see, e.g., Kim &
Kon, 1994).

The model itself does not appear to have much explanatory power. The R?
value for a regression of the absolute demeaned returns on the fitted condition-
al volatilities ranges from 3% for Eastman Kodak to 15% for Dow Chemical.''
Of course, as Andersen and Bollerslev (1998) pointed out, such regressions are
expected to produce relatively low R? values because absolute returns are a noisy
proxy for volatility. The realized variance regressions considered later provide a
better benchmark for assessing how well the EGARCH(1, 1) specification
captures volatility dynamics.

Next the EGARCH(1, 1) model in which contemporaneous volume is
specified as a covariate is considered. Table II reports the model-fitting results.
The most striking change from Table I is a sharp increase in the estimates of k;,
together with a sharp decline in the estimates of p, the first-order sample auto-
correlation of the fitted conditional volatilities. The estimate of k; exceeds one
for 19 of the 20 stocks and most of the estimates are highly statistically signifi-
cant. The largest p estimate now is just 0.63 (Dow Chemical), whereas the
smallest estimate is 0.25 (ChevronTexaco). Clearly, the addition of volume as
an explanatory variable produces a marked drop in the degree of volatility per-
sistence implied by the model.

More generally, the results confirm that volume is a significant factor in
explaining contemporaneous volatility. In most cases, volume enters the model
with a t-ratio greater than 15, the log-likelihood values are substantially higher
than those in Table I, and the excess kurtosis is substantially lower as well.
Incorporating volume also produces a jump in the R* values for a regression of
the absolute demeaned returns on the fitted conditional volatilities. The major-
ity of the R? values in Table II are greater than 20% (the largest is 39% for
Procter and Gamble), whereas the majority of those in Table I are less than
10%. This increase in explanatory power suggests that the contemporaneous
relation between volume and volatility is quite strong.

Despite these results, it would be premature to conclude that volume
accounts for or subsumes ARCH effects in daily returns. The most obvious indi-
cation of this is that the absolute standardized return still enters the volume-
augmented model with a positive and statistically significant coefficient for
almost all of the stocks. In many cases, the t-ratio on the o, estimate is five or
greater. The question is how to interpret this evidence given the implicit con-
straint imposed by EGARCH(1, 1) model. One possibility is that, even if the

""Absolute, rather than squared, demeaned returns are used in these regressions so that the results are less
sensitive to outliers. See Davidian and Carroll (1987).
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TABLE Il
SC-EGARCH(1, 1) Model

Estimates t-Ratios Diagnostics

. 2
Firm S Ky Ty Yh S Ky, gy Yh L R P CK

AXP 1.32 1.19 0.09 0.74 44.7 241 3.6 21.3 —5,757.2 0.19 0.41 0.21
CvX 0.66 1.16 0.04 0.58 21.9 20.0 1.6 15.7 —4,836.1 0.12 0.25 0.37

DD 1.07 1.17 0.13 0.63 32.5 14.3 4.6 17.3 -5,410.6 0.15 0.35 0.62
DIS 1.21 1.23 0.13 0.78 39.8 30.5 5.7 22.6 —5,600.4 0.25 0.31 0.22
DOW 1.52 0.01 0.08 0.01 5.0 1.4 3.3 0.7 —5,351.5 0.15 0.99 1.76
EK 0.90 1.22 0.09 0.89 27.9 31.0 3.3 27.8 -5,171.8 0.37 0.33 0.59
GE 0.91 1.20 0.07 0.72 29.9 191 2.8 21.2 —5,190.0 0.21 0.37 0.38
GM 1.21 1.31 0.07 0.72 39.8 30.3 2.9 19.0 —5,598.9 0.19 0.30 0.40
IBM 1.23 1.26 0.08 0.81 38.7 32.1 2.9 22.3 —5,624.0 0.28 0.35 0.57
IP 1.15 1.10 0.16 0.63 35.3 17.5 6.2 17.9 —5,5622.5 0.18 0.45 0.46
JNJ 0.75 1.17 0.07 0.68 25.7 21.2 2.8 19.8 —4,965.6 0.24 0.39 0.17
KO 0.74 1.14 0.05 0.73 26.4 21.7 2.1 23.0 —4,950.3 0.25 0.41 0.04

MCD 0.90 1.24 0.14 0.69 28.4 26.2 5.7 20.7 —5,177.4 0.23 0.28 0.45
MMM 0.67 1.27 0.06 0.74 214 26.0 2.3 19.9 —4,855.5 0.21 0.28 0.56

MO 1.00 1.26 0.05 0.96 17.3 28.6 1.2 22.1 -5,311.6 0.37 0.34 6.96
MRK 0.95 1.29 0.05 0.73 34.8 29.5 2.2 25.0 —5,245.8 0.25 0.27 0.04
PG 0.71 1.15 0.12 0.68 22.8 23.1 4.6 20.1 —4,910.2 0.39 0.39 0.35
S 1.42 1.34 0.05 0.77 44.7 26.4 2.2 22.5 —5,894.6 0.26 0.29 0.67
T 1.39 1.17 0.15 0.68 33.0 7.4 2.8 10.0 —5,831.4 0.24 0.41 2.45
XOM 0.56 1.02 0.15 0.62 18.1 15.0 5.5 171 —4,705.7 0.16 0.44 0.21

Note. The table reports the results of fitting an EGARCH(1, 1) model with volume specified as a covariate to daily percentage
returns on the MMI stocks. The model is of the form

= \/Erzn
Alogh; = ky(s — logh, 1) + opu,_ 4 + yW,
where r, is the demeaned return for day ¢, u, = (|z,| — E[|z4])/V var(|z,), w, = (log X, — E[log X]])/V var(log X,), X, denotes the
daily volume, and z, ~ NID(0,1). The model is fitted via maximum likelihood. The table reports the parameter estimates, the associat-
ed t-ratios, the maximized value of log-likelihood (), the sample R? for a regression of {\r,|},T:1 on the fitted conditional volatilities
(R?), the first-order sample autocorrelation of the fitted conditional volatilities (p), and the coefficient of excess kurtosis for the stan-

dardized returns (Cy). The t-ratios are based on robust standard errors. The sample period is January 5, 1993-December 31, 2003.
MMI, major market index.

constraint were relaxed, ARCH effects would make only a small contribution to
the explanatory power of the volume-augmented model. This would support the
conclusions drawn by Lamoureux and Lastrapes (1990). Alternatively, the con-
straint could be masking the true contribution of ARCH effects to volatility
dynamics. A more detailed analysis of this issue is considered next.

Estimation and Inference for the
EGARCH(2, 2) Models

To investigate the effects of relaxing the constraint imposed by the
SC-EGARCH(1, 1) model, a more flexible econometric specification that nests
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the SC-EGARCH(1, 1) model as a special case is estimated. In particular, an
EGARCH(2, 2) model that allows for both short- and long-term volatility
components is considered. The model is initially estimated without incorporat-

ing volume to assess how its empirical implications differ from those of the
basic EGARCH(1, 1) model. Table III reports the results.
In general, the EGARCH(2, 2) model fits better than the EGARCH(1, 1)
model reported in Table I. Most of the t-ratios for the k, and o, estimates are

greater than two and the increase in the log-likelihood is statistically significant

at the five percent level for a majority of the stocks. Nonetheless, allowing for

two volatility components does not have a major impact on the volatility dynamics

TABLE 1ll

EGARCH(2, 2) Model

Estimates t-Ratios Diagnostics

Firm  k, oy, S K, O, K, oy, S K, O, L R? p Ck

AXP  0.10 0.10 1.59 0.00 0.03 3.2 4.7 8.0 14 24 -58844 0.13 0.97 1.27
CvX 173 003 090 001 006 99 12 65 1.8 40 -49498 0.06 096 0.87
DD 0.22 0.11 1.42 0.00 0.03 25 3.9 4.7 1.1 29 -54971 0.09 095 1.63
DIS 1.37 0.08 1.88 0.01 005 7.1 2.3 7.3 18 24 -5866.6 0.10 0.91 5.75
DOW 0.14 007 162 0.00 004 05 16 52 13 19 -53453 0.15 098 1.63
EK 0.44 0.21 1.73 0.00 0.01 1.8 3.4 9.7 27 24 -58109 0.03 048 16.32
GE 0.13 0.08 -0.13 0.00 0.03 14 33 -03 -08 29 52681 0.13 098 1.00
GM 006 007 154 000 002 19 35 100 09 1.1 -57951 0.07 097 1.41
IBM 0.09 0.05 199 001 0.05 11 1.8 8.7 25 34 59824 0.06 097 4.08
P 0.17 0.08 1.36 0.00 0.03 25 2.8 4.3 12 43 -5618.0 0.11 0.97 1.20
JNJ 086 008 110 002 007 38 23 66 22 38 -51780 0.08 0.92 160
KO 0.41 0.09 1.18 0.00 0.04 27 3.0 4.1 16 51 -5164.3 0.10 096 1.70
MCD 1.07 0.11 146 0.01 005 34 3.1 6.7 22 35 -54046 0.07 087 247
MMM 1.04 0.10 118 0.01 0.04 11 1.9 7.9 20 23 -5,0985 0.07 089 3.62
MO 0.51 0.11 3.11 0.00 0.03 17 2.9 1.9 1.0 4.7 -5848.7 0.06 091 10.68
MRK 0.63 0.06 141 001 003 02 1.5 5.3 06 1.1 —-55285 0.05 095 219
PG 146 004 154 000 0.06 31 10 26 19 50 -51735 0.09 096 11.03
S 1.90 -0.02 1.89 0.04 0.11 288 -—-1.1 119 1.8 32 -6,1483 0.07 095 3.82
T 0.21 0.11 2.03 0.00 0.03 38 4.7 7.2 19 34 58866 0.14 096 7.18
XOM 030 009 088 001 005 35 37 32 20 54 -47884 0.11 096 1.01

Note. The table reports the results of fitting an EGARCH(2, 2) model to daily percentage returns on the MMI stocks. The model has

a two-component representation of the form

n= \/Ezn

Alogh, = Am; + k,(m,_, — logh,_,) + ouu,_4

Amy = Kp(s = Myq) + oyl

where r,is the demeaned return for day t, u, = (|2, — El|z41)/V var(|z,|), and z, ~ NID(0,1). The model is fitted via maximum like-
lihood. The table reports the parameter estimates, the associated t-ratios, the maximized value of log-likelihood (), the sample R? for
a regression of {\rt|},T:1 on the fitted conditional volatilities (R?), the first-order sample autocorrelation of the fitted conditional volatil-
ities (p), and the coefficient of excess kurtosis for the standardized returns (Cy). The t-ratios are based on robust standard errors. The
sample period is January 5, 1993-December 31, 2003. MMI, major market index.
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implied by the model. Although some decline is observed in the first-order sam-
ple autocorrelation of the fitted conditional volatilities, the autocorrelation still
exceeds 0.90 for 17 of the 20 stocks. Similarly, the R* for a regression of the
absolute demeaned returns on the fitted conditional volatilities suggests little
increase in the explanatory power of the model. Overall these results point to a
relatively modest improvement in the goodness of fit.'?

Now the primary issue is considered, which is how the EGARCH(2, 2)
model performs once volume is specified as a covariate. Table IV reports the
results. Two aspects of the results stand out immediately. First, all of the log-
likelihood values are significantly higher than those for the SC-EGARCH(1, 1)
model reported in Table II. The average increase in log-likelihood across stocks
is 103. Second, all of the R* values are substantially higher as well. Most of the
increases are in the range of 610 percentage points, with increases of 13 per-
centage points for three of the firms. These findings point to a clear increase in
explanatory power relative to the SC-EGARCH(1, 1) model.

An interesting pattern is also seen in the coefficient estimates. All of the k;,
and vy, estimates are positive, highly statistically significant, and comparable in
magnitude to the corresponding estimates in Table II. More importantly, only
four of the o, estimates are significantly different from zero at the five percent
level. This indicates that the short-term dynamics of log volatility, which are
captured by log h, — m,, are explained almost exclusively by volume. In con-
trast, only one of the vy, estimates is statistically significant at the five percent

level, whereas the s, k,,, and o,, estimates are similar to the corresponding esti-

mates in Table 1. This indicates that the long-term dynamics of log volatility,
which are captured by m,, are explained almost exclusively by the absolute stan-
dardized returns.

These findings suggest a much different role for volume than the results
obtained using the SC-EGARCH(1, 1) model. Specifically, nothing in the
results for the SC-EGARCH(2, 2) model indicates that volume accounts for or
subsumes ARCH effects in daily returns. On the contrary, it is found that
ARCH effects are a key determinant of long-term volatility dynamics and
that the long-term component of volatility displays the high level of persistence
typically reported in the ARCH literature. Moreover, the evidence suggests that
the long-term component of volatility in the SC-EGARCH(2, 2) model behaves
similar to the conditional volatility implied by the basic EGARCH(1, 1) model.

Figure 1 illustrates this point more clearly. The figure compares the fitted
values produced by the two models for American Express, the first stock alpha-
betically in the MMI. Panels A and B plot the fitted values of log h, and m,,

"2Christoffersen, Jacobs, and Wang (2005) used a two-component GARCH specification in an option pricing
context and found that it substantially outperforms their benchmark single-component model.
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Panel A: SC-EGARCH(2,2) volatility estimates
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Panel B: SC-EGARCH(2,2) estimates of the long-term component of volatility
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Panel C: EGARCH(1,1) volatility estimates
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FIGURE 1
Comparison of volatility estimates for American Express. The figure plots the daily volatility
estimates for American Express under the EGARCH(1, 1) model and the SC-EGARCH(2, 2)

model with volume specified as a covariate. Panel A shows the fitted volatility estimates for the

SC-EGARCH(2, 2) model, Panel B shows the fitted long-term component of volatility under
the SC-EGARCH(2, 2) model, and Panel C shows the fitted volatility estimates for the
EGARCH(1, 1) model. Each series is expressed as an annualized percentage volatility. The
sample period is January 5, 1993—-December 31, 2003.

respectively, for the SC-EGARCH(2, 2) model. Panel C plots the fitted values
of log h, for the basic EGARCH(1, 1) model. The fitted log volatility in Panel A
is highly variable, reflecting the strong short-term impact of trading volume.
However, there are also indications of an underlying autoregressive structure
that seems characteristic of a slowly mean-reverting process. Once the associ-
ated component of log volatility (Panel B) is isolated, it is found that it tracks
closely with the fitted values from the basic EGARCH(1, 1) model (Panel C).
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Note that regardless of the model, incorporating volume does produce a
large drop in the persistence of the fitted volatility series as found by
Lamoureux and Lastrapes (1990) and others. Consider the p estimates in
Table IV. Although they are higher than the corresponding estimates in Table II,
they are still well below the values reported in Tables I and I1I. As ARCH
effects appear to be undiminished for the model analyzed in Table 1V, this has
two implications. First, the short-term component of volatility is much less per-
sistent than is typical of the fitted volatility from ARCH models. Second, short-
term dynamics account for a substantial fraction of the total variation in the
volatility of daily returns.

Table V provides additional evidence on the short- and long-term volatility
dynamics. The first four columns report the sample variance of the fitted log h,
for each of the models in Tables I-IV. Not surprisingly, both of the volume-
augmented models imply substantially more variation in log h,. The more

TABLE V
Volume Versus ARCH Effects

Estimated var(log h,) for the Components of var(log h,) for the
Different Models SC-EGARCH(2, 2) Model
EGARCH SC-EGARCH EGARCH SC-EGARCH

Firm (1, 1) (1, 1) (2,2) (2,2) Short term  Long term  Interaction
AXP 0.301 0.484 0.315 0.663 0.425 0.214 0.024
CVvX 0.164 0.304 0.168 0.444 0.320 0.153 —0.028
DD 0.271 0.371 0.289 0.581 0.318 0.268 —0.004
DIS 0.281 0.527 0.287 0.736 0.511 0.257 —0.031
DOW 0.516 0.445 0.509 0.790 0.327 0.478 —0.016
EK 0.129 0.654 0.133 0.724 0.777 0.141 —0.194
GE 0.439 0.448 0.509 0.741 0.371 0.358 0.012
GM 0.148 0.415 0.151 0.534 0.450 0.148 —0.063
IBM 0.217 0.526 0.217 0.729 0.634 0.299 —0.204
IP 0.293 0.392 0.304 0.598 0.344 0.260 —0.006
JNJ 0.190 0.411 0.195 0.504 0.406 0.124 —0.026
KO 0.280 0.475 0.290 0.606 0.393 0.173 0.040
MCD 0.214 0.416 0.218 0.543 0.425 0.190 —0.072
MMM 0.169 0.448 0.180 0.597 0.424 0.255 —0.018
MO 0.274 0.731 0.291 0.890 0.800 0.160 —0.070
MRK 0.115 0.432 0.119 0.537 0.421 0.137 —0.020
PG 0.369 0.431 0.367 0.691 0.435 0.251 0.005
S 0.230 0.453 0.228 0.613 0.509 0.227 -0.123
T 0.516 0.418 0.511 1.054 0.535 0.625 —0.105
XOM 0.328 0.415 0.343 0.627 0.329 0.268 0.030

Note. The table examines the extent to which trading volume captures ARCH effects in daily returns on the MMI stocks. The sample
variance of the fitted log volatility series from the models in Tables |-V is reported. In addition, the variance for the model in Table IV is
decomposed into three components—short term, long term, and interaction—using the relation var(logh,) = var(logh, — m,) +
var(m,) + 2cov(log h, — m,, m,). The sample period is January 5, 1993-December 31, 2003. MMI, major market index.
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interesting comparison is between these two models. The SC-EGARCH(2, 2)
model yields the higher value for every stock, and the difference is often 20% or
more. This is indicative of the impact of relaxing the constraint on the decay
rates imposed by the SC-EGARCH(1, 1) model. In the absence of the con-
straint, it becomes apparent that ARCH effects make an important contribu-
tion to the dynamics of the log variance series.

The three remaining columns of the table decompose the sample variance
of the fitted log h, for the SC-EGARCH(2, 2) model into three components—
short term, long term, and interaction—using the relation var(logh,)=
var(logh, — m,) + var(m,) + 2cov(logh, — m,, m,). The results show that
most of the variation in log h, is short term in nature. But this is not due to the
absence of strong ARCH effects. To see this, compare the variance of m, in
column six with the variance of the fitted log h, from the EGARCH(1, 1) model
in column one. The two sets of figures are similar, which is consistent with the
evidence from Figure 1. In general, the long-term component of volatility tends
to closely mimic the conditional volatility implied by the basic EGARCH(1, 1)
model.

The relation between the short- and long-term volatility components is
also of interest. The interaction term in the variance decomposition is nega-
tive for most of the firms. However, with the exception of AT&T, Eastman
Kodak, and General Motors, the correlation between the components is such
that a regression of one on the other would yield an R? of less than five per-
cent. Therefore, it seems that the short- and long-term components of volatil-
ity are largely unrelated. As the former is driven primarily by contemporaneous
volume and the latter by lagged absolute returns, this lack of correlation
is broadly consistent with volatility following a stochastic autoregressive
process in which the unpredictable volatility shocks are strongly associated
with the contemporaneous level of trading activity. This is consistent with
Fleming et al. (2006).

Regression-Based Model Comparisons

Table VI provides direct evidence on how well the various models capture the
dynamics of volatility. The table reports the R* values for a regression of the log
realized variances on the fitted log variances from each of the four EGARCH
specifications. The R?* values for the basic EGARCH(1, 1) model range from
16.8% for Eastman Kodak to 50.1% for AT&T. This range is roughly consistent
with the evidence reported by Andersen and Bollerslev (1998) for a GARCH(1, 1)
model. As the basic model captures up to 50% of the variation in the log real-
ized variances, it provides a reasonable benchmark for assessing the perform-
ance of the other three models.
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TABLE VI
Realized Variance Regressions

Regression R? for the Different Models

Firm  EGARCH(1,1)  SC-EGARCH(I,1)  EGARCH(2,2)  SC-EGARCH(2,2)

AXP 0.376 0.348 0.384 0.555
CvX 0.283 0.170 0.284 0.377
DD 0.405 0.203 0.417 0.520
DIS 0.403 0.238 0.411 0.507
DOW 0.486 0.279 0.496 0.562
EK 0.168 0.318 0.223 0.439
GE 0.482 0.282 0.493 0.636
GM 0.240 0.261 0.246 0.424
IBM 0.309 0.283 0.322 0.578
IP 0.447 0.209 0.463 0.493
JNJ 0.232 0.293 0.243 0.404
KO 0.369 0.291 0.383 0.521
MCD 0.241 0.216 0.257 0.426
MMM 0.340 0.238 0.354 0.491
MO 0.267 0.416 0.303 0.529
MRK 0.246 0.289 0.259 0.488
PG 0.358 0.281 0.362 0.521
S 0.320 0.203 0.311 0.440
T 0.501 0.221 0.522 0.613
XOM 0.433 0.226 0.445 0.520

Note. The table reports the R? for the regression
logRV, = a + blogﬁ,+ e

where RV, is the realized variance for day tand log 5, is the fitted log variance for day tfor each of the models in Tables I-IV.
The realized variance is constructed using the full-day Newey—West estimator described in the Appendix, with a 30-second
sampling frequency and a window length of 30 minutes. The sample period is January 5, 1993-December 31, 2003.

If contemporaneous volume largely subsumes ARCH effects, then one
should find that the SC-EGARCH(1, 1) model performs at least as well as the
basic model. It is found that this is not the case. The SC-GARCH(1, 1) model
produces a lower R? value for 15 of the 20 stocks and, in some cases, the
reduction exceeds 20 percentage points. Apparently, the addition of trading
volume forces the model to place too little weight on the lagged absolute
returns, leading to variance estimates that have a lower correlation
with the realized variances than the estimates from the basic model. Thus,
the results support the earlier conclusions about the shortcomings of the
SC EGARCH(1, 1) specification.

The R? values for the EGARCH(2, 2) model are similar to those for
the EGARCH(1, 1) model. However, adding contemporaneous volume to the
EGARCH(2, 2) specification leads to a substantial increase in the R* value for
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most of the firms, typically on the order of 10-20 percentage points. In most
cases, the R? for the SC-EGARCH(2, 2) model exceeds 50%. This finding con-
firms the need to properly account for the short-term impact of the information
contained in daily volume to uncover the true nature of the relation between
ARCH effects and trading volume.

CONCLUSIONS

The specification of GARCH models with trading volume as a covariate is
more complex than it initially appears. Even if the most commonly cited spec-
ification issue—bias arising from the endogeneity of volume—can be reason-
ably ignored, the models typically used in the literature impose a constraint
that makes it difficult to draw reliable inferences from the model-fitting
results. In particular, they restrict the half-life of a volatility shock to be the
same regardless of its source. A careful investigation reveals that this restric-
tion is strongly rejected by the data and that once the constraint on decay rates
is relaxed, specifying contemporaneous volume as a covariate does little to
diminish the importance of lagged squared returns in capturing the dynamics
of volatility.

More generally, the analysis suggests that any GARCH(1, 1) or
EGARCH(1, 1) model with stochastic covariates has the potential to produce
unreliable inferences if the covariates capture a component of volatility distinct
from that captured by lagged squared returns. Researchers should be cautious
about using these models in the absence of suitable robustness checks.
Robustness could be established, for example, by fitting a higher-order
GARCH model, such as a two-component specification, and conducting model
comparisons using standard diagnostic measures. It should be readily apparent
from the model comparisons whether the constraint is a concern.

APPENDIX

This Appendix describes the approach for constructing realized variances,
including the choice of sampling frequency and the method of dealing with
trading- versus nontrading-period returns. In theory the realized variances
should be constructed by sampling returns as frequently as possible. As the
sampling frequency increases, however, returns become more negatively serially
correlated due to market microstructure effects, which leads to biased variance
estimates. Moreover, high-frequency returns are not available on weekends or
overnight. These issues are dealt with separately: first the realized variance
for the trading day is constructed using an estimator that is robust to serial cor-
relation in returns, and then the full-day realized variance is constructed by
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combining the trading-day realized variance with the squared nontrading-peri-
od return.

The realized variance for the trading day is constructed using the
Newey—West (1987) estimator proposed by Hansen and Lunde (2004):

m q j m—j
RV = 2R +2 <1 - 1) >R R, (A1)
i=1 j=1 q i=1

where g denotes the window length for the autocovariance terms. As this esti-
mator is consistent in the presence of serial correlation, it allows one to sample
returns at a higher frequency and thereby incorporate information that might
otherwise be lost. The full-day realized variance is obtained by combining RV,
with the squared nontrading-period return, R}, using the weighting scheme
proposed by Hansen and Lunde (2005b). They considered the class of condi-
tionally unbiased estimators that is linear in RV, and Rj,| and showed that the
following weights deliver the lowest mean-squared error:

U4 ¥
th = gDI th[o] + (1 - (p)iRtZ[c] (AZ)

b,

where

— lp(%nf’ - (polpcnoc
ims + ot — 24 M,

® (A3)

and = E(R}), ¢, = ERVy), ¥, = E(th[c])7 n, = var(RVy,)), n = V“T(th[c]),
and n,, = cov(RV ), Rii;). Note that the ratios /i, and /i, ensure that the
full-day realized variance has the same unconditional mean as the squared
close-to-close return, whereas ¢ determines the weights placed on the trading-
and nontrading-period variance estimators. In general, ¢ should be close to one
because variance is typically lower during the nontrading period than the trad-
ing period, and R}, is an imprecise estimator of the nontrading-period vari-
ance. This can most easily be seen by assuming 1,, = 0.

To implement Equations (A1) and (A2), intraday transaction prices from
the TAQ database are used. The price filters described in The Data Set sec-
tion are applied to eliminate obvious reporting errors and then the remaining
prices are used to construct returns. The trading day for stocks is usually 390
minutes in length (9:30A.M. to 4:00p.M. Eastern Standard Time). Sampling
frequencies as high as m = 780 (i.e., 30-second returns) are considered. For
a given choice of m, one needs to find the price at the beginning and end of
each m/390-minute interval. The intervals start with the first price in
the TAQ database for that day, which is treated as the beginning price for
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the interval in which it occurs. The price at the end of this and each
successive interval is then estimated by linear interpolation of the prices near-
est (on either side) to the end of the interval (see Andersen & Bollersley,
1997). If one or more prices occur exactly at the end of the interval, the aver-
age of these prices is used. The last transaction price of the day is used as the
price at the end of the last interval. The returns are constructed by differenc-
ing these log prices. As expected, the returns have a negative first-order serial
correlation that increases with the sampling frequency. The average correla-
tion coefficient across the 20 MMI stocks is —0.07 for five-minute returns
and —0.15 for 30-second returns."?

The intraday returns are used to construct RV, using values of g that
correspond to four different window lengths: 0, 15, 30, and 60 minutes. Using
a window length of 0, the bias caused by microstructure effects is readily
apparent. Realized variances constructed using five-minute returns, which is
common practice in the literature, are on average 13% greater than the aver-
age squared open-to-close return. The bias is much worse at higher sampling
frequencies. However, increasing the window length counteracts the bias.
Using a 15-minute window, the realized variances are still noticeably biased;
but, using a 30-minute window, the average realized variances at every sam-
pling frequency are within two percent of the average squared open-to-close
return. Increasing the window length further (e.g., 60 minutes) substantially
increases the standard deviation of the realized variances, as including unnec-
essary covariance terms in Equation (Al) reduces efficiency. Based on these
results, the realized variances constructed using 30-second returns and a
30-minute window length are used in the construction of the full-day realized
variances.

To obtain the full-day realized variances, the sample analogs of ¥, ¥, ¥,
12, m2, and 7,, are substituted into Equations (A2) and (A3). Hansen and
Lunde (2005b) suggested removing outliers from the estimation to avoid
obtaining a negative weight on R;,). Accordingly, days in which either RV, or
R}, is among the largest 0.5% of the observations for each stock are excluded.
The average ¢ estimate for the 20 stocks is 0.92. By comparison, the ratio of
the average squared close-to-close return to the average squared close-to-open
return indicates that approximately 20% of the daily variance occurs during the
nontrading period. However, the ¢ estimate gives less weight than this to
the nontrading-period variance estimate because the trading-period variance
estimate is much more precise.

BThese serial correlation coefficients (based on interpolated prices) are substantially smaller than those
obtained using the last transaction price in each intraday time interval. This is true even if an MA(1) model
is used to filter returns as in Andersen, Bollerslev, Diebold, and Ebens (2001).
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