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The Economic Value of Volatility Timing
JEFF FLEMING, CHRIS KIRBY, and BARBARA OSTDIEK*

ABSTRACT

Numerous studies report that standard volatility models have low explanatory
power, leading some researchers to question whether these models have economic
value. We examine this question by using conditional mean-variance analysis to
assess the value of volatility timing to short-horizon investors. We find that the
volatility timing strategies outperform the unconditionally efficient static portfo-
lios that have the same target expected return and volatility. This finding is robust
to estimation risk and transaction costs.

VOLATILITY PLAYS A CENTRAL ROLE in derivatives pricing, optimal portfolio se-
lection, and risk management. These applications motivate an extensive lit-
erature on volatility modeling. Starting with Engle (1982), researchers have
fit a variety of autoregressive conditional heteroskedasticity (ARCH), gen-
eralized ARCH (Bollerslev (1986)), exponential ARCH (Nelson (1991)), and
stochastic volatility models to asset returns. This literature, however, has
centered on evaluating the statistical performance of volatility models rather
than the economic significance of time-varying, predictable volatility. In con-
trast, we focus on the latter. Specifically, we examine the economic value of
volatility timing to risk-averse investors.

Several review articles summarize the empirical findings on volatility (see,
e.g., Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nelson (1994),
Diebold and Lopez (1995), and Palm (1996)). The evidence is generally con-
sistent across a broad range of assets and econometric specifications, and
overwhelmingly suggests that volatility is to some extent predictable. How-
ever, standard volatility models typically explain only a small fraction of
the variation in squared returns. This has led some researchers to question
the relevance of these models. Andersen and Bollerslev (1998) argue that the
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low explanatory power is an inevitable consequence of the noise inherent in
the return-generating process. They propose a more precise measure of ex
post volatility (cumulative squared intradaily returns) and find that GARCH
models explain about 50 percent of the variation in this measure. This sug-
gests that standard volatility models deliver reasonably accurate forecasts,
but it leaves unanswered the question of whether volatility timing has eco-
nomic value.

There has been little research that specifically considers this issue. A few
studies, such as Graham and Harvey (1996) and Copeland and Copeland
(1999), examine trading rules designed to exploit predictable changes in vol-
atility. But these studies typically limit their analysis to simple switching
strategies. Busse (1999), on the other hand, examines the trading behavior
of active portfolio managers. He finds that a significant percentage of mu-
tual fund managers tend to reduce their market exposure during periods of
high expected volatility. Although this suggests that many fund managers
behave like volatility timers, their trading decisions may be driven by fac-
tors other than volatility modeling.

In this paper, we systematically examine the value of volatility timing for
short-horizon asset-allocation strategies. The framework for our analysis is
straightforward. We consider an investor who uses a mean-variance optimi-
zation rule to allocate funds across four asset classes: stocks, bonds, gold,
and cash. The investor’s objective is to maximize expected return (or mini-
mize volatility) while matching a target volatility (or expected return). Al-
lowing for daily rebalancing, the solution to the investor’s portfolio problem
is a dynamic trading strategy that specifies the optimal asset weights as a
function of time. Implementing this strategy, in general, requires estimates
of both the conditional expected returns and the conditional covariance ma-
trix. The variances and covariances, however, can typically be estimated
with far greater precision than the expected returns (Merton (1980)). There-
fore, we treat expected returns as constant and let the variation in the port-
folio weights be driven purely by changes in the conditional covariance matrix.

To estimate the conditional covariance matrix, we employ a general non-
parametric approach developed by Foster and Nelson (1996). The estimator
is a weighted rolling average of the squares and cross products of past re-
turn innovations that nests most ARCH, GARCH, and stochastic volatility
models as special cases. We determine the weights by minimizing the as-
ymptotic mean squared error (MSE) of the estimator. After constructing the
covariance matrix estimates, we form the dynamic portfolios and evaluate
their performance. Our measure of the value of volatility timing is the esti-
mated fee that a risk-averse investor would be willing to pay to switch from
the ex ante optimal static portfolio to the dynamic portfolio.

The data for our analysis consist of daily returns for stock, bond, and gold
futures. We use futures to avoid short sale constraints and microstructure
effects, but our analysis generalizes to the underlying spot assets via stan-
dard no-arbitrage arguments. Our results indicate that when estimation risk
regarding expected returns is negligible, the volatility timing strategies plot
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above the ex post efficient frontier for fixed-weight portfolios. We obtain
similar results after using a bootstrap procedure to control for estimation
risk. For example, when the risk is comparable to that over our sample, the
maximum return strategy has a higher Sharpe ratio than the ex ante opti-
mal static portfolio in 92 percent of our simulations. Moreover, the effective-
ness of volatility timing increases if we use smoother volatility estimates
than those obtained using our MSE criterion. When the volatility persis-
tence is comparable to that implied by GARCH models, a risk-averse inves-
tor would pay a positive fee to switch from the optimal static to the dynamic
portfolio in nearly 100 percent of the simulations. On average, the estimated
fee exceeds 170 basis points per year.

The remainder of the paper is organized as follows. Section I develops our
methodology for measuring the value of volatility timing. Section II de-
scribes the data used in our analysis. Section III reports the empirical re-
sults. Section IV summarizes our conclusions and outlines the implications
for future research.

I. Methodology

Our methodology for measuring the value of volatility timing is to evalu-
ate the impact of predictable changes in volatility on the performance of
short-horizon asset-allocation strategies.! Both theoretical and empirical con-
siderations motivate our focus on short-horizon strategies. Many theoretical
models of the trading process imply that daily returns are characterized by
stochastic volatility (see, e.g., Tauchen and Pitts (1983) and Andersen (1996)).
And, empirically, the persistence in volatility is stronger for daily returns
than for returns measured over longer horizons (see, e.g., Glosten, Jagan-
nathan, and Runkle (1993)).

We use mean-variance analysis to implement the asset-allocation strat-
egies. Consequently, they are optimal only if investors have logarithmic util-
ity and the first two moments completely characterize the joint distribution
of returns. This is not problematic, however, given the nature of our inves-
tigation. Specifically, if volatility timing has value using a suboptimal strat-
egy, then more sophisticated strategies are likely to yield even greater value.
More importantly, the mean-variance approach facilitates several aspects of
our analysis. First, it underlies most of the common measures of portfolio
performance. Second, the relation between mean-variance optimization and
quadratic utility allows us to quantify how risk aversion affects the value of
volatility timing. Finally, this framework accommodates a straightforward
simulation approach to assess the significance and robustness of our results.

! This approach is similar in spirit to Kandel and Stambaugh (1996). They use a Bayesian
framework to study how stock return predictability influences the asset-allocation decisions of
an investor with power utility. Our analysis also focuses on the economic significance of pre-
dictable variation in the inputs to a portfolio problem, but we use a less complex approach that
is more consistent with traditional performance measurement methods.
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A. Volatility Timing in a Mean-variance Framework

Consider an investor with a one-day horizon who wants to minimize port-
folio variance subject to achieving a particular expected return. In general,
constructing the portfolio weights requires one-step-ahead estimates of both
the vector of conditional means and the conditional covariance matrix. There
is little empirical evidence, however, that we can detect variation in ex-
pected returns at the daily level. Moreover, Merton (1980) shows that a very
long sample period would be needed to produce reliable coefficient estimates
in a predictive regression. We assume, therefore, that our investor models
expected returns as constant. Given our mean-variance framework, this is
equivalent to following a volatility-timing strategy.

Because the portfolio weights in this strategy ignore any time variation in
expected returns, our methodology for measuring the value of volatility tim-
ing should yield conservative results. To see why, note that theory implies a
positive relation between expected returns and volatility. Ignoring this link-
age causes our portfolio weights to decrease by more than is optimal when
volatility rises and to increase by more than is optimal when volatility falls.
This reduces the potential effectiveness of our volatility-timing strategy, but
it also mitigates the concern that our results are actually driven by variation
in expected returns.

To develop our methodology, let R, {, p =E[R, ], and 3, = E,[(R,.; — p)
(R,,; — m)'] denote, respectively, an N X 1 vector of risky asset returns, the
expected value of R, ;, and the conditional covariance matrix of R,, ;. For
each date ¢, the investor solves the quadratic program

min w; 3, w,

st.w,p+ (1 —-w/ 1R, = u,, (1)

where w, is an N X 1 vector of portfolio weights on the risky assets, R is the
return on the riskless asset, and u,, is the target expected rate of return. The
solution to this optimization problem,

(1w, ~R)E M- R
(b —R;1)3; " (u—R;1)’

(2)

W,

delivers the risky asset weights. The weight on the riskless asset is 1 — w; 1.

We can express equation (2) in terms of futures returns by applying stan-
dard no-arbitrage arguments. Under the cost-of-carry model, the return on a
futures contract equals the total return on the underlying asset minus the
riskless interest rate (because futures entail no initial investment). Subtract-
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ing the riskless rate from each element of R,,; has no effect on the condi-
tional covariance matrix, so we can use the cost-of-carry relation to express
equation (2) as

e

_ , 3
2t ®)

W;

with the vector u = E[r,,,] and matrix 3, = E,[(r,.; — p)(r,; — n)'] re-
defined in terms of excess returns.

The trading strategy implicit in equation (3) identifies the dynamically
rebalanced portfolio that has minimum conditional variance for any choice
of expected return. We could conduct a similar analysis where the objective
is to maximize the expected return subject to achieving a particular condi-
tional variance. Thus, our mean-variance framework suggests two candidate
volatility-timing strategies. First, we set the portfolio expected return equal
to a fixed target and solve for the weights that minimize conditional vari-
ance (the minimum volatility strategy). Second, we set the portfolio variance
equal to a fixed target and solve for the weights that maximize conditional
expected return (the maximum return strategy).

B. Estimating the Conditional Covariance Matrix

To implement the volatility-timing strategies, we need to form one-step-
ahead estimates of the conditional covariance matrix. A number of estima-
tion methods have been developed in the literature.2 We follow Foster and
Nelson (1996) and use rolling estimators that are constructed in an asymp-
totically optimal manner. This approach has some distinct advantages in our
application. Unlike multivariate ARCH and GARCH models, which are heav-
ily parameterized and difficult to estimate, the computational demands of
rolling estimators are modest. In addition, the nonparametric nature of the
approach is consistent with our objective of providing baseline evidence—
without searching for the best volatility model—on the economic signifi-
cance of time-varying, predictable volatility.

The class of rolling estimators that we employ can be written as

T—t

Ot = z > @y (Tipr = ) (T e — 1), (4)
S

2 Officer (1973) and Fama and MacBeth (1973) employ ad hoc rolling estimators. Merton
(1980) and French, Schwert, and Stambaugh (1987) divide the data into nonoverlapping blocks
and treat the conditional variances and covariances as constant within each block. More re-
cently, ARCH models (e.g., Engle (1982) and Bollerslev (1986)) have gained popularity. Our
approach nests a broad range of ARCH and GARCH models as special cases.
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where r;, and r;, denote the returns on assets i and j, respectively, w;; ,, is
the weight placed on the product of the return innovations for date ¢ + /, and
T is the number of observations in the sample. To distinguish between vari-
ance estimators and covariance estimators, we will use the notation &7 for
the case where i = j. Although equation (4) admits a wide range of potential
weighting schemes, Foster and Nelson (1996) demonstrate that the optimal
strategy is to let the weights decline in an exponential fashion as the mag-
nitude of [ increases.

The precise form of the optimal weights depends on the characteristics of
the volatility process. If volatility is stochastic, then the optimal weights for
the two-sided rolling estimator are given by

Wy, ee1 = (o, /2)e ol 5

where «;; , is the decay rate. This estimator uses both leads and lags of
returns to estimate o;; ,. To construct the corresponding one-sided estimator,
we set w;; ,,;, = 0 for [ > 0 and double each of the weights for [ = 0.

Applying this methodology requires an estimate of the optimal decay rate.
Foster and Nelson (1996) show how to estimate the «;; , that minimizes the
asymptotic MSE of the estimator in equation (4). Their procedure, however,
implies a different decay rate for each element of the conditional covariance
matrix. Because this makes it difficult to ensure that the matrix is positive
definite, we impose the restriction «;; , = «, for all i and j. Given this re-
striction, we can show that under empirically plausible assumptions the op-
timal decay rate is constant. We estimate this decay rate by minimizing the
asymptotic MSE of our rolling estimator of apzt = w,3,w,. Using the data for
our sample yields an estimate of 0.063.3

C. Measuring the Value of Volatility Timing

To measure the value of volatility timing, we compare the performance of
the dynamic strategies to that of the unconditional mean-variance efficient
static strategies that have the same target expected return and volatility. If
volatility timing has no value, then the ex post performance of the static and
dynamic strategies should be statistically indistinguishable. Making this com-
parison requires a performance measure that captures the trade-off between
risk and return. We use a generalization of West, Edison, and Cho’s (1993)
criterion for ranking the performance of forecasting models. This measure is
based on the close relation between mean-variance analysis and quadratic
utility.

3 An appendix is available on the journal’s web site (www.afajof.org) that describes our es-
timation procedure in detail. Note that the procedure relies on the actual data, so we poten-
tially introduce a look-ahead bias into our results. However, the sensitivity analysis in Section III.D
suggests this is not a significant concern. In particular, we find that volatility timing is more
effective using a smaller decay rate than implied by the minimum MSE criterion. A smaller
decay rate generates smoother volatility estimates than the ones we use and is consistent with
the findings in the GARCH literature.
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In general, we can view quadratic utility as a second-order approximation
to the investor’s true utility function. Under this approximation, the inves-
tor’s realized utility in period ¢ + 1 can be written as

aW?

UW,q) = WtRp,t+1 - TRE,tJrl’ (6)

where W, ; is the investor’s wealth at ¢ + 1, a is his absolute risk aversion,
and

p— 4
R, i1 =R twir,,

is the period ¢ + 1 return on his portfolio. To facilitate comparisons across
portfolios, we hold aW, constant. This is equivalent to setting the investor’s
relative risk aversion, y, = aW, /(1 — aW,), equal to some fixed value y. With
relative risk aversion held constant, we can use the average realized utility,
U(-), to consistently estimate the expected utility generated by a given level
of initial wealth. In particular, we have

T-1
_ B B 0% 9
o) W(ZOR —2(“”1%1,,”1), @

where W, is the investor’s initial wealth.

We estimate the value of volatility timing by equating the average utilities
for two alternative portfolios. Suppose, for example, that holding a static
portfolio yields the same average utility as holding a dynamic portfolio that
is subject to daily expenses of A, expressed as a fraction of wealth invested.
Because the investor would be indifferent between these two alternatives,
we interpret A as the maximum performance fee that he would be willing to
pay to switch from the static to the dynamic strategy. To estimate this fee,
we find the value of A that satisfies

_r
21 +y)

Y

——R? 8
2(1+7) s, t+1>» ( )

T-1 T-1
2 (Rd,t+1 - A) - (Rd,t+1 - A)2 = 2 Rs,t+1 -
t=0 t=0

where R; ,.; and R, ,,; denote the returns for the dynamic and static strat-
egies, respectively. We report our estimates of A as annualized fees in basis
points using two different values of y, 1 and 10.4

4 Because utility depends on total returns rather than excess returns, we also have to specify
a value for the riskless rate. We set R, = 6 percent in the empirical analysis.
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II. Data and Preliminary Analysis

Our empirical analysis focuses on four broadly defined asset classes: stocks,
bonds, gold, and cash equivalents. As explained earlier, we use futures con-
tracts for the analysis. The specific contracts are the S&P 500 index futures
traded at the Chicago Mercantile Exchange, the Treasury bond futures traded
at the Chicago Board of Trade, and the gold futures traded at the New York
Mercantile Exchange. Because futures returns are approximately equivalent
to excess spot returns, we can eliminate cash equivalents from explicit con-
sideration. The weight placed in cash is implicit in the solution to the port-
folio optimization problem using only the risky assets.

The source for the gold futures data is Datastream International and the
source for the bond and stock futures data is the Futures Industry Institute.
The gold futures contract closes at 1:30 CST each day whereas the bond and
stock contracts close at 2:00 CST and 3:15 CST, respectively. We align the
price observations across contracts by using daily closing prices for gold fu-
tures and the last transaction prices before 1:30 CST for the bond and stock
contracts. In addition, we exclude all days when any of the three markets is
closed in order to maintain a uniform measurement interval across con-
tracts. The sample period is January 3, 1983 to December 31, 1997.

A. The Returns

We compute the daily returns using the day-to-day price relatives for the
nearest-to-maturity contract. As the nearby contract approaches maturity,
we switch to the second nearby contract. We time the switch to capture the
contract month with the greatest trading volume. This results in switching
contracts for S&P 500 futures once the nearby contract enters its final week
and for bond and gold futures once the nearby contract enters the delivery
month. This procedure yields a continuous series of 3,763 daily returns for
each market.

Table I provides descriptive statistics for the returns. Panel A shows that
the average returns, u, are highest for stock index futures followed by bonds
and then gold. The standard deviations, o, indicate that stocks are most
volatile and that gold is more volatile than bonds. Panel B reports the sam-
ple return correlations, p(R). The correlation between stock and bond re-
turns is positive (0.397), whereas the correlations between stock and gold
returns (—0.105) and bond and gold returns (—0.157) are negative. These
findings seem reasonable given historic spot market returns and the impli-
cations of the cost-of-carry relation.

B. The Conditional Covariance Matrix Estimates

We use equation (4) to estimate the conditional covariance matrix. We
subtract the sample mean from the raw returns for each asset and then form
the two-sided rolling weighted average of the squares and cross-products of
the return innovations. The weights are given by equation (5) with «;; , equal
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to our estimate of 0.063. Figure 1 plots the resulting estimates of the con-
ditional volatilities (Panel A) and correlations (Panel B). Table I reports the
associated summary statistics.

The average volatility estimates are reported as &, in Table I, Panel A, and
are generally consistent with the standard deviations of raw returns. The
autocorrelation structure, shown in Panel C of Table I, reveals a strong de-
gree of persistence for each series. Figure 1 shows that the volatility esti-
mates vary considerably over the course of the sample, and the correlations,
reported as p(o,) in Panel B of Table I, indicate that the volatility changes
are positively correlated across markets. Figure 1 also shows substantial
time-series variation in the rolling return correlations. The average esti-
mates, p(r) in Panel B of Table I, are consistent with the sample correla-
tions, p(R), but the stock/gold and bond/gold correlations sharply decrease
after the crash and the stock/bond correlations widely fluctuate across the
sample.

III. Empirical Results

The time-series variation in the covariance matrix estimates suggests a
potential role for volatility timing in asset-allocation decisions. In this sec-
tion, we assess the economic value of volatility timing to short-horizon in-
vestors. First, we operationalize the portfolio optimization procedure and
examine the portfolio weights and the ex post returns for the dynamic strat-
egies. We then compare the performance of the dynamic portfolios to that of
the ex ante optimal static portfolios under various levels of estimation risk.
Finally, we assess the sensitivity of our findings to the choice of decay rate
used to generate the covariance matrix estimates.

Constructing the optimal portfolios requires estimates of the conditional
expected returns, variances, and correlations. Estimates of the conditional
variances and correlations are obtained using the procedure in Section I.B.
We use the one-sided estimates that are based only on information available
on a real-time basis. Although we treat the conditional expected returns as
constant, it is not clear how we should estimate them. A natural choice would
be to use spot data prior to the start of our sample. The 1970s, however,
produced dramatic economic changes such as the oil crisis, the shift in Fed-
eral Reserve interest rate policy, and the elimination of the gold standard.
Using returns data from this period would be appropriate only if we assume
investors expected similar changes in the 1980s and 1990s. More generally,
to the extent that the portfolio returns are sensitive to the expected return
estimates, using any single set of estimates would make it difficult to assess
the robustness of our results.

To avoid this problem, we consider a range of expected return estimates
generated using a bootstrap approach (Efron (1979)). The bootstrap is a sim-
ple resampling technique that controls for the uncertainty in estimating pop-
ulation parameters from sample data. We begin by drawing randomly with
replacement from the actual returns to generate a series of artificial re-
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turns. Then, we compute the mean returns in this artificial sample and use
them, along with our conditional covariance matrix estimates, to compute
the optimal portfolio weights. Finally, we apply these weights to the actual
returns and conduct our performance evaluations. This approach allows us
to mimic the estimation risk that an investor would face when estimating
expected returns using a sample of any given size.

Our approach also requires a benchmark portfolio in order to measure the
value of volatility timing. The natural choice, given our mean-variance frame-
work, is the unconditionally optimal static portfolio for the same target ex-
pected return or volatility used in the dynamic strategies. To construct this
benchmark, we use our bootstrap estimates of the unconditional expected
returns, volatilities, and covariances to solve for the required portfolio weights.
This ensures that the static and dynamic portfolios are based on the same ex
ante information.

A. The Portfolio Weights and Returns

Before implementing the bootstrap, it is useful to establish baseline re-
sults for the case where estimation risk is negligible. This corresponds to
constructing the portfolio weights based on the mean returns over the entire
sample along with the one-step-ahead estimates of the conditional covari-
ance matrix. Figure 1 shows the resulting weights for the minimum volatil-
ity (Panel C) and maximum return (Panel D) strategies. The weights are
based on a target expected return of 10 percent and a target volatility of 12
percent.

As expected, the sign and magnitude of each of the weights depends on
the estimated expected returns and the conditional volatility and correlation
estimates. For example, the weight in gold is generally negative because the
average return on gold futures is negative. But the size of this short position
decreases when gold volatility increases, as in 1985 and 1993 (Figure 1,
Panel A), and when gold’s correlation with stocks and bonds becomes more
negative, as in 1987 and 1991 (Figure 1, Panel B). Similarly, the split be-
tween stocks and bonds is sensitive to their relative volatilities. Stock vol-
atility decreases steadily from 1991 to 1994 whereas bond volatility remains
relatively constant. As a result, the weight in stocks steadily increases over
this period whereas the weight in bonds decreases. The swings in the weights
are more pronounced in Panel D because a greater risk exposure is needed
to match the target volatility of 12 percent. Panels C and D also show the
implicit weights in cash. A negative cash weight means that the correspond-
ing position in the underlying assets is levered; there are relatively few in-
stances, however, when this occurs.

We compute the ex post daily returns for each strategy by multiplying the
portfolio weights by the observed next-day returns on stock, bond, and gold
futures. The minimum volatility strategy yields a mean return of 9.8 per-
cent, a sample volatility of 10.7 percent, and an estimated Sharpe ratio of
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0.92. For the maximum return strategy, the mean return is 12.4 percent, the
sample volatility is 13.6 percent, and the estimated Sharpe ratio is 0.91. To
put these results in perspective, consider the ex post minimum variance
frontier for fixed-weight portfolios. The maximum realizable Sharpe ratio is
0.86, so both of the dynamic strategies plot above the efficient frontier. The
implication of this finding is clear. It is unlikely that we would have chosen
ex ante a fixed-weight portfolio that turned out to be ex post efficient; but,
even if we had, we would not have outperformed either of the dynamic
strategies.

To assess the statistical significance of the volatility timing results, we
conduct simulations where the asset returns are generated independently of
the portfolio weights. We first form a random permutation of the actual
return series and then we apply the actual weights to the randomized re-
turns to compute portfolio returns.’ If the volatility-timing gains are signif-
icant, the strategies should perform better using the actual data than in the
simulations. We find this to be the case. For the minimum volatility strat-
egy, the mean return and volatility across 10,000 trials are 9.7 percent and
12.9 percent. No trial produces a volatility as low as that observed using the
actual returns, and only 9.2 percent of the trials yield a higher Sharpe ratio.
For the maximum return strategy, the mean return and volatility are 14.0
percent and 23.6 percent, and only 0.4 percent of the trials yield a higher
Sharpe ratio. These findings indicate it is unlikely that the gains to volatil-
ity timing are due to chance.

Table II breaks down the actual ex post portfolio returns for the dynamic
strategies by three-year subperiods. The average returns and sample vola-
tilities vary considerably across the subperiods, with the worst and best per-
formance during the periods from 1992 to 1994 and 1995 to 1997, respectively.
Of course, these results are based on fairly small samples, so much of the
variation may be attributable to estimation error. The final two lines of the
table show that the 1987 stock market crash has little impact on the results.
Specifically, if we exclude either the two-week period following the crash or
the entire 1986 to 1988 subperiod, the performance of the dynamic strat-
egies is comparable to that observed over the entire sample.

B. The Impact of Estimation Risk

Although our previous results suggest volatility timing may have value,
these results do not account for estimation risk. We evaluate the impact of
this risk using the bootstrap approach described earlier. Suppose, for exam-
ple, that we want to mimic the estimation risk that an investor would face
using a sample size comparable to our sample. We generate an artificial
sample of 4,000 returns by drawing randomly with replacement from the

5 Note that this is asymptotically equivalent to using the actual returns and randomizing the
portfolio weights. Either way, the weights are independent of the asset returns.
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Table I1

Ex Post Performance of the Volatility-timing Strategies

The table summarizes the ex post performance of the volatility-timing strategies. The dynamic
portfolio weights are determined by solving a daily portfolio optimization problem in which the
expected returns are assumed to be constant and equal to the in-sample mean returns. The
daily estimates of the conditional covariance matrix of returns are obtained using the Foster
and Nelson (1996) one-sided procedure described in the text. We solve for two sets of dynamic
weights: (1) those that minimize conditional volatility while setting the conditional expected
return equal to 10 percent, and (2) those that maximize conditional expected return while
setting the conditional volatility equal to 12 percent. For each set of weights, we report the
annualized mean realized return (u), the annualized realized volatility (o), and the realized
Sharpe ratio (SR). The sample period is January 3, 1983 through December 31, 1997. The first
three months of data are withheld to initialize the volatility estimation procedure. We also
report results for each three-year subsample and for two noncrash periods that exclude either
October 19 to 30, 1987 or the entire 1986 to 1988 subperiod.

Minimum Volatility Maximum Return
Period Obs. n o SR n o SR
Entire sample 3,700 9.75 10.65 0.916 12.38 13.57 0.912
1983-1985 692 8.11 8.96 0.905 10.67 13.23 0.806
1986-1988 757 10.76 15.11 0.712 7.36 14.16 0.520
1989-1991 758 9.96 11.33 0.879 9.40 13.77 0.682
1992-1994 751 4.24 7.63 0.555 6.88 13.18 0.522
1995-1997 742 15.63 8.26 1.892 27.71 13.45 2.060
Noncrash samples
ex. Oct. 19-30, 1987 3,690 9.18 10.46 0.878 11.91 13.48 0.883
ex. 1986-1988 2,943 9.50 9.17 1.036 13.67 13.42 1.019

actual returns. We then compute the portfolio weights using the artificial
sample means (instead of the true sample means), apply these weights to
the actual returns, and evaluate the performance of the dynamic strategies.®

We quantify the impact of estimation risk by comparing the simulation
results to the case where estimation risk is negligible. Across 10,000 simu-
lation trials, the mean Sharpe ratios for the minimum volatility and maxi-
mum return strategies are 0.84 and 0.85, compared to the 0.92 and 0.91
reported earlier. We can translate these differences into annualized basis
point fees using our utility-based approach. This indicates that to eliminate
the risk of estimating the expected returns from a sample size of 4,000, an

8 Most investors would weigh the expected returns obtained from sampling against their
prior expectations. Specifically, asset pricing theory suggests that the unconditional expected
returns for stock and bond futures should be positive, and that stocks should have the highest
expected return, followed by bonds, and then gold. We incorporate these priors into our boot-
strap experiment by requiring that the average returns in each of our artificial samples satisfy
both conditions.
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Table II1
The Effect of Estimation Risk on the Performance
of the Volatility-timing Strategies

The table illustrates the effect of estimation risk on the performance of the volatility-timing
strategies. We mimic this risk using a bootstrap approach. Specifically, we generate a random
sample of k£ observations by sampling with replacement from the actual returns, and we use the
mean returns for this sample to compute the dynamic portfolio weights. These weights are
determined by solving a daily portfolio optimization problem in which the conditional covari-
ance matrix of returns is estimated using the Foster and Nelson (1996) one-sided procedure
described in the text. We repeat the bootstrap experiment 10,000 times for each value of k. The
table reports the annualized mean realized returns (), annualized realized volatilities (o), and
the realized Sharpe ratios (SR), as well as the average annualized basis point fees (A) that an
investor with quadratic utility and constant relative risk aversion of y = 1 or y = 10 would be
willing to pay to eliminate the risk associated with estimating expected returns.

Minimum Volatility Strategy Maximum Return Strategy

k " o SR Ay Ao I o SR Ay Ao

500 5.28 7.22 0.736 423.6 2073 1038 13.,56 0.765 199.7 197.3
1,000 6.57 8.65 0.766 3074 204.7 10.73 13,56 0.791 164.3 162.5
1,500 7.32 944 0.782 2399 204.1 1092 13,56 0.805 1457 143.9
2,000 7.78 9.83 0.799 1964 1894 11.12 1356 0.820 1255 1243
2,500 815 10.13 0.810 1624 1799 1124 1356 0.829 11356 1123
3,000 842 10.29 0824 136.1 1593 1140 13.57 0.841 97.4 96.4
3,500 859 1038 0.833 119.1 1415 11.50 13.57 0.848 87.8 87.0
4,000 8.73 1046 0.840 1050 130.9 11.58 13.57 0.853 80.3 79.7
4,500 890 10.58 0.845 89.7 126.7 11.64 13.57 0.858 74.0 73.3
5,000 896 10.59 0.850 83.1 115.0 11.69 13,57 0.861 68.8 68.4

10,000 9.34 10.65 0.879 43.0 609 1199 13.57 0.884 38.5 38.3

investor with a relative risk aversion of one would be willing to pay 105 and
80 basis points, on average, when implementing the minimum volatility and
maximum return strategies. The magnitude of these fees suggests that the
impact of estimation risk can be substantial.

Table IIT shows how the fees vary with the level of estimation risk. As
expected, the fees decline monotonically with the sample size, independent
of whether the risk aversion is y = 1 or y = 10. The overall relation between
the fees, risk aversion, and estimation risk, however, is more complex. In
some instances, the fee for v = 1 is higher than the fee for y = 10. To see how
this occurs, note that both the mean and volatility tend to fall as the number
of observations in the sample decreases. Thus, when the number of obser-
vations is small, the resulting portfolio is likely to be less attractive to an
investor with low risk aversion than to an investor with high risk aversion.
Under these circumstances, eliminating the estimation risk can have a greater
impact for investors with low risk aversion.



344 The Journal of Finance

C. The Value of Volatility Timing

We use a similar approach to estimate the value of volatility timing under
various levels of estimation risk. Specifically, we compare the performance
of the dynamic portfolios to the performance of the unconditionally mean-
variance efficient static portfolios that have the same target expected return
and volatility. We construct the static portfolios using the unconditional means,
variances, and covariances obtained from the artificial data.” As before, we
then apply the optimal fixed weights to the actual returns to evaluate ex
post performance. Because the static and dynamic portfolios incorporate the
same level of estimation risk, their relative performance should reliably in-
dicate the value of volatility timing.

Figure 2 shows the results for 10,000 simulation trials where £ = 4,000
observations. Each point in the figure represents a separate trial, plotting
the realized Sharpe ratio for both the static (x-axis) and dynamic (y-axis)
portfolios. For the minimum volatility strategy (Panel A), the points are
clustered around a 45-degree line through the figure, suggesting that its
advantage over the static portfolio is relatively modest. Nonetheless, in 84
percent of the trials, the dynamic portfolio achieves the higher Sharpe ratio.
For the maximum return strategy (Panel B), the performance differential is
even greater. The distribution clearly shifts above the 45-degree line, and
the dynamic portfolio achieves the higher Sharpe ratio in 92 percent of the
trials.

Averaging across the simulation trials, both of the static portfolios pro-
duce a mean Sharpe ratio of 0.80, compared to 0.84 and 0.85 for the dynamic
strategies. Although these differences do not seem large, they can translate
into sizable performance fees. With v = 1, for example, our quadratic-utility
investor would be willing to pay an estimated 173 basis points annually to
switch from the ex ante optimal static portfolio to the maximum return strat-
egy. In other cases, however, the estimated fees are much smaller. The fees
to switch to the maximum return strategy when y = 10 or to the minimum
volatility strategy when y = 1 are close to zero.

Figure 3 shows the distribution of the performance fees across the 10,000
simulation trials. For the minimum volatility strategy (Panel A), the distri-
bution is close to symmetric around a mean of —1 basis point when y = 1.
For y = 10, the distribution shifts to the right, with an estimated mean of 60
basis points. The results for the maximum return strategy (Panel B) look
quite different. For y = 1, the distribution is skewed to the left with an
estimated mean of 173 basis points, whereas the distribution for y = 10 is
skewed to the right with an estimated mean of —3 basis points. These dif-
ferences highlight the effect of risk aversion on the trade-off between risk

7 An investor implementing the static strategy would generally expect greater volatility for
stocks than for bonds. Therefore, in addition to the conditions given in footnote 6, we require
that each of our artificial samples has a higher volatility for stocks than for bonds.
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Figure 2. Sharpe ratios for the volatility-timing and ex ante optimal static strategies.
The figure plots the realized Sharpe ratios for the volatility-timing and ex ante optimal static
strategies. The input parameters used in the portfolio optimizations are determined by boot-
strapping. Specifically, using actual returns, we generate an artificial sample of 4,000 obser-
vations from which we estimate the mean returns, volatilities, and covariances for each asset.
For the volatility-timing strategies, we use the estimated mean returns and our daily covari-
ance matrix estimate to determine the daily optimal portfolio. For the static strategies, we use
the estimated mean returns, volatilities, and covariances from the artificial sample to deter-
mine the unconditional optimal portfolio. The figure plots the realized Sharpe ratios for each of
10,000 trials of this bootstrap experiment. The sample period for the realized returns is April

4, 1983 through December 31, 1997.
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Table IV
Comparison of the Volatility-timing and Ex Ante
Optimal Static Strategies

The table compares the performance of the volatility-timing strategies to that of the ex ante
optimal static portfolios. We use a bootstrap procedure to simulate the ex ante information set.
Specifically, we generate a random sample of %2 observations by sampling with replacement
from the actual returns in order to estimate the unconditional mean returns, volatilities, and
correlations. Using these estimates, we compute the weights that deliver the unconditionally
efficient static portfolios. To obtain the weights for the volatility-timing strategies, we use the
mean returns from the bootstrap sample and our daily estimates of the conditional covariance
matrix to solve the daily optimal portfolio problem. We repeat the bootstrap experiment 10,000
times for each & using a target expected return and volatility of 10 percent and 12 percent,
respectively. The table reports the annualized mean realized returns (u), annualized realized
volatilities (o), and realized Sharpe ratios (SR) for each strategy, the proportion of trials in
which the volatility-timing strategy has a higher Sharpe ratio than the static portfolio (p-
value), and the average annualized basis point fees (A) that an investor with quadratic utility
and constant relative risk aversion of y = 1 or y = 10 would be willing to pay to switch from the
static portfolios to the volatility-timing strategies.

Static Portfolio Dynamic Portfolio

k ” o SR n o SR p-value A Aso

Panel A: Minimum Volatility Strategies

1,000 6.76 9.16 0.742 6.57 8.65 0.766 0.7137 —13.8 35.5
2,000 7.94 10.39 0.770 7.78 9.83 0.799 0.7653 -9.6 48.3
3,000 8.53 10.87 0.789 8.42 10.29 0.824 0.8075 —4.3 56.7
4,000 8.81 11.04 0.801 8.73 10.46 0.840 0.8379 -1.0 60.3
5,000 9.02 11.18 0.809 8.96 10.59 0.850 0.8603 0.5 63.3
10,000 9.36 11.26 0.832 9.34 10.65 0.879 0.9276 5.1 67.8

Panel B: Maximum Return Strategies

1,000 9.10 12.27 0.742 10.73 13.56 0.791 0.8049 147.0 -0.5
2,000 9.34 12.14 0.770 11.12 13.56 0.820 0.8563 159.8 -3.9
3,000 9.563 12.08 0.789 11.40 13.57 0.841 0.8921 169.0 —-2.3
4,000 9.65 12.05 0.801 11.58 13.57 0.853 0.9175 173.3 -2.7
5,000 9.74 12.04 0.809 11.69 13.57 0.861 0.9331 175.5 -1.9
10,000 9.98 12.00 0.832 11.99 13.57 0.884 0.9812 181.1 -1.2

and return. When risk aversion is low, the higher return of the dynamic
strategy is worth the slight increase in volatility. But, when risk aversion is
high, the increase in return is not enough to compensate for the greater
volatility.

Table IV shows how the performance comparisons vary with the level of
estimation risk. As we increase the sample size, the Sharpe ratios for both
the static and dynamic strategies increase, as does the fraction of trials in
which the dynamic strategies outperform the static strategies ( p-value). How
ever, varying sample size has little impact on the estimated performance
fees. This is revealing given that estimation risk has a big impact on the
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performance of the dynamic strategies (Table III). Apparently, estimation
risk has a similar effect on both the static and dynamic strategies. There-
fore, if the level of estimation risk is the same for both strategies, changing
the level has little impact on the relative performance fees.

Finally, Table V illustrates the effect of changing the target expected return
and volatility. Recall that our previous results are based on targets of u, = 10
percent and o, = 12 percent. Changing the targets moves the portfolio to a dif-
ferent point along the efficient frontier. This changes the portfolio’s expected
return and volatility but not its Sharpe ratio. The minor differences in the Sharpe
ratios in Table V are solely due to sampling variation associated with the boot-
strap procedure. The performance fees, on the other hand, do vary with the tar-
gets because the trade-off between risk and return is nonlinear. Nonetheless,
regardless of the choice of targets, volatility timing always has value for some
reasonable level of risk aversion. Because this suggests that our overall re-
sults are robust to this issue, we continue to rely on targets of 10 percent and
12 percent for the remainder of the analysis.

D. Sensitivity Analysis

All of our previous results are based on the estimated decay rate that
minimizes the asymptotic MSE of our covariance matrix estimator. Although
this is the optimal choice with respect to estimator efficiency, it may be
suboptimal in terms of implementing our volatility-timing strategies. Our
estimated decay rate of 0.063 implies that the half-life of a volatility shock
is about 11 trading days.® This is much shorter than the two- to six-month
half-lives commonly obtained using GARCH models for U.S. equity returns
(see, e.g., Bollerslev et al. (1992)). Perhaps an investor would be better off
using smoother covariance matrix estimates to reduce some of the noise in-
herent in the estimated portfolio weights. We investigate this by examining
the sensitivity of our findings to the choice of decay rate.

Table VI reports the Sharpe ratios, probability values, and estimated per-
formance fees for decay rates ranging from 0.001 to 0.1. Not surprisingly,
the results vary substantially as we move from one end of this range to the
other. The dynamic strategies have the greatest performance edge in the
region a = 0.005 to 0.02. For example, with y = 1 and « = 0.005, the max-
imum return strategy has a Sharpe ratio of 0.96, a probability value of 1.00,
and an estimated performance fee of 241 basis points. This choice of decay
rate implies that the half-life of a volatility shock is about 139 trading days,
generating much smoother covariance matrix estimates than we used above.
Thus, volatility timing appears to be more effective when we smooth the
estimates more than is optimal under our asymptotic MSE criterion.

Figure 3 shows the distribution of the performance fees when a = 0.005. For
the minimum volatility strategy (Panel C), the distribution for y = 10 still plots
to the right of that for y = 1, as in Panel A. Now, however, almost all of the fees
are greater than zero, regardless of whether y = 1 or y = 10. A similar shift in

8 The half-life is —1n(0.5)/c.
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Table V
Comparison of the Volatility-timing and Ex Ante Optimal Static Strat-
egies Using Different Target Expected Returns and Volatilities

The table shows how the performance of the volatility-timing strategies varies with the target
expected return and volatility. We form a random sample of 4,000 observations by sampling
with replacement from the actual returns to estimate the unconditional mean returns, volatil-
ities, and correlations. Using these estimates, we compute the weights that deliver the uncon-
ditionally efficient static portfolios. To obtain the weights for the volatility-timing strategies,
we use the mean returns from the bootstrap sample and our daily estimates of the conditional
covariance matrix to solve the daily optimal portfolio problem. We repeat this procedure 10,000
times for each target expected return and volatility. The table reports the annualized mean
realized returns (u), annualized realized volatilities (o), and realized Sharpe ratios (SR) for
each strategy, the proportion of trials in which the volatility-timing strategy has a higher Sharpe
ratio than the static portfolio (p-value), and the average annualized basis point fees (A,) that
an investor with quadratic utility and constant relative risk aversion of y = 1 or y = 10 would
be willing to pay to switch from the static portfolios to the volatility-timing strategies.

Panel A: Minimum Volatility Strategies

Static Portfolio Dynamic Portfolio
Target
Return “ o SR s o SR p-value Ay Ao
6% 5.27 6.59  0.802 5.22 6.24  0.841 0.8401 -2.2 19.7
7% 6.18 7.75  0.801 6.13 7.34  0.840 0.8435 -1.5 28.7
8% 7.05 8.83  0.801 6.98 8.36  0.839 0.8366 -2.7 36.5
9% 7.97 9.99  0.800 7.89 9.46  0.839 0.8354 -2.0 48.1
10% 8.86 11.10  0.801 8.78 10.51  0.840 0.8401 -1.3 61.3
11% 9.67 12.13  0.800 9.59 1149 0.839 0.8399 -0.2 73.8
12% 10.58 13.28  0.801 10.49 12.58  0.839 0.8398 0.4 89.0
13% 11.49 14.44  0.800 11.39 13.67  0.838 0.8411 1.5 107.6
14% 12.31 15.44  0.800 12.20 14.62  0.839 0.8379 2.3 122.8
Panel B: Maximum Return Strategies
Static Portfolio Dynamic Portfolio
Target
Volatility “ o SR i o SR p-value Ay Ao
8% 6.44 8.03  0.802 7.73 9.04 0.854 0.9163 119.9 42.1
9% 7.24 9.04  0.801 8.69 10.18  0.854 0.9183 134.0 35.7
10% 8.04 10.04  0.801 9.64 11.31  0.853 0.9151 146.4 24.3
11% 8.84 11.05  0.800 10.60 12.44  0.852 0.9159 159.5 12.9
12% 9.66 12.06  0.801 11.58 13.57  0.853 0.9120 172.1 -1.8
13% 10.45 13.06  0.800 12.53 14.70  0.853 0.9132 185.9 -19.6
14% 11.26 14.07  0.801 13.49 15.83  0.852 0.9157 197.4 —40.3
15% 12.05 15.07  0.800 14.46 16.96  0.852 0.9162 210.7 —62.2
16% 12.86 16.07  0.800 15.43 18.09  0.853 0.9160 222.4 -89.1

the distribution is evident for the maximum return strategy (Panel D). For both
levels of risk aversion, the fees almost always exceed 100 basis points, and
roughly half are greater than 200 basis points. This provides the strongest ev-
idence yet that volatility timing has significant value.
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Table VI

The Effect of the Decay Rate on the Performance
of the Volatility-timing Strategies

The table illustrates the effect of the decay rate («) used to estimate the daily conditional
covariance matrix on the performance of the volatility-timing strategies. We form a random
sample of 4,000 observations by sampling with replacement from the actual returns to estimate
the unconditional mean returns, volatilities, and correlations. Using these estimates, we com-
pute the weights that deliver the unconditionally efficient static portfolios. To obtain the weights
for the volatility-timing strategies, we use the mean returns from the bootstrap sample and our
daily estimates of the conditional covariance matrix to solve the daily optimal portfolio prob-
lem. We repeat this procedure 10,000 times for each value of « using a target expected return
and volatility of 10 percent and 12 percent, respectively. The table reports the annualized mean
realized returns (u), annualized realized volatilities (o), and realized Sharpe ratios (SR) for
each strategy, the proportion of trials in which the volatility-timing strategy has a higher Sharpe
ratio than the static portfolio (p-value), and the average annualized basis point fees (A,) that
an investor with quadratic utility and constant relative risk aversion of y = 1 or y = 10 would
be willing to pay to switch from the static portfolios to the volatility-timing strategies.

Static Portfolio Dynamic Portfolio

a s o SR s o SR p-value Ay Aso

Panel A: Minimum Volatility Strategies

0.001 8.78 10.99 0.802 9.01 10.99 0.823 0.9364 23.4 23.4
0.005 8.83 11.07 0.801 9.38 10.74 0.876 0.9925 59.1 94.5
0.010 8.81 11.04 0.801 9.15 10.56 0.870 0.9724 39.4 90.9
0.020 8.85 11.10 0.800 9.00 10.48 0.862 0.9440 22.0 87.9
0.040 8.79 11.03 0.800 8.84 10.37 0.857 0.9275 12.6 82.4
0.060 8.84 11.10 0.800 8.78 10.50 0.841 0.8565 1.1 65.3
0.080 8.78 11.02 0.800 8.58 10.53 0.820 0.7115 -13.9 37.3
0.100 8.85 11.07 0.802 8.54 10.70 0.802 0.5624 —26.9 12.5

Panel B: Maximum Return Strategies

0.001 9.66 12.05 0.802 12.46 15.66 0.796 0.3740 230.2 —222.8
0.005 9.65 12.05 0.801 12.13 12.63 0.960 0.9994 240.9 177.0
0.010 9.65 12.05 0.801 11.95 12.51 0.955 0.9978 224.5 173.8
0.020 9.65 12.06 0.800 11.80 12.64 0.933 0.9921 207.7 143.5
0.040 9.64 12.05 0.800 11.68 13.05 0.895 0.9793 191.2 78.9
0.060 9.64 12.06 0.800 11.58 13.50 0.858 0.9334 176.0 9.9
0.080 9.64 12.05 0.800 11.45 13.96 0.820 0.6873 156.2 —68.0
0.100 9.66 12.05 0.802 11.38 14.44 0.788 0.3658 140.3 —145.9

A final issue is whether the value of volatility timing is offset by transac-
tion costs. We assess this by running another set of simulations in which we
impose various levels of proportional transaction costs. The results indicate
that, over a wide range, the impact of transaction costs is approximately
linear—when a = 0.005, each percentage point increase in the one-way cost
reduces the mean return for the dynamic strategies by 4 to 5 basis points.
Thus, the transaction costs would need to be 19 (or 47) percent annualized to
equate the Sharpe ratios for the static and minimum volatility (or maximum
return) strategies. To give this some perspective, suppose conservatively that
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the bid/ask spread and round-trip commission costs for S&P 500 futures
total $0.10 per index unit. With an average index level of $384.51 over our
sample period, this implies a one-way transaction cost of 0.05/384.51 X 252 =
3.28 percent annualized. Our results indicate that transaction costs need to
be at least six times this estimate to offset the dynamic strategies’ advantage.

IV. Conclusions

Researchers have long known that volatility is predictable. However, the
low explanatory power of standard volatility models has led to questions
about their economic relevance. Our analysis indicates that the predictabil-
ity captured by volatility modeling is economically significant. In particular,
we find that volatility-timing strategies based on one-step-ahead estimates
of the conditional covariance matrix significantly outperform the uncondi-
tionally efficient static portfolios with the same target expected return and
volatility. This finding is robust to both the level of estimation risk and
transaction costs. Moreover, our results are probably conservative because
we use a simple nonparametric volatility specification and ignore any link-
age between volatility changes and changes in expected returns.

Our work suggests a number of possible directions for future research.
First, because volatility timing requires active trading, hedge funds are a
likely source for further empirical evidence. It would be interesting, for ex-
ample, to develop a volatility-timing coefficient for the various classes of
hedge funds and examine whether the cross-sectional variation in this coef-
ficient explains differences in fund performance. Another possibility is to
assess the importance of volatility modeling in applications unrelated to as-
set allocation. We are currently pursuing this issue in the context of deriv-
atives risk management. Finally, recent work by Ferson and Siegel (1999)
and Bekaert and Liu (1999) shows how to optimally incorporate conditioning
information when the objective is to maximize an unconditional mean-
variance criterion. This provides a natural framework for investigating the
linkage between volatility timing, return predictability, and traditional meth-
ods of performance evaluation.
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