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a b s t r a c t

Previous empirical studies find both evidence of jumps in asset prices and that returns standardized
by ‘realized volatility’ are approximately standard normal. These findings appear to be contradictory.
Using a sample of high-frequency returns for 20 heavily traded US stocks, we show how microstructure
noise distorts the standard deviation and kurtosis of returns normalized using realized variance. When
returns are standardized using a recently developed realized kernel estimator, the resulting series is
clearly platykurtotic and the standard normal distribution is soundly rejected. Moreover, daily returns
standardized using realized bipower variation, an estimator for integrated variance that is robust to the
presence of jumps, are more consistent with the standard normal distribution. These results suggest that
there is no empirical contradiction: jumps should be included in stock price models.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Asset prices are frequently modeled as evolving according to a
continuous diffusive process. This class of models is both tractable
and flexible. By superimposing multiple stochastic volatility dif-
fusive processes, such models can accommodate many of the ob-
served features of asset returns, such as time variation in both
conditional volatility and conditional kurtosis.1 Nevertheless, the
assumption that prices follow a continuous sample path is restric-
tive. It is certainly plausible that prices exhibit occasional jumps,
possibly related to the release of firm-specific or macroeconomic
news. Such reasoning suggests that asset prices may be more
appropriately modeled as jump diffusions. However, this entails
greater costs in that jump diffusion models are more difficult to
estimate and may include additional sources of risk that are diffi-
cult to price empirically using cross-sectional data.

Given this tradeoff, assessing the empirical evidence regarding
the existence and relevance of jumps in asset prices is an important
area of current research. Andersen et al. (2002) and Chernov et al.
(2003) find evidence of jumps based on parametric estimation of
jump diffusion models. More recently, Andersen et al. (2007a),
Huang and Tauchen (2005), Jiang and Oomen (2007), Tauchen and
Zhou (2011) and Barndorff-Nielsen and Shephard (2006) provide
evidence of jumps using nonparametric techniques that exploit the
information in high-frequency intraday asset returns.

A number of other studies observe that daily returns are nearly
Gaussian when standardized by ‘realized volatility’ constructed
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1 See, e.g., Chernov et al. (2003).
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using high-frequency intraday returns. For example, Andersen
et al. (2001a) examine the unconditional distribution of daily
returns for individual stocks standardized by realized volatility
and find that ‘‘the close approximation afforded by the normal
reference density is striking’’2 (pp. 51–52). As noted by Andersen
et al. (2003), a standard normal distribution for standardized
returns is consistent with a simple continuous diffusion model for
asset prices that omits the possibility of occasional jumps.

The finding that daily returns standardized by realized volatility
are approximately Gaussian seems inconsistent with the emerging
body of literature that finds evidence of a significant jump
component in total asset return volatility. This paper resolves the
apparent incongruity. We begin by showing how microstructure
noise alters the properties of daily returns standardized using the
traditional realized variance estimator. Under the pure diffusion
null hypothesis, microstructure noise induces bias in realized
variance, causing the standard deviation of standardized returns
to be greater or less than 1 depending on the direction of the bias.
Microstructure noise also induces upward bias in the kurtosis of
standardized returns because, when volatility varies across trading
days, standardized returns follow a mixture of (near) zero-mean
normals. Using a sample of high-frequency returns for 20 heavily
traded US stocks, we find empirical evidence consistent with these
predictions.

We then construct standardized returns using an alternative
realized kernel estimator of integrated variance that is (nearly)

2 The analysis in ABDE (2001a) relies primarily on graphical devices such as QQ
plots. Standard statistical tests do tend to reject the null hypothesis of a Gaussian
distribution. Andersen et al. (2001b) obtain similar findings for exchange rate
returns.
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conditionally unbiased in the presence of microstructure noise.
The returns are clearly platykurtotic and inconsistent with the
standard normal. As Andersen et al. (2007b) demonstrate, this is
precisely what one would expect if occasional, large jumps occur.
Thus, our results provide clear evidence of misspecification in
the direction of omitted jumps, consistent with findings in recent
studies that directly test for the presence of jumps. These results
are robust to alternative sampling frequencies, to the choice of
using quotes versus transaction prices to construct estimates of
integrated variance, and to splitting the sample into subperiods.

We also explore the extent to which jumps can account for
the thin-tailed behavior by standardizing returns using realized
bipower variation, an estimator of integrated variance robust
to the presence of jumps. The kurtosis increases toward 3 for
most stocks, and thus the standard normal provides a much
better fit. These results complement more comprehensive studies
of this question by Andersen et al. (2007b) and ABFN (2009).
Although these studies, unlike ours, rely on the standard realized
variance estimator, the basic finding that jumps are an important
component of stock prices is similar. Andersen et al. (2007b)
and ABFN (2009) also provide evidence that leverage effects are
important.

Overall, our results provide guidance regarding the specifica-
tion of continuous timemodels for asset prices, namely, that jumps
are important and should not be ignored in modeling stock prices.
The results also demonstrate the value of recently developed high-
frequency variance estimators that are consistent in the presence
of market microstructure noise.3 While such estimators are the-
oretically appealing, evidence continues to accumulate regarding
their improvements in practice relative to the standard realized
variance estimator. Our analysis provides a striking example of a
situation where using a realized kernel estimator debunks a ‘styl-
ized fact’, i.e., that daily stock returns standardized by integrated
variance are approximately Gaussian.

The paper is organized as follows. Section 2 reviews the relevant
theory and discusses the effects of microstructure noise and
discretization on the statistical properties of standardized returns.
Section 3 describes our data. Section 4 presents empirical results
regarding the distributional properties of standardized returns and
examines the impact of accounting for jumps on the standardized
returns. Section 5 concludes.

2. Theory

2.1. The mixture of normals hypothesis

Consider a log stock price process pt evolving continuously in
time. In a frictionless market with no arbitrage opportunities, pt
must obey a semimartingale process on some filtered probability
space


Ω, F , (Ft)t≥0, P


, as detailed by Back (1991). Such a

process may be decomposed as
pt = At + Mt ,

where At is a (local) finite variation process and Mt is a (local)
martingale.

A common specification assumes that stock prices follow a
jump diffusion process:

pt =

∫ t

0
µ(s)ds +

∫ t

0
σ (s) dW (s) +

N(t)−
j=1

κj (1)

whereµ(s) is a local finite variation process,σ(s) is a cadlag volatil-
ity process, dW (s) represents increments to a Brownian motion
W (s), N is a counting process, and κj are the associated nonzero
jump increments. The process in (1) may be characterized as a

3 See, for example, Ait-Sahalia et al. (2005), Zhang et al. (2005), Zhang (2006), and
Barndorff-Nielsen et al. (2008a).
Brownian semimartingale with finite jump activity. Note that this
process is quite general. A time-varying drift is acceptable as long
as the finite variation condition is satisfied. Stochastic volatility
models are also permitted, including multi-factor volatility pro-
cesses as studied by Chernov et al. (2003), and the innovations
to volatility and stock prices may be correlated to accommodate
the so-called leverage effect. The primary restriction regarding the
jump component is that an infinite number of jumps in a ‘small’
period is forbidden.

A leading special case of the jump diffusion process is the
Brownian semimartingale without leverage effects:

pt =

∫ t

0
µ(s)ds +

∫ t

0
σ (s) dW (s); µs, σs jointly y ofW (s). (2)

The ‘pure diffusion’ model in (2) exhibits continuous sample paths
and additionally rules out leverage effects since the mean and
volatility processes µ(s) and σ (s) are jointly independent of
the innovation process W (s). Although (2) offers a convenient
representation of stock prices, it rules out features that may be
important empirically. In addition to potential leverage effects, it is
possible that stock prices exhibit jumps resulting from the sudden
arrival of firm-specific or macroeconomic news.

In order to investigate the validity of these restrictions, let n
index trading days and nO and nC represent the opening and closing
of trading on day n. For the jump diffusion process in (1), the
increment in the quadratic variation process [p]t on trading day n
is

[p]nC − [p]nO =

∫ nC

nO
σ 2(s)ds +

N(nC )−
j=N(nO)+1

κ2
j , (3)

where the first term in (3) captures the integrated variance onday n,
denoted as IVn, and the second term captures any jump component
of variance on that day. ABDL (2003) note that, under the pure
diffusion model (2), and assuming that the mean process µ(s) is
zero,
rn

√
IVn

∼ N(0, 1), (4)

where rn = pnC − pnO is the daily return.4 As ABDL (2003) point
out, the distributional result in (4) conditions on ex post sample
path realizations of σ (s). If ruling out jumps and leverage effects
is empirically valid, then daily returns standardized by the square
root of the integrated variance will follow a standard normal
distribution.

2.2. The properties of returns standardized using realized variance

Assessing the adequacy of the pure diffusion specification via
(4) requires an estimator for the latent quantity IVn. Suppose that
a set of m + 1 intraday prices are available at equally spaced
intervals of length ∆ = 1/m. These price observations give rise
to m intradaily returns r in = pin − pi−1

n for i = 1, . . . ,m, where
p0n = pnO and pmn = pnC .

Econometric measurement of the increments in quadratic
variation is often based on the realized variance (RV ). The realized
variance estimator on day n is obtained by summing the squared
returns for each subperiod,

RVm
n =

m−
i=1

(r in)
2. (5)

4 Ignoring time variation in the conditionalmean should be innocuous in practice
because this variation is empirically an order of magnitude smaller than return
variation at short horizons.
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The number of intraday returns m appears as a superscript
in the notation RVm

n to emphasize the dependence of the
estimator on the time grid of intraday returns. ABDL (2001b)
and Barndorff-Nielsen and Shephard (2002) formalized realized
variance econometrically, focusing on the fact that, as∆ → 0, RVm

n
converges in probability to the daily increment in the quadratic
variation of the price process pt .

When stock prices follow a pure diffusion process (i.e., no
jumps), the decomposition in (3) implies that the quadratic
variation and integrated variance are identical. By using intraday
returns sampled at sufficiently high frequencies, we theoretically
obtain an error-free measure of the integrated variance. A feasible
test of the mixture of normals hypothesis can therefore be based
on rn/


RVm

n . In practice, however, microstructure noise and
discretization effects distort the statistical properties of returns
standardized using the realized variance estimator.

2.2.1. Microstructure noise
Assume that the true latent log price process is p∗

t = pt +

ut , where pt is the observed log price process and ut represents
a noise process capturing market microstructure effects. In the
presence of noise, the realized variance estimator RVm

n is biased
and no longer consistent for the increment in the quadratic
variation of the true, latent price process. When the price and
noise processes are independent, the realized variance estimator is
biased upward.When the price and noise processes are dependent,
it is possible that the bias is negative. Hansen and Lunde (2006)
provide evidence of such negative bias at very high sampling
frequencies when observed prices are estimated using bid–ask
quotes.

Now consider the consequences for the time series of standard-
ized returns rn/


RVm

n .
5 When RVm

n is upward (downward) biased,
daily returns tend to be scaled by an overly large (small) number,
and the standard deviation of the standardized returns will be bi-
ased downward (upward) from 1.Microstructure noise also affects
the kurtosis of the standardized returns. This is particularly easy to
see when the quadratic variation of the noise process [u] is well-
defined. In this case, assuming that the noise and price processes
are independent, Hansen and Lunde (2006) show that

RVm
n − IVn

p
→[u]n ≡ [u]nC − [u]nO .

Consequently, as m → ∞ and under the null hypothesis that
prices follow (2), the standardized returns rn/


RVm

n converge in
distribution:

rn
RVm

n

d
→ N


0,

IVn

IVn + [u]n


, (6)

so the time series of returns (asymptotically) follows a mixture of
normalswithmixingweights governed by the time series behavior
of IVn and [u]n. It can be shown that a mixture of zero-mean
normals, such as (6), is always leptokurtotic (see, e.g., Alexander
andNarayanan (2001)). In the limit, returns standardized using the
realized variance estimator will be artificially fat-tailed due to the
effects of market microstructure noise.

More often in the literature, microstructure noise is assumed
to be such that RVm

n → ∞ as m → ∞, i.e., realized variance
‘explodes’ in the limit (see, e.g., Bandi and Russell (2006, 2008)
and Zhang et al. (2005)). In an unpublished appendix (available
from the authors), we provide simulation results illustrating that
standardized returns are also artificially fat-tailed at high sampling
frequencies for this type of noise.

5 Since microstructure noise has only a negligible effect on the daily return, we
simply assume that rn = r∗

n , i.e., that the true daily return is observed.
2.2.2. Discretization effects
Discretization error associated with the realized variance RVm

n
for finite m also impacts the statistical properties of standardized
returns. Peters and de Vilder (2006) study discretization effects
for the special case of a pure diffusion process where returns
are sampled over intervals of equal length. Assuming that the
instantaneous volatility remains constant over each interval, they
show that the density function for returns standardized using the
realized variance estimator RVm

n is given by

f rn√
RVm

n

(r) =
0(m/2)

√
πm0((m − 1)/2)


1 −

r2

m

m−3
2

× I

−

√
m ≤ r ≤

√
m


, (7)

where I(·) represents the indicator function.
The mean, variance and skewness under (7) accord with the

correspondingmoments of the limiting standard normal, while the
kurtosis is given by 3m/(m + 2). The distribution of rn/


RVm

n is
therefore thin-tailed relative to the normal due to discretization
effects. Note that when m = 1 (i.e., realized variance equals the
daily squared return), the kurtosis of standardized returns is 1. As
the sampling frequency increases, the density in (7) converges to
the standard normal density. Intraday variation in volatility can
exacerbate the effects of discretization. In fact, for any discrete
sampling frequencym, a pure diffusionwith cadlag volatility paths
may be constructed so that the kurtosis of standardized returns is
close to 1, rather than the kurtosis of 3m/(m + 2) under constant
intraday volatility. An expandeddiscussion of this point is provided
in the unpublished appendix.

The contrasting effects of discretization and microstructure
noise with respect to sampling frequency lead to an empirical
prediction for the ‘signature plot’ of the kurtosis of returns
standardized using the realized variance estimator. The kurtosis
will be significantly less than 3 at lower sampling frequencies,
such as hourly, where discretization effects are strong and
microstructure effects are minimal. The kurtosis will then increase
with sampling frequency, as discretization effects weaken and
microstructure effects become stronger, and ultimately exceed 3 at
very high sampling frequencies, where microstructure effects are
the most pronounced.

2.3. Consistent estimation of realized variance in the presence of noise

Several recent papers propose alternative high-frequency
variance estimators that remain consistent in the presence of
microstructure noise.6 The fact that these estimators are consistent
in the presence of noise permits sampling at very high frequencies,
which affords more accurate estimation of the integrated variance
while minimizing distortions due to discretization. Furthermore,
these estimators incorporate a ‘bias correction’ leading to (nearly)
conditionally unbiased estimation of integrated variance. For these
reasons, constructing standardized returns using noise-robust
estimators of integrated variance should permit more reliable
inference regarding the extent to which scaled returns conform to
the standard normal.

In the subsequent empirical analysis we utilize the realized
kernel estimator proposed by Barndorff-Nielsen et al. (2008b). This
estimator takes the form

RV (BN-HLS)mn =

H−
h=−H

k(h/(H + 1))γh, (8)

where k(·) is a kernel weighting function and γh =
∑m

j=|h|+1 r
j
nr

j−h
n .

6 See, for example, Ait-Sahalia et al. (2005), Barndorff-Nielsen et al. (2008a),
Hansen and Lunde (2003, 2006), Zhang (2006) and Zhang et al. (2005).
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The parameter H is a bandwidth parameter that determines the
maximum lag length captured by the covariance terms. We follow
BN-HLS (2008b, 2009) by adopting the Parzen kernel for k(·).
This kernel choice satisfies certain smoothness conditions and
guarantees a non-negative variance estimate. For H ∝ mη , BN-HLS
(2008b) show that η ∈

 1
2 , 1


delivers a consistent estimator when

the noise process is covariance stationary. We set the bandwidth
parameter H to m3/5, which BN-HLS (2008b) establish as the
optimal rate under MSE loss.7

3. Data

Our data consist of intradaily transaction prices and bid–ask
quotes for the 20 stocks in the Major Market Index (MMI).8
We obtain these data from the Trade and Quote (TAQ) database
distributed by the New York Stock Exchange (NYSE). The majority
of our analysis is based on intradaily returns constructed using
bid–ask midpoints (‘quotes’). For comparative purposes, we
sometimes also consider intradaily returns constructed using
transaction prices (‘trades’). The sample period is January 4, 1993
to December 31, 2003 (2770 trading days).9

We implement a data cleaning procedure to filter the raw price
data prior to constructing the intradaily returns. The importance of
cleaninghigh-frequency intradaydata prior to volatility estimation
is emphasized by a number of studies (e.g., Dacorogna et al. (2001,
Chapter 4) and Hansen and Lunde (2006)). Our data cleaning
procedure is similar, although not identical, to that proposed
by BN-HLS (2009). A detailed discussion is provided in the
unpublished appendix.

On most days, trading begins at 9:30 am (EST) and ends at
4:00 pm, a period of 390 min. We divide the trading period intom
intervals to construct intradaily returns with a sampling frequency
of 390/mmin. We consider a range of values form, fromm = 780
(i.e., 30 s intervals) to m = 6.5 (i.e., 60 min intervals).10 For a
given value of m, we treat the first quote in the cleaned database
as the starting price for the interval in which the observation
occurs. We then estimate the price at the end of this interval, and
at the end of each successive interval throughout the day, using
the previous-tick approach (see, for example, Hansen and Lunde
(2006)). The 390/m min intradaily returns are then computed as
the first differences of the logs of these prices. For our comparative
analysis using trades, we estimate the price at the end of each
interval using linear interpolation (see Andersen and Bollerslev
(1997)) to reduce the effect of bid–ask bounce at high sampling
frequencies.

IBM is the most actively quoted stock in the sample, with
an average of 3099 quotes per day, and EK is the least, with an
average of 1406 quotes per day. Sears has the highest volatility
of daily returns, 32.8% annualized, and XOM has the lowest,
21.4% annualized. These basic statistics are qualitatively similar for
returns based on trades (instead of quotes); however, differences
arise in the serial correlation of the intradaily returns. Using quotes,

7 Our main findings are robust to other methods of setting the bandwidth. These
robustness results are reported in the unpublished appendix.
8 These stocks are American Express (AXP), AT&T (T), ChevronTexaco (CVX),

Coca-Cola (KO), Disney (DIS), Dow Chemical (DOW), DuPont (DD), Eastman Kodak
(EK), Exxon-Mobil (XOM), General Electric (GE), GeneralMotors (GM), International
Business Machines (IBM), International Paper (IP), Johnson & Johnson (JNJ),
McDonald’s (MCD), Merck (MRK), 3M (MMM), Philip Morris (MO), Procter and
Gamble (PG), and Sears (S).
9 Philip Morris has one less day than the other firms because its stock did not

open on May 25, 1994, in advance of a board meeting regarding a proposal to split
the firm’s food and tobacco businesses.
10 For fractional values ofm, the final fractional return is treated as though it were
a full 390/mmin return.
Fig. 1. Volatility signature plots. The figure plots the mean daily realized variance
constructed using transaction prices (trades) and using bid–askmidpoints (quotes).
For each stock, we construct the realized variances using sampling frequencies
ranging from 30 s to 60 min. The figure plots the mean realized variance for each
sampling frequency, averaged across stocks. The sample period is January 4, 1993,
to December 31, 2003 (2770 observations for most stocks).

the first-order serial correlation for returns at very high sampling
frequencies is typically positive (for 30 sec returns, the average
value for the 20 stocks is 0.06), but close to zero for returns at
lower frequencies (e.g., 5 min returns). In contrast, using trades,
the first-order serial correlation at very high sampling frequencies
is negative (−0.15 for 30 sec returns) and the magnitude decays
more slowly with sampling frequency (−0.07 for 5 min returns).
These findings are consistentwith previous studies such as Hansen
and Lunde (2006).

4. Empirical results

4.1. Are standardized returns approximately standard normal?

4.1.1. Daily returns standardized using realized variance
Fig. 1 plots the average realized variance, averaged across days

and across stocks, for sampling frequencies ranging fromm = 780
to m = 6.5. The figure is similar to the volatility signature plot
proposed by ABDL (2000).11 ABDL (2000) recommend selecting the
finest sampling frequency at which microstructure effects do not
appear to bias the estimates. For realized variances constructed
using quotes, the estimates are downward biased at the highest
sampling frequencies, e.g., 30 sec, consistent with findings in
Hansen and Lunde (2006). A sampling frequency of about four
minutes appears to be optimal. For realized variances constructed
using trades, the estimates are substantially upward biased at the
five-minute sampling frequency, and the bias sharply increases at
the highest frequencies.

Fig. 2 shows the signature plots for estimates of the standard
deviation, skewness and kurtosis of daily returns standardized
by realized variance. Panel A illustrates the contrasting behavior
of the standard deviation of scaled returns at high sampling
frequencies for realized variances based on quotes versus those
based on trades. For realized variances based on quotes, the
standard deviation is significantly greater than 1 at the highest
sampling frequencies due to downward bias in the realized
variance estimator, whereas the standard deviation using realized
variances based on trades is significantly less than 1 due to the
corresponding upward bias in the realized variance estimator.
Panel B shows that the skewness of standardized returns is
reasonably flat as a function of the sampling frequency for both
quotes and trades. In Panel C, the kurtosis of standardized returns

11 To conserve space, we do not present separate figures for each stock; however,
these figures show that the individual stocks generally share the features shown in
Fig. 1.
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Fig. 2. Signature plots for returns standardized by realized variance. The figure
plots the standard deviation, skewness and kurtosis of daily returns standardized by
realized variances constructed using transaction prices (trades) and using bid–ask
midpoints (quotes).We construct the realized variances using sampling frequencies
ranging from 30 s to 60min. The figure plots themean standard deviation (Panel A),
skewness (Panel B) and kurtosis (Panel C) estimates for theMMI stocks. The sample
period is January 4, 1993, toDecember 31, 2003 (2770 observations formost stocks).

steadily decreases as the sampling frequency decreases, for both
quotes and trades. Using trades, the kurtosis signature plot formost
stocks is a downward sloping curve which starts at close to 4.0 at
the highest sampling frequency, flattens out between the three-
and ten-minute sampling frequencies, and decreases below 2.5
beyond the 20min sampling frequency. The kurtosis signature plot
using quotes exhibits a similar pattern, but starting just slightly
above 3.0 at the highest sampling frequency.

These empirical findings are consistent with our discussion
of the impact of microstructure noise and discretization on
the moments of standardized returns in Section 2. Specifically,
sampling at the highest frequencies, microstructure noise induces
upward bias in realized variances constructed using trades and
downward bias in realized variances constructed using quotes.
These biases, in turn, lead to excess kurtosis and a standard
deviation less than 1 using trades, and excess kurtosis and a
standard deviation greater than 1 using quotes. Moreover, the
standard deviation trends toward 1 and the kurtosis decreases
below 3 at lower sampling frequencies as discretization effects
become more dominant than microstructure effects.

Despite these pronounced features, it is interesting to note
that, at the five-minute sampling frequency, the moments of the
standardized returns are ‘approximately’ Gaussian. The standard
deviation is between 0.9 and 1.0, the skewness is about 0.1, and the
kurtosis is close to 3.0, using both trades and quotes. Nonetheless,
statistical tests (not reported) reject the null hypothesis that the
standardized returns conform to the standard normal.

4.1.2. Daily returns standardized using the realized kernel estimator
Table 1 presents summary statistics for returns standardized

using the alternative BN-HLS (2008b) realized kernel estimator
described in (8). The realized kernel estimates are constructed
using quotes, and using a 30 s sampling frequency, since the
volatility signature plots (not shown) are flat, even at the highest
sampling frequencies. The standard deviation estimates for the
standardized returns are much closer to 1 than those shown in
Fig. 2 for the highest sampling frequencies. The kurtosis estimates,
however, are below 2.6 for all stocks, with a median value of
2.42. The table also reports p-values for tests against the standard
normal distribution based onHermite polynomials as suggested by
Bontemps and Meddahi (2005).12 The results indicate that daily
returns standardized by the realized kernel estimator are clearly
platykurtotic, with the test based on H4 rejecting for all of the
stocks at the 99% level. The test based on H2 rejects for roughly
half the stocks, and all of the joint tests based on the second and
fourth, on the third and fourth, and on the second, third, and fourth
Hermite polynomials reject for all of the stocks.

TheQQplots shown in Fig. 3 visually illustrate the inadequacy of
the standard normal distribution. Formost stocks, the plots display
a marked ‘S-shaped’ pattern indicative of thin-tailed behavior
relative to the standard normal. The thin-tailed behavior apparent
in Table 1 and Fig. 3 accords with the reasoning of Andersen et al.
(2007b), who argue that standardized returns will be thin-tailed in
the presence of jumps.

We conduct two additional analyses to probe the robustness of
our finding that returns standardized by a (nearly) conditionally
unbiased estimator of realized variance are significantly thin-tailed
relative to the Gaussian distribution. To conserve space, detailed
results are not reported in the paper, but are available in the
unpublished appendix. First, we replicate the analysis in Table 1
using trades instead of quotes. The results are extremely similar to
those in Table 1 and Fig. 3, which is reassuring, since a properly
implemented realized kernel estimator should deliver similar
realized variance estimates using returns based on trades and
returns based on quotes (BN-HLS (2009)). Second, we assess the
impact of time variation in the nature of microstructure noise and,
in particular, the impact of decimalization on January 29, 2001.
We split the sample in half and compute summary statistics for
standardized returns over each subperiod. The standard deviation
of returns normalized using realized variance departs further from
1 during the first half of the sample for most stocks, indicating that
microstructure noise is more severe during this period. For returns
standardized using the realized kernel estimator, the results are
comparable across subperiods. The variances are close to 1, the
skewness values tend to be positive but small, and most of the
kurtosis values are around 2.3 to 2.5, consistent with our full-
sample results.

4.2. Do jumps account for the non-normality of standardized returns?

The pure diffusion specification in (2) appears to be an
inadequate model for stock prices. Unresolved is the question of
whether the arbitrage-free continuous time jump diffusive process
in (1) constitutes a reasonable model for stock prices. Such a
process may include leverage effects in addition to jump activity.

Consider the more general jump diffusion specification in
(1) without leverage effects. Suppose momentarily that both IVn

and the jump process
∑N(t)

j=1 κj are observable. An adjusted price
process and associated return series may be constructed as

p∗

t = pt −

N(t)−
j=1

κj (9)

12 The notation Hi refers to the test based on the i-th Hermite polynomial. The
unpublished appendix provides additional discussion of these tests and illustrates
the robustness of our findings to alternative tests for normality.
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Table 1
Returns standardized using the realized kernel estimator. The table reports summary statistics and the results of normality tests for daily open-to-close returns standardized
using the BN-HLS realized kernel estimator of integrated variance. For each stock, we report themean, standard deviation, skewness, and kurtosis of the standardized returns,
and the p-values for normality tests based on the second, third and fourth Hermite polynomials (Bontemps and Meddahi, 2005), and for joint tests based on the second and
fourth Hermite polynomials, the third and fourth Hermite polynomials, the second, third and fourth Hermite polynomials, and the third and fifth Hermite polynomials. The
sample period is January 4, 1993, to December 31, 2003 (2770 trading days for most stocks).

Ticker Summary statistics Test statistics (p-values)
Mean Std. Skew Kurt H2 H3 H4 H24 H34 H234 H35

AXP 0.02 0.98 0.04 2.40 0.08 0.43 0.00 0.00 0.00 0.00 0.45
CVX −0.01 0.98 0.03 2.43 0.10 0.52 0.00 0.00 0.00 0.00 0.79
DD 0.03 0.97 0.13 2.47 0.01 0.02 0.00 0.00 0.00 0.00 0.01
DIS −0.03 0.97 0.05 2.41 0.05 0.30 0.00 0.00 0.00 0.00 0.54
DOW 0.04 0.97 0.02 2.53 0.05 0.85 0.00 0.00 0.00 0.00 0.79
EK −0.04 0.96 0.08 2.55 0.00 0.10 0.00 0.00 0.00 0.00 0.10
GE 0.02 1.00 0.11 2.41 0.92 0.03 0.00 0.00 0.00 0.00 0.01
GM −0.06 1.03 0.12 2.41 0.02 0.01 0.00 0.00 0.00 0.00 0.00
IBM −0.02 1.05 0.09 2.34 0.00 0.03 0.00 0.00 0.00 0.00 0.06
IP −0.05 0.97 0.15 2.50 0.03 0.00 0.00 0.00 0.00 0.00 0.00
JNJ 0.02 0.96 0.03 2.45 0.00 0.69 0.00 0.00 0.00 0.00 0.89
KO 0.06 0.98 0.06 2.48 0.19 0.33 0.00 0.00 0.00 0.00 0.35
MCD 0.03 0.99 0.01 2.40 0.72 0.84 0.00 0.00 0.00 0.00 0.85
MMM 0.02 0.94 0.01 2.50 0.00 0.90 0.00 0.00 0.00 0.00 0.80
MO −0.02 0.94 0.04 2.58 0.00 0.45 0.00 0.00 0.01 0.00 0.73
MRK 0.03 1.00 0.06 2.34 0.99 0.22 0.00 0.00 0.00 0.00 0.13
PG 0.04 1.01 0.05 2.39 0.37 0.26 0.00 0.00 0.00 0.00 0.17
S 0.11 0.95 0.00 2.47 0.00 0.52 0.00 0.00 0.00 0.00 0.43
T 0.01 1.02 0.00 2.32 0.10 0.92 0.00 0.00 0.00 0.00 0.90
XOM −0.08 1.02 0.13 2.39 0.12 0.01 0.00 0.00 0.00 0.00 0.01
r∗

n ≡ p∗

nC − p∗

nO = rn −

N(nC )−
j=N(nO)+1

κj. (10)

The series in (10) is simply the daily return less the return
component arising from jumps. If (1) holds then daily returns
r∗
n , standardized by the square root of IVn, will follow a standard
normal distribution.

In the presence of jumps, the realized variance converges not
to the integrated variance, but to the quadratic variation, which
also includes the jump contribution to variance. Here we employ
an alternative estimator, realized bipower variation, that is (asymp-
totically) capable of extracting the integrated variance component
from total price variability:

BVm
n =

π

2
m

m − 1

m−
i=2

|r in| |r
i−1
n |. (11)

If log prices follow (1), then under mild conditions Barndorff-
Nielsen and Shephard (2006) and Barndorff-Nielsen et al. (2006)
show that

BVm
n →

∫ nC

nO
σ 2(s)ds.

We can therefore use BVm
n as a jump-robust estimator for IVn to

implement a test of whether r∗
n /

√
IVn follows a standard normal

distribution. Implementing the test also requires an estimator
for the jump component, Jn, where r∗

n = rn − Jn. As a simple,
exploratory approach, we take r∗

n = rn. This approach sidesteps
potentially thorny issues in testing for and extracting jumps;
however, it also suffers from the obvious weakness that jumps
remain unfiltered in daily returns. Nonetheless, our ambition in
the present analysis is simply to illustrate the extent to which
implicitly accounting for jumps by using a jump-robust estimator
of integrated variance to standardize returns alleviates obvious
signs of model misspecification.

We use bipower variation signature plots to select an appro-
priate sampling frequency for constructing realized bipower vari-
ation.13 As in the case of realized variance, the ‘optimal’ sampling

13 ABFN (2006) suggest using signature plots to determine the sampling frequency
for power variation measures.
frequency is the highest frequency at which the BVm
n estimates ap-

pear to be unbiased. The signature plots (not shown) indicate that
the optimal sampling frequency is three minutes for the majority
of the stocks.14

Fig. 4 displays QQ plots for daily returns standardized by real-
ized bipower variation. It is visually clear that these returns provide
a much better approximation to the standard normal distribution.
Table 2 presents estimates of the moments for scaled returns and
p-values for tests against the standard normal. Most significantly,
the kurtosis estimates for all stocks are substantially higher than in
Table 1 and close to the value of 2.85 theoretically expected us-
ing the distributional result in (7). There is still, however, some
evidence of misspecification. The standard deviations tend to be
slightly less than 1 and the standardized returns for some stocks
continue to be positively skewed, potentially indicative of leverage
effects. In addition, theH3–H5 test fails to reject formany stocks. To
the extent that microstructure noise does not affect the odd mo-
ments, these test results are consistent with the notion that mi-
crostructure noise is a remaining issue.

Independently of our work, Andersen et al. (2007b) and ABFN
(2009) extend the empirical approach described above to extract
the jump component of daily returns Jn and robustify the analysis
to the presence of leverage effects. To extract the jump component,
they apply a test based on the difference between RVm

n and BVm
n

to detect jumps. If the null of no jumps is rejected, they apply a
procedure to estimate Jn. To handle leverage effects, they follow
Peters and de Vilder (2006) and sample returns in ‘financial time’,
corresponding to equal increments in the quadratic variation
process. If prices follow a pure diffusion process (after jumps have
been removed), then, by the Dambis–Dubins–Schwartz theorem,
normalized returns sampled in financial time will be standard
normal even in the presence of leverage effects. Andersen et al.
(2007b) and ABFN (2009) find that, after applying this procedure,
normalized returns accord well with the standard normal.

14 We also investigated ‘skipped’ versions of realized bipower variation (see,
e.g., Huang and Tauchen (2005) and Barndorff-Nielsen and Shephard (2006)),
but found that these methods only partially mitigate the bias at high sampling
frequencies.
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Table 2
Returns standardized by realized bipower variation. The table reports summary statistics and the results of normality tests for daily open-to-close returns standardized by
realized bipower variation. For each stock, we report the mean, standard deviation, skewness, and kurtosis of the standardized returns, and the p-values for normality tests
based on the second, third and fourth Hermite polynomials (Bontemps and Meddahi, 2005), and for joint tests based on the second and fourth Hermite polynomials, the
third and fourth Hermite polynomials, the second, third and fourth Hermite polynomials, and the third and fifth Hermite polynomials. The sample period is January 4, 1993,
to December 31, 2003 (2770 trading days for most stocks).

Ticker Summary statistics Test statistics (p-values)
Mean Std. Skew Kurt H2 H3 H4 H24 H34 H234 H35

AXP 0.02 0.93 0.13 2.99 0.00 0.04 0.53 0.00 0.09 0.00 0.10
CVX −0.01 0.97 0.10 3.00 0.02 0.06 0.92 0.05 0.16 0.02 0.13
DD 0.03 0.93 0.13 2.95 0.00 0.04 0.76 0.00 0.13 0.00 0.00
DIS −0.01 0.87 0.07 2.99 0.00 0.25 0.09 0.00 0.12 0.00 0.28
DOW 0.05 0.98 0.06 2.91 0.19 0.28 0.46 0.32 0.42 0.32 0.49
EK −0.03 0.95 0.12 2.92 0.00 0.02 0.63 0.00 0.05 0.00 0.02
GE 0.02 0.92 0.15 2.83 0.00 0.02 0.60 0.00 0.05 0.00 0.01
GM −0.05 1.04 0.14 2.83 0.00 0.00 0.03 0.00 0.00 0.00 0.01
IBM −0.01 1.01 0.11 2.73 0.43 0.02 0.00 0.01 0.00 0.00 0.02
IP −0.04 0.94 0.16 2.97 0.00 0.00 0.99 0.00 0.01 0.00 0.00
JNJ 0.02 0.90 0.05 2.89 0.00 0.57 0.73 0.00 0.80 0.00 0.84
KO 0.06 0.91 0.09 2.99 0.00 0.39 0.32 0.00 0.42 0.00 0.58
MCD 0.03 0.88 0.05 2.93 0.00 0.75 0.26 0.00 0.51 0.00 0.95
MMM 0.03 0.87 0.10 2.96 0.00 0.40 0.06 0.00 0.13 0.00 0.27
MO −0.01 0.93 0.09 3.03 0.00 0.10 0.42 0.00 0.18 0.00 0.22
MRK 0.03 0.94 0.08 2.90 0.00 0.22 0.78 0.00 0.45 0.00 0.07
PG 0.04 0.95 0.10 2.84 0.00 0.11 0.32 0.00 0.17 0.00 0.20
S 0.10 0.90 0.09 2.84 0.00 0.88 0.84 0.00 0.97 0.00 0.77
T 0.02 0.99 0.06 2.72 0.55 0.26 0.00 0.01 0.01 0.02 0.32
XOM −0.06 0.97 0.12 3.05 0.02 0.01 0.80 0.08 0.03 0.01 0.01
5. Conclusion

Microstructure noise can distort the variance of standardized
returns in a manner directly related to the upward (or potentially
downward, when using quotes) bias in realized variance and
artificially inflate the kurtosis of standardized returns, especially
at very fine sampling frequencies. Without controlling for these
effects, daily returns standardized by realized volatility may
artificially appear to be approximately standard normal. Using a
realized kernel estimator of integrated variance that is (nearly)
unbiased, the standardized returns are clearly platykurtotic and
the normal distribution is soundly rejected. Further, returns
normalized using bipower variation, an estimator of integrated
variance robust to jumps, show a dramatic improvement in the
closeness of fit to the standard normal distribution.

On the basis of these results, we conclude that a primary
restriction of the mixture of normals hypothesis (i.e., continuous
price paths) is violated in the data, which is consistent with
findings by other researchers. This conclusion complements those
of ABFN (2009), who find that accounting for both jumps and
leverage effects is important for stock returns, and Andersen et al.
(2007b) who obtain a similar finding for S&P 500 index returns.
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