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Abstract

This study examines the performance of the S&P 100 implied volatility as a forecast of
future stock market volatility. The results indicate that the implied volatility is an upward
biased forecast, but also that it contains relevant information regarding future volatility. The
implied volatility dominates the historical volatility rate in terms of ex ante forecasting
power, and its forecast error is orthogonal to parameters frequently linked to conditional
volatility, including those employed in various ARCH specifications. These findings
suggest that a linear model which corrects for the implied volatility’s bias can provide a
useful market-based estimator of conditional volatility. q 1998 Elsevier Science B.V. All
rights reserved.

JEL classification: G12; G13

Keywords: Volatility; Options; Forecasting; Implied volatility; Information content

1. Introduction

The fundamental implications between asset risk and return motivate broad
research interest in stock market volatility. Unfortunately, conditional volatility is
unobservable. A number of techniques have been developed to statistically model
this parameter, 1 but despite the success of these efforts, relying on statistical

) Corresponding address: Jones Graduate School-MS 531, Rice University, 6100 Main Street,
Houston, TX 77005-1892, USA. Tel.: q1-713-527-4677; e-mail: jfleming@rice.edu.

1 Ž . Ž .See Bollerslev et al. 1992 for a survey of autoregressive conditional heteroskedasticity ARCH
Ž .models. Pagan and Schwert 1990 provide a discussion of nonparametric methods.
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forecasts assumes model stability into the forecast horizon, and, perhaps more
critically, the likelihood exists that significant conditioning information has been
overlooked.

As an alternative, option valuation models such as the Black and Scholes
Ž .1973 specification allow us to directly impute a conditional, market-determined
volatility forecast. Other than the volatility input, all of the option pricing
parameters are objectively available. So, if the option market is efficient and the
valuation model is correctly specified, all relevant conditioning information is
collapsed into the option price. The implied volatility, then, should represent a
superior volatility forecast.

Despite the strength of this implication and widespread use of implied volatility
as a proxy for conditional volatility, 2 there exists only limited evidence of

Ž .support. The first studies of the issue by Latane and Rendleman 1976 , Chiras and´
Ž . Ž .Manaster 1978 , and Beckers 1981 found that the implied volatility indeed

contained relevant information regarding future volatility. These studies, however,
examined fairly small datasets and focused on the cross-sectional relations within
a select group of stocks.

More recent evidence, based on the analysis of overlapping time-series observa-
Ž .tions, is less supportive. Day and Lewis 1992 , using S&P 100 index options, and

Ž .Lamoureux and Lastrapes 1993 , using individual equity options, find that the
implied volatility contains useful information in forecasting volatility, but also that
time-series models contain information incremental to the implied volatility.

Ž .Canina and Figlewski 1993 conclude that the S&P 100 implied volatility is such
a poor forecast that it is dominated by the historical volatility rate.

Ž .On the other hand, Jorion 1995 finds more favorable evidence in the currency
markets where the implied volatility outperforms both moving average and
GARCH forecasts. He attributes the disparity from the earlier results to implied
volatility measurement error and biases in the regression tests of forecast perfor-
mance. Measurement error is problematic for index options due to infrequent
trading effects on the underlying index price, and, if closing prices are used, due to
the mismatch between the times that the stock and option markets close. More-
over, as in all markets, converting an option price into an implied volatility incurs
error due to bidrask spreads and noncontinuous prices. The econometric difficul-
ties in measuring forecast performance stem from the unique structure of the

Ž .option expiration cycle i.e., the forecast interval and the persistence of volatility.
Implied volatility is not covariance stationary and nearly a unit root process.

2 Ž . Ž .Schmalensee and Trippi 1978 and Poterba and Summers 1986 , for example, employ the implied
Ž .volatility in this context. Day and Lewis 1988 study expiration-day effects using the implied volatility

Ž .as a volatility proxy, and Schwert 1990 examines its behavior during the 1987 market crash as a
Ž .measure of market volatility expectations. Stein 1989 characterizes the term structure of implied

volatility as an indication of option market overreactions.
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Therefore, traditional regression analysis is biased and perhaps spurious in small
samples.

This study addresses these problems and provides a new examination of the
forecast quality of the S&P 100 implied volatility. In estimating the implied

Ž .volatility series, we employ the Harvey and Whaley 1992a procedure involving
an end-of-day window of option prices. Using a window of transactions minimizes
the effects of bidrask and noncontinuous option prices, and, since the window is
centered around the stock market close, the concerns about infrequent trading and
timing mismatch are reduced. In addition, our econometric analysis uses overlap-
ping daily observations and specifically addresses the spurious regression problem
inherent in volatility time-series. We also develop an estimator which accounts for
the covariance nonstationarity of implied volatility forecast errors.

The analysis focuses on whether the implied volatility is an unbiased volatility
forecast, and whether its forecast error is orthogonal to parameters often linked to
conditional volatility. The unbiasedness results indicate that the implied volatility
is a biased forecast which significantly overstates future volatility. Perhaps more
importantly, however, we find no evidence of orthogonality rejections. The
implied volatility’s forecast power dominates that of the historical volatility rate,
and none of the information variables frequently used to model conditional
volatility can explain the component of volatility that is unexplained by the
implied volatility.

The study is organized as follows. Section 2 develops our interpretation of the
implied volatility, and then describes the data and the procedure for estimating the
implied volatility series. Section 3 outlines the empirical methodology. Section 4
presents the results. Section 5 extends the analysis to monthly and daily forecast
horizons, and Section 6 offers a conclusion.

2. The market volatility forecast

2.1. Interpreting the BlackrScholes implied Õolatility

The BlackrScholes model assumes a known and constant volatility rate. That
we consider the forecast quality of its implied volatility, however, suggests
volatility is uncertain and time-varies. We can reconcile these issues by developing
a relation between the implied volatility and the true time-varying volatility
process.

Ž .Consider, for example, the Hull and White 1987 model where the asset price
and volatility are uncorrelated and the volatility risk premium is zero. The time t
value of an option expiring at T is

<f sE BS s F , 1Ž . Ž .t t ;T t
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Ž . Ž .the expected BlackrScholes value, BS P , evaluated at the uncertain average
1 T 2instantaneous volatility over the option’s life, s s H s dx , and condi-(t ;T t xTy t

Ž .tioned on F , all information available at time t. Feinstein 1989a shows that fort

near-expiration, at-the-money options, the BlackrScholes model is nearly linear in
its volatility argument, so

< <E BS s F fBS E s F , 2Ž . Ž .Ž .t ;T t t ;T t

and

<f fBS E s F . 3Ž .Ž .t t ;T t

y1Ž .If the approximation is exact, then the implied volatility, s sBS f , satisfiest ;T t

<s sE s F . 4Ž .t ;T t ;T t

In words, the implied volatility should represent an unbiased forecast of the
average volatility over the life of the option, and its forecast error should be
orthogonal to the time t information set. 3

The validity of this implication for S&P 100 index options is subject to two
important limitations. First, a zero correlation between price and volatility seems
unrealistic because it contradicts the well-known leverage effect observed in the
stock market. Second, the implication is developed for European options while
S&P 100 options are American style. 4 These limitations may cause the implied
volatility to deviate from the market’s true volatility forecast and induce inaccu-

Ž .racy in Eq. 4 . In this respect, the relation is just an approximation for S&P 100
options.

Ideally, we should instead compute an implied volatility based on a more
realistic volatility process and including early exercise opportunities. This implied
volatility, then, could be more carefully related to the market’s volatility expecta-
tion. From a practical standpoint, however, this alternative poses additional
complications. First, we can never be certain that our assumption about the
volatility process is correct. Second, even if the process is adequately specified,
additional parameters must be estimated which amplifies the error in recovering
the true volatility forecast. 5 As a result, it is far more common to use a

3 Ž .The validity of this relation depends on the approximation in Eq. 2 . Since the BlackrScholes
function is strictly concave in volatility, Jensen’s inequality implies that the BlackrScholes value
Ž .using expected volatility always exceeds the stochastic volatility value. But, for near-expiration,
at-the-money options, the magnitude of this bias is small, and its impact on the implied volatility has
the opposite sign of the bias found in this study.

4 This second limitation would not affect S&P 500 index options. Unfortunately, the market for
these options has been less active than for S&P 100 options, particularly in the 1980s. As a result,
computing implied volatilities using S&P 500 options entails additional estimation error.

5 Ž .The implied tree approach of Rubinstein 1994 , for example, relies on a nonparametric approach
Ž .to estimate the underlying asset price dynamics. Dumas et al. 1998 , however, find that the

out-of-sample valuation and hedging performance of this approach is less reliable than that of an ad
hoc version of the BlackrScholes model.
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ŽBlackrScholes-type implied volatility whether based on European or American
.valuation as an instrument in forecasting volatility.

The obvious question, then, concerns the empirical accuracy of using the
Ž .implied volatility as a forecast. It seems plausible that the limitations in Eq. 4 for

S&P 100 options may have only a small effect for nearby expiration, at-the-mo-
ney options. The effect of a more general volatility process depends on the
disparity between constant and stochastic volatility option valuations. Chesney and

Ž . Ž .Scott 1989 , using a random variance model, and Duan 1995 , using a GARCH
option pricing model, find that the disparity is quite small for nearby at-the-money
options, averaging less than 4% of option value. Similarly, Harvey and Whaley
Ž . Ž .1992b and Fleming and Whaley 1994 show that the early exercise premium for
these options averages just 2–5% of value. This evidence suggests that the
magnitude of bias in the implied volatility as a forecast may be small. Further-
more, for options within a fairly tight band of moneyness and time to expiration, it
seems reasonable to suppose the bias induced by volatility andror early exercise
misspecification is relatively stable. To the extent this occurs, the orthogonality

Ž .implication of Eq. 4 is preserved. In this case, the implied volatility covaries
with future volatility, but a constant correction factor is necessary to account for
the bias.

These arguments motivate our empirical examination of the forecast quality of
Ž .the S&P 100 implied volatility. Consistent with Eq. 4 , we consider both its

unbiasedness and orthogonality properties. However, given the limitations de-
Ž .scribed above, we rely on Eq. 4 only as a guide for our empirical specifications

and our results should not be viewed as a test of market efficiency. Nonetheless,
the investigation addresses an important issue. If the implied volatility represents a
poor forecast, then this evidence challenges its widespread use in this context.
Evidence to the contrary, on the other hand, tends to validate the implied volatility
as a useful forecasting instrument.

2.2. Implied Õolatility estimation

Suppose the average future volatility rate is known by option market partici-
pants. The measured forecast quality of the implied volatility may still be

Žimperfect if we cannot identify the market’s volatility expectation i.e., the ‘true’
.implied volatility . Two sources of error can affect implied volatility estimates.

Specification error exists to the extent the market prices options differently than
the assumed valuation model; and, estimation error exists when bidrask price
effects and infrequent trading among index stocks cause the observed option price
to differ from its theoretical value. Accurately assessing the forecast quality of the
implied volatility depends critically on minimizing these two sources of error.

We begin by specifying an appropriate valuation model. Valuing S&P 100
options must account for early exercise opportunities as well as discrete index
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dividends and embedded wildcard options. 6 To incorporate these features, we use
Ž .the modified binomial model of Fleming and Whaley 1994 . The model provides

a theoretical option value, g, that, in the absence of specification error, equals the
market price, f ,

fsg S, X ,t ,r ,d ,s 5Ž . Ž .
where S is the S&P 100 index level; X and t are the option’s exercise price and

Ž . Žtime to expiration t to T ; r is the riskless interest rate; d is the amount and
.timing of dividends during t ; and, s is the index volatility rate.

Having specified a valuation model, we can now invert the model to estimate
the implied volatility. The precision of our estimate, however, is potentially
influenced by microstructural effects which can distort observed option prices. To
minimize these effects, we employ an end-of-day estimation window as developed

Ž .by Harvey and Whaley 1992a . The implied volatility, s , is estimated from allt

option transactions within a 10-min window centered around the stock market
close. Using an interval allows an ‘averaging’ technique which minimizes the
effects of bidrask and noncontinuous prices. In addition, by using end-of-day
prices, the effects of infrequent trading become less significant. 7

Ž .The daily call or put implied volatility is obtained from the nonlinear
regression

f sg S , X ,t ,r ,d ,s q´ , 6Ž .Ž .i i i t t t i

Ž .where f denotes the market price of the i-th call put option in the 10-mini
Ž .interval. Given our discussion of Eq. 4 , we use only near-expiration, at-the-mo-

ney options in the regression. Using at-the-money options also further mitigates
the bidrask and noncontinuous price effects because the implied volatilities for
these options are fairly insensitive to small changes in option price.

2.3. Data

The primary data source is the S&P 100 option transaction price history
provided by the Chicago Board Options Exchange. In addition to the option price,
each record in this dataset contains the contemporaneous S&P 100 index level.
Computing the implied volatility also requires the riskless interest rate and
expected index dividends. To proxy for the riskless rate, we use the effective yield
on the Treasury bill whose maturity most closely matches the option expiration,
but is at least 30 days. The effective yield is computed from the average of the
3:00 CST bid and ask discounts reported in The Wall Street Journal. To proxy for

6 S&P 100 options embed an end-of-day wildcard exercise feature. Each day, the option’s settlement
price is determined at 3:00 CST, but the exercise decision can be deferred until 3:20. As a result, an

Ž .adverse index move during these 20 min which would otherwise reduce option value can be
‘recovered’ by exercising at the previously-established settlement price.

7 Infrequent trading typically induces positive autocorrelation in returns. The close-to-close index
returns during the period of this study, however, exhibit an insignificant negative autocorrelation.
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expected dividends, we use the actual dividends paid by S&P 100 firms. 8 Prior to
June 1988, the aggregate index dividend series was not publicly reported. We

Ž .obtained these data from Harvey and Whaley 1992b , and the dividends after this
date were collected from the Standard & Poor’s 100 Information Bulletin.

To limit the effect of option expirations, the options used in our analysis are the
nearest, but with at least 15 days, to expiration. S&P 100 options expire on a
monthly cycle so this selection rule provides implied volatilities that range from
15 to 47 days to expiration and have an average horizon of about 30 calendar days.

Our sample period is from October 1985 through April 1992. Within this
period, we eliminate all observations that overlap the October 1987 stock market
crash. 9 This sample encompasses 80 contract months and has 1664 daily observa-
tions. Ideally, we would prefer to retain the crash data in the analysis, however,
including these data in the limited sample overstates the true likelihood of this
event. Moreover, although including the crash would dramatically impact our
parameter estimates, it does not alter our conclusion that the implied volatility is a
biased forecast. Including the crash actually increases the bias since it induced a
subsequent long-term increase in implied volatility which more than offsets the
understatement of volatility on October 19.

3. Methodology

3.1. The implied Õolatility hypothesis

This section outlines our methodology for evaluating the forecast performance
of the implied volatility. The underlying hypothesis is that the implied volatility
represents an unbiased forecast and that its forecast error is orthogonal to the

Ž .market’s information set. This hypothesis is consistent with Eq. 4 , but its validity
for S&P 100 options may be influenced by misspecification of the ‘true’
stochastic volatility process and the effect of early exercise opportunities. As a
result, the empirical analysis can be viewed as an assessment of whether these
influences are small enough that the implied volatility adequately proxies for
expected volatility.

According to our hypothesis,

s ss qe 7Ž .t ;T t ;T t ;T ,

where the implied volatility forecast error, e , should be mean zero and orthogo-t ;T

8 Using the actual series to proxy for expected dividends is not unreasonable for the options used in
this study. The options have an average time to expiration of a month, and most large firms declare
dividends at least a month prior to payment.

9 For most of our analysis, the crash period includes all observations from the NovemberrDecember
1987 option contract months, October 5 through December 4.
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nal to the conditioning vector, F . Section 2.2 described the estimation proceduret
Ž .for the implied volatility, s . We now must estimate s , the unobservablet ;T t ;T

mean instantaneous volatility realized over the option’s life. The sample variance
of returns,

Žis frequently used to measure variability, but in our analysis, s rather thant ;T
2 .s is the parameter of interest. Therefore, we define s sˆt ;T t ;T

as our measure of realized volatility. In small samples, s is generally a biasedˆt ;T

estimator of s , and the correction factor necessary for unbiasedness depends ont ;T

the distribution of returns. For the forecast horizons considered in this study,
however, the size of the correction factor would be very small. 10

Ž .Substituting this measure of realized volatility into Eq. 7 ,

s ss qu 8Ž .ˆt ;T t ;T t ;T ,

Ž .where u captures the forecast error of 7 and the estimation error of the realized
volatility. If s is unbiased for s , then u is mean zero, and, if the estimation errorˆ
is unpredictable, u will possess the orthogonality properties of e.

Ž . Ž .The specification in Eq. 8 can be evaluated using the moments’ GMM
Ž .method of Hansen 1982 by estimating a and b in the moment vector,

NK1
g a ,b s s yaybs Z , 9Ž . Ž .ˆ ˆŽ .ÝT t t tNK ts1

where the term NK is defined as the number of observations, and Z represents at

vector of instruments. Under our hypothesis, the estimates of a and b should be
indistinguishable from zero and one, respectively, and e ss yaybs shouldˆt t t

be orthogonal to every subset Z of the full information set F . 11
t t

10 For example, under the assumption of normally distributed returns, the correction factor is
1
2T y ty1 r2 G T y ty1 r2 rG T y t r2 ,Ž . . Ž . Ž .Ž . Ž . Ž .

Ž . ` ay1 yxwhere G a sH x e , d x is the gamma function. For the sample used in this study, the period0

from t to T is always at least nine trading days which implies a maximum correction of just 3.166%.
As a result, using this correction has no meaningful effect on any of the empirical results.

11 Our regressions do not correct for the errors-in-the-variables problem induced by mismeasurement
of the implied volatility. Two factors motivate this decision. First, instrumenting with either the S&P
500 futures option implied volatility or the lagged implied volatility does not noticeably affect the slope
estimates. Second, because the true implied volatility is unobservable, empirical interest is in the
forecast quality of the estimated implied volatility.
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Ž .X Ž .Defining ds a ,b , GMM estimation of 9 minimizes the criterion function,
X y1J d sg d V g d , 10Ž . Ž . Ž . Ž .T T T T

where V is a consistent estimator for the covariance matrix,T
q`

XVs E s y 1,s d s y 1,s d Z Z . 11Ž .Ž .ˆ ˆŽ . Ž .Ž .Ý t t 0 tyj tyj 0 t tyj
jsy`

XŽ . Ž .Eq. 10 is exactly identified when Z s 1,s , and the GMM estimate of dt t

identically equals the ordinary least squares estimate. The GMM approach,
however, can account for the overlapping error structure induced by the option
expiration cycle, and is robust to conditional heteroskedasticity and serially

Ž .correlated errors. Hansen 1982 demonstrates the asymptotic distribution of the
GMM estimator,

a y1X y1'NK d yd ;N 0, D V D , 12Ž . Ž . Ž .ž /T 0

where

E s y 1,s dŽ .ˆŽ .t t
DsE Z . 13Ž .t Ed

Ž . Ž . Ž .Eqs. 9 and 10 also facilitate a test of the orthogonality restrictions in Eq. 4 .
Ž .Specifically, the forecast errors embedded in Eq. 9 should be orthogonal to the

elements of F . Let z represent a row vector of selected instruments from F .t t t
XŽ . Ž .For Z s 1,s , z , the system in 10 is over-identified, and the closeness of thet t t

covariance-weighted moment conditions to zero measures the orthogonality of the
forecast errors with the information set. In particular,

aX y1 2NKg d V g d ;x , 14Ž . Ž . Ž .T T T T T n

where n is the dimension of z .t
While the GMM approach can measure the forecast quality of the implied

Ž .volatility, a sufficient condition for consistent estimation is the stationarity and
ergodicity of the error vector. Time-series volatility data, however, have a high
degree of serial correlation and this raises a concern about spurious results. In
addition, the implied volatility forecast errors are not covariance stationary due to
the unique overlap structure caused by the option expiration cycle. These topics
are addressed below.

3.2. Spurious regressions

Ž .Eq. 9 underlies recent tests of the implied volatility as a conditional volatility
forecast. 12 The series in this regression are specified in levels and each series has

12 Ž . Ž .See, for example, Feinstein 1989b and Canina and Figlewski 1993 .



( )J. FlemingrJournal of Empirical Finance 5 1998 317–345326

a high serial correlation. One source of the serial correlation is volatility persis-
Ž .tence, and a second source occurs using data sampled more finely daily than the

Ž . Ž .forecast interval monthly . To the extent these series are nonstationary, Eq. 9
Ž . Ž .represents a spurious regression. Granger and Newbold 1974 and Phillips 1986

demonstrate the invalidation of conventional inference under these conditions.
Ž .Using Dickey and Fuller 1979, 1981 tests, we can reject the nonstationarity of

each of the volatility series, however, the spurious regression problem may still
affect inference based on small samples. The high serial correlations in the data
induce residual autocorrelation and this can yield inefficient slope estimates and
spurious explanatory power. Moreover, tests of competing explanatory variables
will be biased in favor of detecting a stronger relation for the variable with the
largest serial correlation. These concerns gradually disappear with sample size and
they are very minimal with the large sample used in this study.

Nonetheless, the spurious regression problem is a key feature of time-series
tests of the implied volatility hypothesis using overlapping data. Therefore, for our
unbiasedness tests, we rely on an alternative specification which is similar to that

Ž .commonly used to evaluate the unbiasedness of forward prices e.g., Fama, 1984 .
To develop this alternative, we note that s is available in the time tty1;T

Ž .information set, so we can express Eq. 4 as

<s ys sE s ys F . 15Ž .ˆt ;T ty1;T t ;T ty1;T t

Now, if s is unbiased for s , then a and b should be indistinguishable fromˆt ;T t ;T

zero and one in estimating the moment vector,
NK1

g a ,b s s ys yayb s ys Z , 16Ž . Ž .Ž .ˆŽ .ÝT t ty1 t ty1 tNK ts1

XŽ .where Z s 1,s ys . To the extent s follows a random walk, its firstt t ty1 t ;T
Ž .differences will be serially uncorrelated, and Eq. 16 is free of the spurious

regression problem.
Ž .While the form of 16 is convenient for unbiasedness tests, it complicates

Ž .orthogonality testing. Only under the null i.e., as0, bs1 are the errors
Ž .embedded in 16 equal to the true implied volatility forecast errors. Therefore, if

Ž .unbiasedness is rejected, orthogonality tests using Eq. 16 would be misspecified.
2 Ž .Fortunately, the x test given by Eq. 14 is not biased by the spurious regression

13 Ž .problem. So, to test orthogonality, we use the original specification in Eq. 9 .

3.3. GMM coÕariance matrix

Ž .Time-series tests of Eq. 4 also must account for the covariance nonstationarity
of the implied volatility forecast error. Within an option contract month the

13 Ž .This result was demonstrated by Fleming 1993 .
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intervals represented by t;T and tq1;T overlap. So, if volatility is forecast
incorrectly 30 days from expiration, a substantial portion of this error will be

Ž .replicated by the forecast 29 days from expiration. Hansen and Hodrick 1980
outline a method for consistent GMM estimation in the context of overlapping
forecast intervals; but, their method is inappropriate for evaluating the implied
volatility hypothesis. Here, the forecast interval coincides with the option expira-
tion cycle which is telescoping rather than, as in Hansen and Hodrick, a moving
interval of fixed length. As a result, the errors are highly correlated within a
contract month, but the correlation drops off across contract months. In addition,
within a contract month, the correlation is not constant as the overlap between
consecutive forecasts further from expiration represents a greater portion of the
forecast interval.

Appendix A develops consistent GMM estimators for this telescoping time-
series structure,

NK Ky11 X
V s f e ,e s e ,e s , 17Ž .ˆ ˆ ˆ ˆŽ . Ž .Ý ÝT t , tyl t t t tyl tyl tylž /NK ts1 lsyKq1

NK1 X
D s 1,s 1,s , 18Ž .Ž . Ž .ÝT t tNK ts1

Ž .where e is the GMM residual from Eq. 9 and f is a dummy variable equalˆ t, tyl

to one when the contract months represented by observations t and t–l overlap.
The intuition behind V is that the covariance structure is constant from oneT

contract month to the next, and this estimator represents the mean covariance
matrix within each contract month. In addition, this covariance matrix is robust to
conditional heteroskedasticity and residual autocorrelation within the contract
month.

4. Empirical results

4.1. Unbiasedness tests

This section examines the implied volatility hypothesis developed in Section 2.
Specifically, we evaluate whether the implied volatility represents an unbiased
forecast of the average volatility over the life of the option, and whether its
forecast error is orthogonal to the market’s information set. As a standard for
comparison, we also consider the forecast quality of the 28-day historical volatil-
ity. 14 The historical volatility rate has been commonly used to index the forecast

14 A 28-day interval approximates the average life of the options in the sample and it avoids
day-of-the-week effects in returns by using an equal number of returns from each day of the week.



( )J. FlemingrJournal of Empirical Finance 5 1998 317–345328

quality of the implied volatility. While it may appear to be a naive alternative, our
regressions allow for both mean and slope coefficients, effectively modeling

Ž .monthly volatility as an AR 1 process, consistent with Poterba and Summers
Ž . Ž .1986 and Stein and Stein 1991 . Because the historical volatility rate is available
in the market’s information set, the implied volatility should incorporate the
information conveyed by the historical volatility, as well as any additional relevant
information.

A simple regression using the historical volatility to forecast realized volatility
suffers from an errors-in-the-variables problem due to measurement error in the
observed volatilities. This problem is more serious than for the implied volatility
regressions because the historical volatility rate is a lagged value of realized

Ž .volatility. As a result, the measurement error induces an MA 1 process in the
observed forecast errors. In order to obtain consistent regression estimates, we
apply the instrumental variable approach. The instrument we use is the Parkinson
Ž .1980 extreme-value estimator of historical volatility,

ny1252 2
)s s 0.3607 ln H rL 19Ž . Ž .Ýh , t tyi tyi( n is0

where H and L , respectively, denote the high and low index levels during thet t

close-to-close interval ending at time t. We construct this estimator using S&P
15 )500 futures prices over the preceding ns28-day period. s is an effectiveh, t

instrument because it is correlated with s , but their measurement errors areht

independent.
We now assess the forecast quality of the implied volatility, focusing first on its

unbiasedness. Recall that as a precaution against the spurious regression problem,
Ž .we test unbiasedness by conducting the minimization in Eq. 10 using moment

Ž . Ž . Ž .vector 16 . Eqs. 17 and 18 provide the estimates of V and D , respectively.T T

We estimate a and b separately for the call option and put option implied
volatilities, as well as the historical volatility, using the two-step procedure of

Ž .Hansen and Singleton 1982 .
The unbiasedness regression results are reported in Table 1. Comparing the

2R -statistics across regressions, the call option implied volatility has slightly more
explanatory power than the put option implied volatility, but each of these
measures exhibits a much stronger relation with realized volatility than does the
historical volatility. Nonetheless, the negative intercepts for the implied volatilities

15 For a stock index portfolio, the Parkinson estimator would be a biased volatility measure because
infrequent trading misrepresents the true extreme values. Index futures prices, however, are not

Ž .influenced by infrequent trading, and Wiggins 1992 demonstrates the consistency of the Parkinson
estimator in this context.
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Table 1
Unbiasedness tests of S&P 100 volatility proxies

2 2ˆf a t b t R F-stat CSˆ a 1yb

Call implied y0.0191 y3.63 0.5727 9.30 0.0273 46.35 167.13
Put implied y0.0249 y4.58 0.6438 6.88 0.0247 42.03 90.01
28-day historical 0.0005 0.09 0.4526 2.61 0.0114 19.73 8.39

GMM estimation results are reported for the moment vector,
NK1 X

)g a b s s ys y a y b s ys 1,s ys ,ˆŽ . Ž .Ž . Ž .Ž .Ýf T f , f t f , ty1 f f f , t f , ty1 f , t f , ty1NK ts1

where f sS&P 100 call and put option implied and 28-day historical volatilities. s is the annualizedˆt
)S&P 100 index volatility realized over the life of the option observed at t. s is an instrumental

)Ž .variable Parkinson estimator for the historical volatility regression, otherwise s ss . K is the
maximum time to option expiration and N is the number of contract months in the sample. The
t-statistics reported in the table measure the significance of departures from zero and one, respectively,

2 2ˆfor a and b. R is the adjusted coefficient of determination. CS is an asymptotic Wald test of theˆ
joint null that a s0 and b s1 for a particular forecast. The sample is the noncrash period October
1985–April 1992 and has 1619 daily observations.

suggest that the S&P 100 option implied volatility, on average, overstates realized
volatility. 16 The historical volatility appears to be less biased.

A formal unbiasedness test can be conducted using the distribution given in Eq.
ˆŽ .12 for the GMM estimate, d . a and b should equal to zero and one under theˆT

hypothesis that s is unbiased for s . The validity of this joint null can be assessedˆ
Ž .with a Wald test, using Eq. 12 ,

aX X2 y1 2CS sNK d yd D V D d yd ;x , 20Ž . Ž . Ž .Ž .T 0 T T T T 0 2

Ž .X 2where d s 0,1 . The CS -statistics reported in Table 1 indicate strong unbiased-0

ness rejections for each volatility forecast. For the historical volatility, this finding
is not unexpected. It is frequently argued that volatility follows an autoregressive
process and therefore the slope coefficient should be less than one.

The finding that the call and put option implied volatilities overstate realized
Ž .volatility is consistent with the findings of Jorion 1995 using foreign currency

Ž .options. These results should not seem surprising given the limitations of Eq. 4
described in Section 2.1. In particular, unbiasedness may be influenced by

16 ˆIn general, the intercept equals Y y b X where X and Y, respectively, are the averages of the
Ž .independent and dependent variables. For the implied volatility first differences in Eq. 16 , X f0.0001.

As a result, the large negative intercepts indicate Y -0, meaning that the implied volatility, on average,
exceeds realized volatility.
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misspecification of the volatility process andror the existence of early exercise
opportunities. A volatility risk premium, for example, would cause the implied
volatility to overstate the market’s volatility expectation and, in turn, overstate
future volatility.

The influence of early exercise is, perhaps, more difficult to predict. The
prospect of early exercise effectively shortens the forecast horizon underlying the
implied volatility. It seems implausible though that the volatility over this shorter
horizon systematically exceeds the volatility over the life of the option. A more
realistic explanation follows by realizing that periods of lower volatility corre-
spond with lower option time values and therefore greater probability of early
exercise. As a result, the possibilities of higher volatility receive more weight in
determining the option’s value, and this may cause the implied volatility to
overstate realized volatility.

The remaining question is whether the implied volatility’s forecast bias stems
purely from mismeasurement of the market’s true volatility forecast or whether it
implies that options are mispriced. If the bias signals mispricing, it suggests that

Ž .trading strategies which sell options i.e., volatility should earn abnormal profits.
Ž .Fleming 1993 finds that during this period selling near-expiration, at-the-money

S&P 100 options did earn large positive profits in the absence of transaction
costs. The finding suggests the bias is truly a function of option market prices
rather than entirely attributable to model misspecification. The profits for these
positions, however, disappear after imposing bidrask transaction costs. Therefore,
the implied volatility bias does not seem to signal the existence of abnormal profit
opportunities.

Despite the evidence of forecast bias, the regression results reported in Table 1
also suggest that both the implied and historical volatilities contain information
regarding future volatility. In particular, the F-statistics indicate a significant
relation between the implied volatility and realized volatility. So, despite the

Ž .limitations of Eq. 4 , the S&P 100 implied volatility appears to have value in
forecasting future stock market volatility. The efficiency and orthogonality tests
below provide a more detailed examination of this issue.

4.2. Efficiency and orthogonality tests

Ž .In addition to the unbiasedness implication, Eq. 4 suggests the implied
volatility forecast errors should be orthogonal to the information set, F . Theyt

should, therefore, be orthogonal to any subset z of F . We evaluate thist t

hypothesis by simply adding selected instruments from F to Z in the GMMt t

system. While it is impossible to specify every element of F to provide at

complete set of tests, the instruments selected include variables suggested in the
literature to explain time-variation in volatility. In this respect, the selection
criteria increases the likelihood of orthogonality rejection.
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We divide the orthogonality tests into two sets. First, we examine the efficiency
of s , where efficiency refers to informational efficiency relative to past forecastt

errors. In other words, if we let m ss ys denote the forecast error at time t, sˆt t t t
w xis efficient if E m m s0, where m is available in the time t informationt tyl tyl

set. The second set of tests, referred to as ‘orthogonality tests,’ will include
notions of orthogonality other than efficiency.

The efficiency and orthogonality tests are both conducted by estimating the
XŽ . Ž . Ž .GMM system in Eqs. 9 and 10 , where Z s 1,s , z overidentifies the system.t t t

w xz contains the instruments of interest. If E z e /0, the elements of z supple-t t t t

ment the information in s to provide a more precise estimator of s . We test thisˆt t
Ž .inequality with the Hansen 1982 test of overidentifying restrictions,

aX2 y1 2OI sNKg d V g d ;x , 21Ž . Ž . Ž .n T T T T T n

where n is the dimension of z . 17
t

For the efficiency tests, we define z sm , where m contains the past forecastt t t

errors. As noted earlier, error correlation should exist due to the forecast horizon
Ž .overlap, but the efficiency notion implicit in relation 4 restricts the order of serial

correlation. Specifically, any forecast error that is entirely realized prior to t
should be orthogonal to the time t forecast error.

Table 2 provides the regression results and OI2-statistics for two monthly
lagged forecast errors, m and m . ml represents the forecast error using thetyK ty2 K t

ˆa and b estimates provided on the first line of the table for each forecast. Neitherˆ
Ž l.of the lags for m or m violates the hypothesized efficiency of the implied

Ž .volatility. This evidence is consistent with Eq. 4 . For the historical volatility,
efficiency is rejected when we use m as the instrument; but, rejections do not
occur using ml, suggesting that additional lags seem unwarranted for the AR

Ž .representation of volatility. This finding generally supports a monthly AR 1 and
Ž .is consistent with the findings of Poterba and Summers 1986 .

To conduct the orthogonality tests, we must first select the elements of z .t
Several instruments are motivated by the various specifications used in ARCH

Ž . Ž . 2models. In the GARCH 1,1 by Bollerslev 1986 , for example, s is modeledtq1
2 2 2 Ž w x. w xas a linear function of s and c s , where c s r yE r rs and E rt t t t t ty1 t t ty1 t

is the time ty1 expectation of next period’s stock market return. The GARCH-M
Ž . 2by Engle and Bollerslev 1986 models expected returns as a function of st

which, in the variance equation, relates s and s 2. The EGARCH by Nelsontq1 t

17 It may appear that since d changes when we add restrictions, OI2 might be lower than if dT n T
Ž .were determined independent of z . Alternative methods, such as those by Newey 1985 andt

Ž .Eichenbaum et al. 1988 , rely on ‘omitted variables’ tests using parameter estimates isolated from z .t
Ž .However, for the special case of 9 where the omission of z leaves an exactly identified lineart

Ž .system, Newey 1985 demonstrates that each of these tests is numerically equivalent.
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Table 2
Efficiency tests of S&P 100 volatility proxies

Call option implied volatility Put option implied volatility Historical volatility

2 2 2 2 2 2 2 2 2ˆ ˆ ˆm a t b t R CS OI a t b t R CS OI a t b t R CS OIˆ ˆ ˆf a 1yb a 1yb a 1yb

Empty 0.043 1.41 0.640 2.01 0.25 16.4 y 0.048 1.51 0.598 2.27 0.23 24.3 y 0.099 3.82 0.366 3.67 0.10 14.7 y
m 0.290 1.14 0.722 1.87 0.24 15.5 0.6 0.035 1.12 0.665 1.89 0.23 23.7 3.2 0.083 3.28 0.459 3.17 0.08 10.8 4.8tyK

m ,m 0.059 3.07 0.537 4.33 0.24 37.0 3.5 0.077 4.17 0.417 6.24 0.20 88.1 5.4 0.098 5.45 0.347 5.84 0.09 34.3 6.6tyK ty2 K
lm 0.036 1.50 0.685 2.29 0.24 17.3 0.1 0.032 1.14 0.686 1.97 0.22 22.6 0.9 0.099 4.57 0.367 4.53 0.10 21.1 0.0tyK
l lm ,m 0.051 2.53 0.588 3.63 0.24 29.1 1.6 0.080 4.30 0.394 6.47 0.20 101.0 5.5 0.097 6.16 0.380 6.70 0.10 45.0 0.0tyK ty2 K

The efficiency of ex ante S&P 100 volatility measures is assessed with GMM estimation of the vector
NK1 X

)g a b s s y a y b s 1,s ,m .ˆŽ . Ž .Ž .Ýf T f , f t f f f t f t f tNK ts1

s represents either the daily S&P 100 call or put option implied volatility or the annualized 28-day historical volatility rate. s is the annualized S&P 100ˆf
)return volatility over the life of the option. K is the maximum time to option expiration and N is the number of contract months in the sample. s is an

)Ž .instrumental variable Parkinson estimator for the historical volatility regression, otherwise s ss . m contains the lagged forecast errors which aref t
l ˆ ˆcomputed as either m ss ys , or m ss y a y bs . The t-statistics for a and b , respectively, report the significance of departures from zero and one.ˆ ˆ ˆ ˆt t t t t t

2 2 Ž .CS is an asymptotic Wald test of the joint null that a s0 and b s1. OI is the Hansen 1982 test statistic of overidentifying restrictions and is
asymptotically distributed x 2, where n is the dimension of m. The sample is the noncrash period October 1985–April 1992.n
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Ž .1991 captures asymmetry in the relation between volatility and returns, linking
< < w x 2c yE c to ln s . These models, then, suggest several instruments thatt t tq1

Ž .covary with volatility and, under Eq. 4 , should be incorporated into the implied
< < < w x <volatility. To focus on these parameters, r , r , and r yE r are included int t t ty1 t

< < 2z , as well as c , c , and s . By including these instruments, a byproduct of thet t t t

orthogonality tests is an indirect test of the conditional volatility unexplained by
the implied volatility but explainable with ARCH.

To focus more squarely on the comparison with ARCH forecasts, we also
Ž . Ž .consider orthogonality tests using a specific GARCH 1,1 model. The GARCH 1,1

Ž .variance equation is specified using daily data as

s 2 sa qa R2 qb s 2 , 22Ž .˜ ˜tq1 0 1 t 1 t

where R is the S&P 100 return, demeaned and adjusted for first-order autocorre-t

lation. Fitting the model across our sample period yields the estimates a sˆ0
ˆ0.000006, a s0.05, and b s0.89. We now use the fitted model to generateˆ1 1

volatility forecasts. Let s 2 represent the forecast at time t of the variance j˜tq j < t
18 Ž .days into the future. We define the GARCH 1,1 forecast of the average

1 Ty t 2 19volatility over the life of the option as s s Ý s By includ-(˜ ˜tq1;T js1 tqj < t .Ty t y 1

ing this instrument in the orthogonality tests, we incorporate an additional feature
of the ARCH class of models. In particular, because the j-step-ahead forecast
depends on the current level of volatility and its speed of adjustment toward the

Ž .long-term mean, this dynamic is captured in the GARCH 1,1 forecast of the
average volatility.

A number of other orthogonality instruments, in addition to the ARCH subset,
Ž .are motivated in the literature. Shanken 1990 , for example, finds that short-term

interest rates and a January dummy variable predict stock market volatility. We
include both of these parameters in the instrument vector, z . Two interest ratet

parameters are considered, the effective yield on the Treasury bill nearest 30 days
to maturity, and the 30-day rate scaled by the volatility level. We set the January
dummy equal to one when s is determined primarily from returns realized inˆ

Ž .January. In addition, Gallant et al. 1992 find evidence that conditional volatility
is related to lagged trading volume, so we also include detrended stock market

Ž .volume constructed from the S&P’s Security Price Index Record in the orthogo-
nality tests. Both levels and logarithms of volume are considered.

Table 3 summarizes the orthogonality regression results. Overall, few of the
OI2-statistics approach their critical values for either the historical or implied
volatilities. At first, this result may seem to indicate the lack of a relation between

18 Ž .The algorithm used to compute j-step-ahead forecasts follows Hamilton 1994 , Chap. 21.
19 Ž .This definition conforms with the instrument used by Jorion 1995 .
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Ž .our selected instruments and S&P 100 volatility. Recall, however, that Eq. 9
evaluates forecast quality over the life of the option. As a result, the forecast
horizon is not a constant interval, but is telescoping with the option expiration
cycle. This variation in the forecast horizon likely reduces the informativeness of
our instrument set. 20 Indeed, the significance of these parameters increases when

Ž .we consider forecast quality over constant and shorter forecast horizons in
Section 5.

The most interesting feature of Table 3 concerns the implied and historical
volatilities as instruments. When we include the historical volatility rate in the
orthogonality tests for the call and put implied volatilities, the OI2-statistics
indicate nonrejections. Conversely, including the implied volatility in the historical
volatility regressions induces strong orthogonality rejections. This evidence sug-
gests that the implied volatility contains the information conveyed by the historical
volatility, as well as additional information that is relevant for predicting volatility.
In this sense, the implied volatility represents the dominant forecast.

Ž .It is also interesting to consider the GARCH 1,1 forecasts. Although not
reported in the table, the GARCH forecasts display less bias than either the
implied or historical volatilities. In fact, the CS2-statistic is less than 2.0 which
indicates unbiasedness is not rejected. Its explanatory power, however, is compa-
rable to the historical volatility, and, in Table 3, it fails to generate orthogonality
rejections in the implied and historical volatility regressions. When these tests are

Ž .reversed not shown in the table , including the call option implied volatility as an
instrument in the GARCH regression produces a strong orthogonality rejection
Ž 2 .OI s7.2 , but instrumenting with the historical volatility does not yield rejection
Ž 2 . Ž .OI s1.2 . So, while the GARCH 1,1 and historical volatility comparison is
inconclusive, the implied volatility subsumes the information contained in the

Ž .GARCH 1,1 .
Ž .At this point, we can summarize the validity of Eq. 4 for S&P 100 options. In

Section 4.1, we found that the S&P 100 implied volatility systematically over-
states future stock market volatility. In this section, however, we find that, despite
its bias, the implied volatility covaries with future volatility and its forecast error is
orthogonal to parameters often used to forecast volatility. It appears, then, that the

Ž .limitations in applying Eq. 4 to S&P 100 options do not negate the implied
volatility’s predictive power or its orthogonality properties. This seems reasonable
provided that the misspecification of the volatility process and early exercise
opportunities have a fairly stable effect on the implied volatility.

These results may seemingly contradict earlier research for the S&P 100
options, but the methodology used in this study differs in two important respects.
First, the econometric analysis explicitly addresses the spurious regression prob-

20 Instruments which proxy for calendar effects, such as time to expiration and its square root
Ž .expressed in calendar days or trading days , however, do not produce orthogonality rejections.
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lem that is induced by volatility persistence and tends to overstate the performance
of the historical volatility relative to the implied volatility. Second, the implied
volatility in this study is computed from a window of option prices which
minimizes the measurement error and, presumably, improves its measured forecast
quality. In contrast to the evidence for S&P 100 options, both the bias and

Ž .orthogonality results are consistent with the evidence of Jorion 1995 for currency
options.

5. Constant horizon volatility prediction

5.1. Monthly Õolatility

We now consider the implied volatility’s quality as a forecast over a fixed
horizon, independent of the option expiration cycle. We first examine the implied
volatility as a forecast of monthly volatility. The implied volatility’s performance
in this setting is of interest for two reasons. First, volatility predictions over the
life of the option are not useful in a context requiring daily estimates over, say, the
next month; option contracts expiring in exactly one month would be unavailable
as a daily series. One might, however, use daily implied volatilities to proxy such
a series. Second, a strong relation exists between the ex post volatility estimate
s , computed over the life of the option, and s 28, computed over the next 28ˆ ˆt ;T t

calendar days, because they include largely the same returns observations. There-
fore, the implied volatility’s forecast performance over a fixed, 1-month horizon
should be related to its performance over the life of the option.

To evaluate performance over a 1-month horizon, we simply respecify the
orthogonality tests used in Section 4.2. In particular, the realized volatility over the

28 Ž .next 28 calendar days, s , replaces s in Eq. 9 . Unlike in Section 4.2, theˆ ˆt t ;T

error vector can now be assumed covariance stationary because the forecast
horizon is fixed and the overlap is constant rather than telescoping. Therefore,

ŽGMM estimation is conducted with a constant 19-period overlap expressed in
.trading days .

Table 4 presents the orthogonality results, 21 using the same sequence of
instruments as in Table 3. The significance of these instruments is now more
apparent than in the earlier context of a telescoping forecast horizon. For the
historical volatility, orthogonality approaches rejection with lagged S&P 100

Ž . Ž .returns absolute values , the January dummy variable, and c absolute values ,
the ARCH parameter. In addition, the implied volatility induces even stronger
historical volatility rejections than in Section 4.2. Conversely, the relation between

21 The unbiasedness and efficiency tests are not presented here. The results are similar, however, to
those for the volatility over the life of the option in that unbiasedness is strongly rejected and efficiency
is not rejected.
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Table 4
GMM estimation results for 28-day S&P 100 volatility

Ž .Panel A: basic regression zs0

2 2ˆf a t b t R CSˆ a 1yb

Call implied 0.047 1.81 0.607 2.53 0.2914 27.58
Put implied 0.048 1.83 0.580 2.73 0.2716 40.49
28-day historical 0.096 4.31 0.369 4.11 0.1342 18.97

Panel B: orthogonality results

z Call implied Put implied Historicalt

0s 0.49 0.50 8.40yf
0 28s , s 2.42 1.57 10.65yf y f

s 1.46 1.58 0.33˜
28r 1.12 0.94 0.47
28< <r 0.92 0.21 3.73

28 28< <r , r 1.46 0.94 3.76
28 28< <r y r 0.06 0.35 1.28

30r 0.18 0.17 0.21f
30r rs 0.64 0.23 2.90f c
30r rs 0.73 0.70 1.00f h

Jan 3.43 3.38 2.39
28V 0.12 0.21 1.07

28lnV 0.08 0.10 0.47
c 0.71 0.46 0.18
< <c 0.08 0.00 2.32

< <c , c 1.17 0.51 3.23
2s 0.02 0.02 0.00h

GMM estimation results are reported for the moment vector,
NK1 X28 )g a b s s y a y b s 1,s , z ,ˆŽ . Ž .Ž .Ýf T f , f t f f f t f t f tNK ts1

where f sS&P 100 call and put option implied and 28-day historical volatilities, s 28 is theˆt

annualized S&P 100 index volatility realized over the 28-day period subsequent to t. The elements
d Ž . 28of z include: the alternative forecast, s , observed at t – d; s , the GARCH 1,1 forecast; r ,˜f t y f , t t t

the 28-day S&P 100 return ending at t; r 30 , the 30-day riskless rate; Jan , a January dummy variable;f , t t
28 28 2Ž .V , monthly lagged stock market volume; c , equal to r y r rs ; and s , the squared historicalt t t h t h t

ˆvolatility. The t-statistics for s and b indicate the significance of departures from zero and one,ˆ
respectively. CS2 is an asymptotic test of the joint null that a s0 and b s1 for a particular forecast.

Ž .The orthogonality statistics report the Hansen 1982 test of overidentifying restrictions and are
asymptotically distributed x 2, where n is the dimension of z. The sample is the noncrash periodn

October 1985–April 1992.

the historical volatility and the implied volatility forecast error is much weaker.
For the implied volatility, the January dummy variable is the only parameter to
generate test statistics which approach rejection, and these results are attributable
to the large implied volatilities observed in January 1988 just after the crash.
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Absent this, the implied volatility exhibits orthogonality in the context of a
constant, 1-month forecast horizon.

5.2. Daily Õolatility

The results above can be generalized to even finer time horizons. With a daily
forecast horizon, we estimate the subsequent day’s S&P 100 volatility rate as

21 (s s 252 r yr , 23Ž .Ž .ˆt tq1

where r is the index return and r is the mean return over the sample. Thetq1

GMM system used to test orthogonality is again the same, but with s replacedˆt ;T

by s 1.ˆt

Table 5 reports the regression results. The analysis includes a second measure
of historical volatility, s 1 , but this 1-day measure fails to demonstrate muchˆty1

explanatory power. This result may seem to contradict studies such as Ding et al.
Ž .1993 that find serial correlation in absolute returns. The t-statistic reported in the

Ž .table for 1yb , however, does imply that the estimate of b is significantly
Ž .positive t )3 . This finding is consistent with the level of first-order serialbs0

Ž .correlation in absolute returns for this sample period 5% .
Because the serial correlation in s 1 is relatively low, the regressions reportedˆ

in Table 5 are largely unaffected by the spurious regression problem. As a result,
the coefficient estimates in Panel A are generally consistent with the unbiasedness
results from Section 4.1. Although the implied volatility intercepts are not
significantly different from zero, the CS2-statistics indicate large bias. Comparing

2the R -statistics across regressions, the implied volatility exhibits a much stronger
explanatory power of next-day volatility than does the 28-day or 1-day historical
volatility.

Ž .In the orthogonality tests Panel B , we use the same set of instruments as
before, but with the volume, the January dummy, and S&P 100 return variables

Ž .defined by a single day rather than 28 days . Consistent with the earlier results,
orthogonality rejections occur only for the historical volatilities. Most signifi-
cantly, the implied volatility as an instrument produces very strong rejections for
both the 28-day and 1-day historical volatilities. The scaled interest rate and most

Ž .of the ARCH parameters, including the GARCH 1,1 forecasts, also induce
Žorthogonality rejections. In addition, the volume parameters and lagged and

.absolute returns seem important for the 1-day historical volatility. Conversely, for
the call and put option implied volatilities, none of the parameters approach
rejection. The implied volatility, then, appears to convey useful information
regarding tomorrow’s volatility rate.

5.3. Informational time decay

The implied volatility’s quality as a forecast of next-day volatility is related to
the relatively short-term perspective of the S&P 100 option market. Traders often
argue that option prices, rather than conforming to any particular valuation model,
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Table 5
GMM estimation results for next-day S&P 100 volatility

Ž .Panel A: basic regression zs0

2 2ˆf a t b t R CSˆ a 1yb

Call implied 0.012 0.86 0.594 4.71 0.0557 482.24
Put implied 0.008 0.55 0.598 4.55 0.0576 583.21
28-day historical 0.053 5.10 0.411 8.52 0.0285 223.97
1-day historical 0.102 20.69 0.122 22.16 y0.0060 507.13

Panel B: orthogonality results

z Call Put 28-day 1-dayt

implied implied historical historical
0s 0.08 0.64 21.01 36.12yf
0 1s , s 0.49 1.22 20.97 36.12yf y f

s 0.61 1.33 2.63 14.02˜
1r 0.25 1.50 2.20 1.58
1< <r 0.65 0.96 0.54 10.05

1 1< <r , r 1.25 3.60 3.49 10.63
1 1< <r y r 0.69 0.87 0.45 9.80

30r 0.32 0.24 0.33 1.99f
30r rs 0.38 0.04 7.91 22.52f c
30r rs 0.07 0.26 1.54 9.91f h

Jan 0.08 0.09 0.22 0.04
1V 0.04 0.05 0.01 1.25

1lnV 0.85 0.68 0.78 2.33
c 0.34 2.08 3.29 2.98
< <c 1.29 1.29 0.46 19.24

< <c , c 2.00 4.25 4.30 20.90
2s 0.00 0.25 2.39 16.84h

GMM estimation results are reported for the moment vector,
NK1 X1 )g a b s s y a y b s 1,s , z ,ˆŽ . Ž .Ž .Ýf T f , f t f f f t f t f tNK ts1

where f sS&P 100 call and put option implied and 28-day and 1-day historical volatilities. s 1 is theˆt
2(annualized volatility during the following day, 252 r y r where r and r are the 1-day S&PŽ .tq1 t

100 return and mean return, respectively. The 1-day historical volatility is s 1 . The elements of zˆty1 f t
d Ž . 1include: s , observed at t – d; s , the GARCH 1,1 forecast; r , the daily lagged S&P 100 return;˜yf , t t t

r 30 , the 30-day riskless rate; Jan , a January dummy variable; V 1, daily lagged stock market volume;f , t t t
1 2 ˆŽ .c , equal to r y r rs ; and, s , the squared historical volatility. The t-statistics for a and bˆt t h t h t

indicate the significance of departures from zero and one, respectively. CS2 is an asymptotic test of the
joint null that a s0 and b s1 for a particular forecast. The orthogonality statistics report the Hansen
Ž . 21982 test of overidentifying restrictions and are asymptotically distributed x , where n is then

dimension of z. The sample is the noncrash period October 1985–April 1992.

simply reflect the ‘current state of the market’. To a degree, this perspective
reflects the decreasing accuracy with which the more distant future can be
predicted. As a result, we might expect the implied volatility to be most strongly
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related to today or tomorrow’s volatility, and decreasingly related to volatility
further into the future.

Fig. 1 illustrates the time decay of the information content of the implied and
historical volatilities. The decay is estimated using the specification from Section
5.2, but with s 1 as the dependent variable for js0, . . . ,9 days into the future.ˆtq j

In the figure, as j increases, the relation between the time t volatility forecast and

Fig. 1. The information time decay in the S&P 100 option implied volatility. The figure illustrates the
2variation in the b and R parameters of the specification,

NK1 X1 )g a ,b s s y a y b s 1,s ,ˆŽ . Ž .Ž .Ýf T f j f j tq j f j f j f t f tNK ts1

where f sS&P 100 call and put option implied and 28-day historical volatilities. s 1 annualized S&Pˆtq j
2

100 index volatility realized over the trading day js0, . . . ,9 days subsequent to t, 252 r y r ,( Ž .tq jq1
)where r and r represent the 1-day S&P 100 index return and mean return, respectively. s is ant

)Ž .instrumental variable Parkinson estimator for the historical volatility regression, otherwise, s ss .
The sample is the noncrash period October 1985–April 1992.
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the volatility realized at tq j slowly decreases. The rate of decay for the historical
volatility simply reflects the time-series structure of volatility, and is consistent
with the general properties of a GARCH model. For the implied volatility,
however, the decay is faster which is consistent with option traders’ short-term
focus. 22 The implied volatility most strongly reflects the volatility rate expected
for the near future and exhibits a weaker relation with more distant volatility.

6. Conclusions

This study investigates whether the S&P 100 index option implied volatility
represents an unbiased forecast of stock market volatility and whether its forecast
error is orthogonal to the market’s information set. Empirically, both the S&P 100
call and put option implied volatilities are biased forecasts. Although this bias may
suggest option market inefficiency, it may also stem from misspecification of the
volatility process in the option valuation model andror the existence of early
exercise opportunities. The degree of bias, however, does not seem large enough
to signal the existence of abnormal trading profits.

Despite the implied volatility’s bias, a linear model using only the implied
volatility appears to deliver a quality forecast of ex post volatility. The implied
volatility is efficient with respect to its past forecast errors, and its forecast errors
are orthogonal to parameters often linked to conditional volatility, including the
historical volatility rate and parameters embedded in ARCH specifications. None
of these parameters can explain the component of volatility that is unexplained by
the implied volatility. These results are valid for a forecast horizon equal to the life
of the option, as well as for daily and monthly horizons.

Collectively, this evidence supports empirical use of the implied volatility as a
proxy for conditional volatility. As a result, the S&P 100 implied volatility may
be valuable in at least three forms of research. First, it may be used simply as an
index of market sentiment. For example, the CBOE’s Market Volatility Index,
which is based on S&P 100 implied volatility, provides a real-time measure of
expected stock market volatility. 23 Second, because the implied volatility is
strongly linked to ex ante market volatility expectations, it may be useful as an
alternative method for evaluating asset pricing models. Finally, the implied

Ž .volatility itself may be related to expected returns. Merton 1980 , for example,
specifies a relation between conditional volatility and expected returns. So, to the
extent the implied volatility adequately proxies volatility, it may be helpful in
predicting stock market returns.

22 This pattern is also consistent with the implications of the GARCH option pricing model of Duan
Ž .1995 .

23 Ž . Ž .See Whaley 1993 and Fleming et al. 1995 , respectively, for a description of the index and
evidence regarding its empirical properties.
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Appendix A. Consistent GMM estimators with telescoping observations

Ž . Ž .The basic GMM system used in this study is expressed by Eqs. 9 – 13 in the
text. This appendix develops consistent GMM estimators for V and D when the
data exhibit a telescoping overlap structure.

Ž . Ž .XConsider Eq. 9 where Z s 1,s is the vector of instrumental variables.ˆt t
Ž .Cumby et al. 1983 demonstrate,

1 X XVs lim E 1, X ee 1, X , A1� 4Ž . Ž . Ž .
NKNK™`

1 X
Dsplim 1, X 1, X , A2Ž . Ž . Ž .

NK

where 1, X , and e are NK=1 vectors with 1,s , and e ss yaybs ,ˆt t t t

respectively, as the t-th elements. We now develop consistent estimators for the
Ž .case of telescoping overlap by generalizing the approach of Jagannathan 1985

Ž .and Hodrick and Srivastava 1987 .
Suppose the data consist of non-overlapping option contract months ns

1, . . . , N, and, within each contract month, we have options ksK , . . . ,1 days to
Ž . nexpiration. In contract month notation, time ts ny1 Kqk. Define w sk

nŽ .e 1,s . w is not covariance stationary due to the telescopingŽny1.Kqk Žny1.Kqk k
n Ž nX nX.Xforecast interval, but W s w , . . . ,w encompasses the entire contract monthK 1

w n nX xand can be reasonably assumed covariance stationary. Now, let u sE w wi, j i j

represent the covariance between the elements of W observed i and j days from
expiration.

The forecast interval for observation t overlaps successive observations through
option expiration, so correlation exists among terms within the same contract
month. Conversely, the forecast errors for preceding contract months are known at
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time t, so we impose a zero correlation among terms of different contract months,
X

N K K ee1 Ž .ny1 KqjŽ .ny1 Kqi
Vs lim E .Ý Ý Ý½ 5ž /e s e sž /NKN™` Ž . Ž . Ž . Ž .ny1 Kqi ny1 Kqi ny1 Kqj ny1 Kqjns1is1 js1

A3Ž .
In terms of the wn representation,

N K K1
Xn nVs lim E w w A4Ž .Ý Ý Ý i j½ 5NKN™` ns1is1 js1

K K1
s u , A5Ž .Ý Ý i , jK is1 js1

as K is fixed and N becomes large. To see the intuition of this result, define
f as a dummy variable equal to one for 1F iFK and 1F iy lFK , andi, iyl

equal to zero otherwise. Then, the summation can be extended to an equal ‘lag’ on
either side of observation i,

K K1
Vs f u . A6Ž .Ý Ý i , iyl i , iylž /K is1 lsyKq1

For ls0, V exclusively represents contemporaneous correlation within W.i, iyl
Ž .The remainder of the summation ls Kq1, . . . , Ky1; l/0 incorporates the

Ž .effect of a Ky1 -period overlap between successive observations, as in the
Ž . Ž .approach of Hansen 1982 . f , however, limits the overlap in A6 toi, iyl

observations from the same option contract month. This characterization, then,
illustrates that after computing the effect of the overlap, V represents the mean
covariance matrix associated with observations throughout the life of the option

Ž .expiration cycle. For the special case in which the summation over l in Eq. A6 is
limited to ls0, the influence of serial correlation within the contract month is

Ž .eliminated and V is identical to that developed by Hodrick and Srivastava 1987 .
Ž .To estimate V, let e be the GMM residual from Eq. 9 and defineˆ

NK Ky11 X
V s f e ,e s e ,e s . A7Ž .ˆ ˆ ˆ ˆŽ . Ž .Ý ÝT t , tyl t t t tyl tyl tylž /NK ts1 lsyKq1

Ž .Given the development of A6 , it follows that if the parameter space is compact
Ž .and the continuity conditions given in Hansen 1982 are satisfied, then e isˆt

consistent for e and V is consistent for V. 24 V also is robust to conditionalT T

heteroskedasticity and error autocorrelation within the contract month.

24 In Section 2.2, we constructed the implied volatility series by switching contract months once the
nearby month is within 15 days of expiration. For the next 15 days, the forecast errors for the expiring
month have not been realized, causing overlap with the errors from the following contract month. To

Ž .incorporate this pattern, we simply redefine f in Eq. A7 . Now, f equals one when thet, ty l t, ty l

forecast horizons at t and ty l overlap and, otherwise, equals zero.
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Ž .By similar arguments, it can be shown from Eq. A2 that

NK1 X
D s 1,s 1,s A8Ž .Ž . Ž .ÝT t tNK ts1

is consistent for D.
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