
Appendix for “The Economic Value of Volatility Timing”

Suppose that our objective is to use the information contained in the return sequence

{rt}T
t=1 to estimate the sample path of the unobserved volatility sequence {σ2

t }T
t=1.

In general, we expect that the return realizations near t provide the most reliable

information about the value of σ2
t . Intuitively, therefore, we should focus on the data

near t when estimating σ2
t , and the accuracy of our estimates should increase as the

time between successive observations of rt shrinks. More formally, we can show that,

under reasonable restrictions on the smoothness of the volatility process, a suitably-

constructed rolling weighted average of the squared return innovations is a consistent

and asymptotically normal estimator of σ2
t .

Our rolling estimator of σ2
t is based on the weights that are asymptotically optimal

in the absence of specific parametric information about the volatility process. It takes

the form

σ̂2
t =

T−t∑
l=−t+1

(αt/2)e−αt|l|(rt+l − µ̂)2, (A1)

where µ̂ is our estimator of E[rt+l] and αt is the decay rate. Foster and Nelson (1996)

show that the optimal choice of αt is given by φt/θt, where φ2
t is the conditional

variance of the increments to the σ2
t process and (θ2

t + σ4
t )/σ

4
t is the conditional

coefficient of kurtosis of rt. Although this optimal decay rate generally time varies,

we can eliminate the time dependency by making additional assumptions about the

return generating process. Specifically, if we assume that the increments to σ2
t exhibit

proportional volatility (φt = φσ2
t ) and that the conditional coefficient of kurtosis is

constant (θt = θσ2
t ), then setting αt = φ/θ is asymptotically optimal. The empirical

evidence indicates that, at least for stock indexes, these are reasonable assumptions

(see, e.g., French, Schwert, and Stambaugh (1987)).

Theory provides little guidance concerning an appropriate choice of φ. However,

an important class of trading models implies that returns are conditionally normal

(see, e.g., Clark (1973), Tauchen and Pitts (1983), and Andersen (1996)), which we

can show implies θ =
√

2. Thus, rather than simultaneously estimating both θ and

φ, we assume that θ =
√

2 and estimate φ by constructing the rolling difference

sequence,

δt+n =
1

n

n−1∑
l=0

(rt+l − µ̂)2 − 1

n

n∑
l=1

(rt−l − µ̂)2, (A2)

which measures (σ̂2
t+n− σ̂2

t ) for an appropriately defined, one-sided, flat weight rolling
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estimator. Given that φt = φσ2
t and θt =

√
2σ2

t , it follows from Foster and Nelson

(1996) that δt+n converges in distribution to a mean zero normal random variable

with variance (4/n + 2nφ2/3)σ4
t . Thus, by the law of large numbers,

3

2n(T − 2n)

T−n∑
t=1+n

(
δt+n

σ̂2
t

)2

− 6/n2 → φ2 (A3)

as the time between successive observations of the process goes to zero.

Now consider a rolling estimator of the conditional covariance matrix of a vector

of returns. To develop comparable results, we must address some additional issues.

There are no simple restrictions on a vector process that imply constant optimal

decay rates for all elements of the covariance matrix. Moreover, the optimal decay

rates generally differ across assets. This can cause problems when we try to invert the

covariance matrix. We avoid these difficulties by developing a procedure that yields

a single fixed exponential decay rate for all elements of the covariance matrix. Our

approach is to estimate this parameter by minimizing the mean squared error (MSE)

of the estimator of the variance of the conditionally efficient portfolio.

Assume, for the moment, that we know the portfolio weights that deliver the

conditionally efficient portfolio at each point in time. In this case, we can find the

optimal decay rate for our one-sided estimator of the covariance matrix. Specifically,

we first compute the return on the conditionally efficient portfolio as rpt = w′
trt+1 and

use the approach outlined above to construct the optimal one-sided rolling estimator

of its variance,

σ̂2
pt =

−1∑
l=−t+1

αpe
αp l(rp,t+l − µ̂p,t+l)

2. (A4)

Then, we perform the minimization,

min
αvc

T∑
t=2

(σ̂2
pt −w′

tΣ̂twt)
2 (A5)

where

Σ̂t =
−1∑

l=−t+1

αvce
αvc l(rt+l − µ̂)(rt+l − µ̂)′ (A6)

denotes the one-sided rolling estimator of Σt based on the decay rate αvc. Under

our MSE criterion, this estimator is optimal in the class of rolling covariance matrix

estimators that use a single fixed exponential decay rate.
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In practice, the optimal portfolio weights are unknown, so we have to adopt an

iterative procedure. We start by forming an equally-weighted portfolio of the assets

and solving for the optimal value of αvc. Once we have an initial estimate of the

optimal αvc, we use this estimate to construct a one-sided, exponentially-weighted,

rolling estimator of the conditional covariance matrix of returns. This, in turn, allows

us to form initial estimates of the weights that deliver the conditionally efficient

portfolio at each point in time. We apply these weights, solve for a new estimate of

the optimal αvc, and iterate on the process until convergence is achieved.
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