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I.  Introduction

Beginning in the 1970s, deregulation dramatically increased the degree of price uncertainty in

the energy markets, prompting the development of the first exchange-traded energy derivative

securities.  The success and growth of these contracts attracted a broader range of participants

to the energy markets and stimulated trading in an even wider variety of energy derivatives.

Today, many exchanges and over-the-counter markets worldwide offer futures, futures

options, swap contracts, and exotic options on a broad range of energy products including

crude oil, fuel oil, gasoil, heating oil, unleaded gasoline, and natural gas.

It is well-known that derivative securities provide economic benefits.1  The key attribute

of these securities is their leverage, i.e., for a fraction of the cost of buying the underlying asset,

they create a price exposure similar to that of physical ownership.  As a result, they provide an

efficient means of offsetting exposures among hedgers or transferring risk from hedgers to

speculators.  In addition, derivatives promote information dissemination and price discovery.

The leverage and low trading costs in these markets attract speculators, and as their presence

increases, so does the amount of information impounded into the market price.  These effects

ultimately influence the underlying commodity price through arbitrage activity, leading to a

more broadly based market in which the current price corresponds more closely to its true

value.  Because this price influences production, storage, and consumption decisions, deriva-

tives markets contribute to the efficient allocation of resources in the economy.

Nonetheless, the tightened cross-market linkages that result from derivatives trading

also fuel a common public and regulatory perception that derivatives generate or exacerbate

volatility in the underlying asset market.  These concerns are often voiced in the context of their

“destabilizing” effects around major declines in the market.  Following the 1987 stock market

crash, for example, John Shad, former chairman of the Securities and Exchange Commission

argued, “Futures and options are the tail wagging the dog.  They have escalated the leverage

and volatility of the markets to precipitous, unacceptable levels.”2  This concern has led to

studies commissioned by the Securities and Exchange Commission, the Commodity Futures

Trading Commission, and a Presidential Task Force, and has been a driving force behind the

                                                       
1 Peck (1985) and Stoll and Whaley (1985) examine the economic benefits of futures and options, respectively.
2 The Wall Street Journal, January 15, 1988.
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adoption of program trading curbs, circuit breakers and daily price limits in the futures

markets, and the staggering of stock index futures and options expirations.

There exists little theoretical or empirical evidence, however, to justify these actions.

In perfect markets, derivatives should have no effect on the underlying asset market because

they are redundant securities, i.e., they can be synthetically created by some combination of

the asset and riskless bonds.  With market imperfections, derivatives make the market more

complete [Ross (1976) and Hakansson (1982)] by allowing investment choices that were

previously cost inefficient or impossible due to regulatory or institutional constraints.  Since

investors benefit from an expanded opportunity set, the required returns and risks in existing

asset markets should fall.  In addition, Danthine (1978) argues that derivatives, by promoting

information-based trading, increase the depth and liquidity of the market and reduce volatility.

Grossman (1988) shows that option trading allows diverse opinions about volatility to be

revealed which can reduce volatility.  Detemple and Selden (1991) show that option trading

can allow more efficient risk sharing which increases the demand for the asset and reduces

volatility.  Stein (1987) is the only theoretical study that implies volatility could increase,

arguing that poorly informed speculators can have a destabilizing effect on the market.

The empirical evidence is generally consistent with these theoretical implications.3  The

evidence tends to focus on stock option introductions due to the large quantity of listing events,

and most of these studies [e.g., Skinner (1989) and Conrad (1989)] find a reduction in volatility

following introduction.  In addition, Damodaran and Lim (1991) and Skinner (1990), respec-

tively, find that the speed with which information is incorporated into price and the accuracy

of this information increases after options are introduced.  Kumar, Sarin, and Shastri (1998)

find a decrease in the adverse selection component of the bid/ask spread and a reduction in the

pricing error variance after option introduction, signaling an improvement in pricing efficiency

and market quality.  In other markets, Edwards (1988) finds reductions in volatility following

the introductions of stock index futures and treasury bill futures, while Harris (1989) shows

that the volatility of S&P 500 stocks increased after the introduction of S&P 500 futures.

There is also evidence that volatility decreases when the trading activity in existing

derivatives markets increases.  Bessembinder and Seguin (1992), for example, find that stock

                                                       
3 Damodaran and Subrahmanyam (1992) provide a thorough survey of the evidence regarding the effects of
derivative securities on the underlying asset market.
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market volatility is inversely related to both the open interest and trading volume of S&P 500

futures after controlling for spot market volume.  Bessembinder and Seguin (1993) find that

spot volatility is positively related to unexpected volume and negatively related to expected

open interest for eight currency, interest rate, and commodity futures contracts.  For the

currency and agricultural contracts, spot volatility decreases when unexpected open interest

increases.  These findings indicate that futures trading increases the depth and liquidity of the

underlying asset market, mitigating the impact of volume shocks on volatility.

In general, there is little research regarding physical commodity derivatives, and this

research is primarily focused on agricultural futures contracts.4  For our analysis of the energy

markets, there are at least two reasons we might expect results that differ from past research.

First, in these markets, it is difficult to trade on “bad news” that would negatively affect the

market price without using derivative securities. Therefore, if derivatives provide benefits of

increased informational efficiency, their effects may be more pronounced in the energy

markets.  Second, there tend to be strong informational linkages across energy markets.

Information that affects crude oil prices can also affect, say, natural gas or heating oil prices.

Given these linkages, the introduction of natural gas or heating oil derivatives could influence

the crude oil market through its effect on the transfer of information across markets.

To examine the effect of derivative introductions in these markets, we must address

two complications.  First, in a typical event study, we average the abnormal effects around an

event across many observations to control for factors other than the event.  This is not

possible here.  The introduction of a given energy derivative contract only happens once, and

we have only one price history from which to draw our inference. In essence, our event study

has a sample size of one.  Second, the timing of the oil futures introduction closely corre-

sponds with that of the degregulation of the U.S. oil market.  Therefore, our sample of “free-

floating” spot prices extends just a year prior to the introduction.

We address these complications by fitting a stochastic volatility model to the sample of

post-introduction prices.  The model controls for the time-series structure of volatility,

capturing the nature of volatility persistence, mean reversion in volatility, and the volatility of

volatility in the crude oil market.  We then examine whether, given the structure imposed by

                                                       
4 These studies include Working (1960) [onion futures], Powers (1970) [pork bellies and cattle futures], Taylor
and Leuthold (1974) [cattle futures], and Cox (1976).  All of these studies find a reduction in spot market
volatility following the introduction of exchanged-traded futures.
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the model, the volatility shocks around the futures contract introduction date seem abnormal.

By using just the post-introduction sample for estimation, the fitted model is not influenced by

the volatility process that prevailed at the time of introduction.  However, if this process is

consistent with the post-introduction process and the introduction had no effect on volatility,

then the innovations around the introduction date should not appear unusual.

Our results indicate that volatility increased after the introduction of crude oil futures.

Positive abnormal volatility shocks are observed for three consecutive weeks following the

introduction.  We also find evidence of a much longer-term (more than a year) volatility

increase, but it is inappropriate to simply attribute this effect to derivatives.  The increase

coincides with the growth of the energy derivatives markets which was spurred by volatility

induced by continuing deregulation of the energy markets.  Given this linkage, it is difficult to

disentangle the cause from the effect.  After the introduction of crude oil futures, there is little

evidence that subsequent introductions had any effect on oil market volatility.  In particular,

we find no volatility effects around the introduction of crude oil options and no pattern in the

effects across the time-series of introductions on other energy products.  This evidence

contradicts the idea that subsequent introductions should gradually complete the market.

To more fully assess the impact of derivatives on the crude oil market, we also

examine the ongoing dynamics between futures trading activity and spot market volatility.

This analysis reveals a strong positive relation between unexpected futures volume and

unexpected volatility.  This relation is weaker, but still positive, for the long-term trend and

expected volume components.  We also find evidence of asymmetry in the volume-volatility

relation.  Specifically, an increase in unexpected volume is associated with an increase in spot

market volatility that is 80% larger than the decrease in volatility associated with an equivalent

decrease in unexpected volume.

In contrast to the volume-volatility relation, we find that the overall size of the crude

oil futures market (measured by open interest) is negatively related to spot market volatility.

The relation is strongest for the unexpected component of open interest, but is also present for

the long-term trend and expected open interest.  This finding indicates that the futures market

provides depth and liquidity to the crude oil market.  Moreover, when combined with the

positive volume-volatility relation, it implies that the unexpected change in open interest for a

given shock to futures volume either mitigates or amplifies the effect on spot volatility.  For
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example, the volatility increase associated with unexpected volume is approximately 40% less

when it is accompanied by an unexpected increase in open interest than when open interest

remains unchanged.  This result may reflect not only changes in market depth but also the

nature of the trades that accompany the increased volume.

The remainder of this study is organized as follows.  Section II describes the data used

in our analysis and some preliminary evidence regarding the structure of crude oil volatility.

Section III develops our stochastic volatility model for the oil market, our estimation strategy,

and the estimation results.  Section IV examines the effects of energy derivative introductions

on crude oil market volatility, and Section V examines the depth and liquidity effects of

derivatives trading on the crude oil market.  Section VI provides a summary and conclusions.

II.  Data and Preliminary Analysis

Table 1 lists the primary energy futures and futures option contracts, along with their respective

introduction dates.  Each of these contracts is traded at either the New York Mercantile Ex-

change (NYMEX) or the International Petroleum Exchange (IPE).  Our study focuses on the

West Texas Intermediate (WTI) crude oil market, the commodity underlying the NYMEX

crude oil futures contract.  The contract is denominated in 1,000 U.S. barrels (42,000 gallons)

of light, sweet crude oil for delivery in Cushing, Oklahoma.  Futures contracts are currently

traded for thirty consecutive months plus five long-dated maturities extending out seven years.

To examine the effect of derivative introductions on the oil market, we need a sample

of spot oil prices that begins prior to the introduction of crude oil futures.  Reliable data for this

period are scarce because the introduction closely coincides with the deregulation of the U.S. oil

market.  Although the Wall Street Journal and several industry publications reported “posted

prices” prior to deregulation, these prices do not necessarily represent actual spot market prices.

The data we use for this analysis are from DataStream International.5  Prices for WTI near (oil

for prompt month delivery) are available on a weekly basis beginning February 2, 1982, and

on a daily basis beginning September 1, 1983.  Daily spot prices for sweet Cushing crude begin

April 5, 1983.  For the oil futures introduction analysis, we use the weekly WTI prices and, to

maintain consistency, we use the daily WTI prices to examine subsequent introductions.  For

our analysis of the relation between futures trading activity and spot market volatility, we use

                                                       
5 DataStream International obtains the spot oil data from Independent Chemical in the United Kingdom.
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the daily sweet Cushing prices and the total daily futures volume and open interest across all

available NYMEX crude oil contracts.  These futures data also are obtained from DataStream

International.  All of our data series extends through the end of 1997.  In addition, we

obtained annual world oil production data from the American Petroleum Institute’s Basic

Petroleum Data Book.

A.  Summary Statistics

Table 2 summarizes the price series used for our analysis.  Over the course of our sample

period, crude oil prices fell from nearly $34 per barrel in 1982 to under $18 by the end of

1997, an average annual return of about –4%.  Oil prices ranged from a low of $10.80 in July

1986 to a high of $40.85 in October 1990.  The high variability of oil prices relative to most

financial assets is apparent from the annual returns reported in Table 2.  Prices increased more

than 25% during three different years of the sample, and they fell by 35–40% in three others.

Our first objective is to examine the volatility of oil returns.  There is considerable

evidence that volatility changes over time, but conditional volatility is not observable and we

must rely on estimates to examine the nature of time-variation.  The most common approach

[e.g., Poterba and Summers (1986) and French, Schwert, and Stambaugh (1987)] is to consider

the standard deviation of returns over a fixed window of observations.  Table 2 reports these

standard deviations for each year of our sample.  No real patterns are apparent, except perhaps

that the estimates appear to be relatively low in the first couple years.  It is difficult, however, to

attribute the subsequent increase in standard deviation to the introduction of oil futures in 1983.

The estimates are quite noisy, and the standard deviations based on weekly observations

actually indicate a reduction in volatility in 1983, and again in 1984.  After this, the estimates

range from 50–60% in 1986, 1990, and 1991, down to about 20% in 1992 and 1995.

B.  Rolling Volatility Estimates

Relying on the standard deviation to detect variation in conditional volatility is problematic

because it assumes volatility is constant within each estimation window (i.e., a year).  We can

reduce this problem by shortening the window length, but a reasonable number of datapoints

are required within each window to obtain precise estimates.  We address these issues by

adopting a “rolling” estimation approach.  We use a window of observations around time t to

estimate the conditional volatility, σt, and we move the window forward one period to estimate
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σt+1.  Because volatility time-varies within each window, observations nearer to t should convey

more information about σt.  We accommodate this by giving more weight to these observations

in forming our estimate of σt.  Foster and Nelson (1996) show that, under reasonable smooth-

ness restrictions, this approach yields consistent and asymptotically normal estimators.

To apply the rolling estimation approach, we define the estimator,

$ ( ) ,σ ω µt t l t l t l
l t

T t

r2 2

1

= −+ + +
=− +

−

∑ (1)

where rt + l and µt + l, respectively, are the conditional return and mean return, ω t + l is the weight

placed on the innovation at time t + l, and T is the number of observations in the sample.6

Foster and Nelson (1996) show that, if volatility is stochastic, the optimal weighting function

for a two-sided rolling estimator is

ωt+l = (αt / 2)e–αt|
 

l
 

|, (2)

where αt is the decay rate.  This estimator is two-sided because it uses both leads and lags of rt

to estimate σt
2.  To construct a one-sided estimator (i.e., based only on past information), we

set ω t+l = 0 for l > 0, and double each of the weights for l ≤ 0.

Foster and Nelson (1996) show that the optimal choice of αt is φt / θt, where φt
2 is the

conditional variance of volatility innovations and (θt
2

 + σt
4) / σt

4 is the conditional coefficient of

returns kurtosis.  We eliminate the time-dependency in αt by assuming the volatility

innovations are proportional to volatility (φt = φ σt
2) and the coefficient of kurtosis is constant

(θt = θ σt
2).  If we also assume that the conditional distribution of returns is normal (θ = 2),

then setting αt = φ / 2 is optimal.  Using the estimation procedure developed in Fleming, Kirby,

and Ostdiek (1998b) yields α = 0.1155 for daily returns, and α = 0.1443 for weekly returns.

Figure 1 plots the time-series of rolling, exponentially weighted volatility estimates ob-

tained from equation (1).  The trends in the daily estimates (Panel A) and the weekly estimates

(Panel B) are similar.  (Note the difference in x-axis due to the earlier start of the weekly

sample.)  The largest volatility shocks occur in 1986 when oil prices fell by nearly $10/bbl and

in 1990 following Iraq’s invasion of Kuwait.  Aside from these, there is a general upward trend

from 1984 through 1988, with a sharp swing from 1989 to 1991, and relatively steady, lower

                                                       
6 We model the conditional mean using the procedure developed in Fleming, Kirby, and Ostdiek (1998b).  We first
remove day-of-the-week effects from returns by regressing raw returns on a set of six variables: a dummy variable for
each weekday and a variable equal to the number of nontrading days between return observations.  We then use
the residuals from this regression to remove day-of-the-week and nontrading day seasonalities in squared returns.
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volatility thereafter.  The most significant difference in the daily and weekly estimates occurs

in 1996 when several large 2-3 day price swings are not detected with weekly observations.

The patterns shown in Figure 1 are generally consistent with the standard deviations

reported in Table 2, but two additional features of volatility are now observable.  First, the

time-series estimates in Figure 1 allow us to detect finer variations in volatility.  We can see,

for example, that weekly volatility is locally high at the beginning of 1983 (prior to the

introduction of crude oil futures), and then falls steadily over the remainder of the year.

Second, we can observe stylized facts regarding the time-series structure of volatility.  In

particular, like most financial time-series, crude oil volatility is persistent and tends to mean-

revert over time.  These observations motivate our strategy for evaluating the effect of

derivative introductions on volatility.  Specifically, we must model the time-series structure of

volatility in order to evaluate whether any variation around the introduction date is unusual.

III.  A Stochastic Volatility Model

In this section, we develop and estimate a stochastic volatility model for the crude oil market.

The model captures the structure of mean-reversion, persistence, and volatility of volatility

apparent in the data, and allows us to assess whether the volatility realizations following the

introduction of energy derivatives are inconsistent with this structure.  We begin by outlining

the specification and the intuition behind the model.  Then, we describe our estimation strategy

and results.  Finally, we generate the volatility residuals under the model and examine whether

the model adequately captures the time-series structure of volatility in the oil market.

A.  The Stochastic Volatility Specification

Our analysis is based on the volatility model developed in Fleming, Kirby, and Ostdiek (1998a).

The setup is similar to Clark (1973) and Tauchen and Pitts (1983) where we have an economy

that consists of a large number of active speculators with heterogeneous expectations about

asset value.  As new information arrives in the market, traders revise their expectations and

initiate a round of trading.  Over the course of a day, these information arrivals generate a

large number of unpredictable price changes.  If we let εit represent the incremental return

generated by event i, then the return on day t can be modeled as

rt t it
i

It

= +
=
∑µ ε

1

, (3)



9

where It is the number of information events that occur.  We assume εt is iid normal with mean

zero and variance σε
2, but note that because we can rewrite the summation in equation (3) as

σε zt It , where zt ≡ 1/ It ( / ) ,ε σεiti
It∑ the central limit theorem implies zt 

d
 N(0,1) as It  ∞.

Therefore, even if εt is non-normal and exhibits weak forms of serial dependence, the condi-

tional distribution of rt should be approximately normal with mean mean µt and variance σε
2

 It.

We impose more time-series structure by exploiting the relation between information

flow and the volatility of returns (σt = σε It ).7  As noted above, volatility is persistent and em-

pirical research indicates that increases in volatility are more likely than decreases of the same

magnitude (i.e., asymmetry).  We capture these features by focusing on the representation,

rt = µt + exp( 1
2 ht) zt, (4)

where ht ≡ ln σt
2, and modeling ht as an AR(1) process,8

ht = γ + φh ht–1 + ut, (5)

where ut is iid with mean zero and independent of zt.

The AR(1) structure in equation (5) yields a volatility specification that is similar in

many respects to an EGARCH model [Nelson (1991)].  Volatility is constrained to be non-

negative, it follows an exponential autoregressive process, and is asymmetric in levels.  An

important difference, however, is that under our model volatility is stochastic rather than

known conditional on past prices.  This feature is attractive because the information flow to

financial markets is unpredictable and it is information that generates volatility.  As a result,

our specification may better capture salient features of the return generating process.

B.  Model Estimation

We estimate and test our volatility specification by forming a set of moment restrictions from

equations (4) and (5) and applying Hansen’s (1982) generalized method of moments (GMM).

We assume |φh  | < 1 in equation (5), so ht is stationary with mean µh = γ (1 – φh  ) and variance σh
2

= σu
2

 (1 – φh
2

 ).  The autocorrelation of return innovations is zero at all lags, but there can be a

substantial degree of higher-order dependence apparent in the logarithm of squared returns,

ln r 

2
t = ht + ln z 

2
t. (6)

                                                       
7 Ross (1989) develops a similar relation between the information flow and volatility.
8 This specification is similar to those examined by Taylor (1994) and Harvey, Ruiz, and Shephard (1994).
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Because zt is standard normal, the mean and variance of ln z 

2
t are –1.27 and 4.93 [Abramowitz

and Stegun (1972)].  Defining yt ≡ ln r 

2
t – E[ln z 

2
t ], we obtain the transformed system,

y h

h h u
t t t

t h t t

= +

= + +−

ξ

γ φ 1 ,
(7)

where ξt ≡ ln z 

2
t – E[ln z 

2
t ], is mean zero with variance 4.93 and independent of ht.  Under our

stated assumptions, we can obtain the following moment restrictions for yt,
9

E E[ ] [ ]

var( ) var( ) var( )

cov( , ) ( ) var( )

y h

y h

y y h

t t

t t t

t t k
k

t

=

= +

=+

ξ

φ

(8)

for all integers k > 0.

To impose these moment restrictions and estimate the parameters of the model, we

define the GMM disturbance vector,

et θθa f =
F
H
GG

I
K
JJ                                                              (9)

where θθ = [µh, σh
2, φh]′ is the vector of unknown parameters, k = 1, 2, … , l counts the number

of autocorrelation restrictions used in the estimation, and σξ
2 = 4.93.  The first two restrictions

identify the mean and variance of the log volatility, ht, and the l remaining restrictions identify

the AR(1) parameter of the ht process, φh.

We construct the yt series used in the estimation by removing from the raw data any

seasonal patterns in returns and volatility.  First, we remove returns seasonality by using the

residuals from a regression of raw returns on six variables: a dummy variable for each

weekday and a variable that counts the number of nontrading days between observations.

Second, we remove volatility seasonality by regressing these residuals on the Monday dummy

and nontrading day variables.  Adding 1.27 to the intercept and residuals from this regression

yields the seasonally adjusted series that we use in the estimation.10

We estimate the system by minimizing gT(θθ)′ $S-1gT(θθ)′ where gT(θθ)′ ≡ 
1

1T l tt
T l

− =
−∑  e ( )θθ  and $S

is a consistent estimate of the GMM covariance matrix.  For the asymptotic distribution theory

                                                       
9 Note that yt is the sum of an AR(1) component and a noise process.  Therefore, its autocovariance function
should be identical to that of an ARMA(1,1) process.

yt – µh

(yt – µh)
2 – σh

2 – σξ
2

(yt – µh)(yt+k – µh) – (φh )k
 [(yt – µh)

2 – σξ
2]
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of GMM to hold, we assume that the series is stationary and ergodic and that the regularity con-

ditions in Hansen (1982) are satisfied.  Our choice of $S  adjusts for conditional heteroskedasticity

and autocorrelation using Parzens weights and Andrews’ (1991) method of bandwidth selection.

The system in equation (9) has l + 2 moment conditions and three unknown parameters,

leaving l – 1 overidentifying restrictions.  As a result, the GMM procedure yields a direct test

for specification error in the form of an overidentifying test statistic [Hansen (1982)].  Since

there is no theoretical guidance for choosing the optimal l, we estimate the system using l =

10, 20, 30, and 40 for daily observations and l = 12, 16, 20, and 24 for weekly observations.

Table 3 reports the estimation results.  In general, the parameter estimates are fairly in-

sensitive to the lag length.  The mean of ht is stable, and although φh increases slightly for longer

lags at the daily level, no such pattern is apparent at the weekly level.  All of the estimates of

φh indicate a slow decay in the autocorrelation function of ht, suggesting a long lag length is

necessary to capture the persistence of volatility.  Therefore, for the remainder of the study, we

rely on the estimation results using l = 40 for daily returns and l = 24 for weekly returns.  These

lag lengths encompass periods of about two months and six months, respectively.

The final two lines in each panel of Table 3 report the overidentifying test statistics for

our stochastic volatility model.  None of these statistics indicate rejection.  The statistics

become less significant with longer lag lengths, but this is consistent with our argument that

longer lags are necessary to capture the strong volatility persistence.  Therefore, we conclude

that the GMM estimation reveals little evidence of model misspecification.

C.  Fitted Volatilities

We now want to use our fitted volatility model to evaluate whether the residuals under the

model seem abnormal following the introduction of derivatives.  Although our GMM

approach yields parameter estimates for the model, it does not produce a fitted time-series of

volatility estimates (or residuals).11  We generate these estimates using the Kalman filter.12

                                                                                                                                                                           
10 In the empirical work, we estimate the GMM system using both daily and weekly data.  For the weekly
deseasonalization, we omit the day-of-the-week dummy variables and use only the nontrading day variable.
11 As an alternative, we could simply include pre- (or post-) introduction dummy variables in our GMM system and
directly estimate the structural change following the introduction.  This method, however, effectively partitions the
available data into subsamples, making it more difficult to obtain precise estimates using GMM.  As a result, this
approach yields no meaningful evidence of structural change for any of the introduction dates reported in Table 1.
12 The Kalman filter is a standard technique for constructing time-series estimates of random variables.  A
number of econometric texts provide detailed descriptions of the procedure.  See, for example, Hamilton (1994).
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Rt – µ1MONt – … – µ5FRIt – µ6NTDYSt

exp[0.5ht]exp[0.5(α1MONt + α6NTDYSt)]

To fit the filter to our stochastic volatility specification, we express equation (7) as

yt = ht + ξt

 ht = µh(1 – φh) + φh ht – 1 + ut,

where µh(1 – φh) = γh is the constant in the AR(1) specification of volatility.  We parameterize

equation (10) using the consistent estimates obtained from our GMM analysis.  The filtering

algorithm takes the observed yt series and, for each day in the sample, delivers two estimates

of ht.  The first estimate is the best linear forecast of ht given all of the data available through

time t – 1 (i.e., a one-sided estimate).  The second, commonly called the smoothed estimate, is

the best linear estimate based on the entire sample (i.e., a two-sided estimate).

Figure 2 plots the fitted volatilities.  Comparing these estimates to the rolling volatility

estimates in Figure 1 (note that the y-scales for the two figures are slightly different) reveals

that the fitted volatilities exhibit less time-series variation.  In other words, we observe fewer

extreme volatilities in Figure 2.  This should not be surprising, however, since the Kalman filter

procedure generates a best linear fit of the unobservable volatility at each point, and, therefore,

unusual price changes influence this estimate less than they influence the rolling estimate.

Aside from this difference, the patterns shown in Figures 1 and 2 are generally comparable.

D.  Diagnostics

As a final robustness check before using the Kalman filter estimates to evaluate the effect of

derivative introductions, we conduct a series of specification tests similar to those used to

evaluate GARCH models.  Our model implies that the time t return is drawn from a normal

distribution with mean µt and variance It.  Therefore, if the model is well-specified, the

standardized, seasonally-adjusted returns (zt) should be iid normal with mean zero and

variance one.  We construct the zt series from our Kalman filter estimates of ht,

zt =                                                                     . (11)

The second term in the denominator accounts for volatility seasonalities, and is the same

adjustment we used to compute the yt series for the GMM estimation.13  If our model is well

specified, the moments of zt should match those of a standard normal random variable.

                                                       
13 To see this, note that the log of the square of equation (9) is yt – ht – 1.27.

(10)
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Table 4 reports the specification results for both daily (Panel A) and weekly (Panel B)

datasets.  The first four columns report the mean, variance, skewness, and excess kurtosis of zt

(and the smoothed estimates, zt
*), and the final three columns report the autocorrelations of the

series, its absolute values, and its squared values.  As a benchmark for comparison, we also

report these statistics for the non-standardized, seasonally adjusted returns.  Focusing on the

standardized returns, both the one-sided and smoothed series exhibit substantial departures

from normality.  In particular, for each series, the variance is greater than one and both the

skewness and excess kurtosis are positive.

We evaluate the significance of these results using simulations.14  We use our GMM

estimates to parameterize the return generating process in equations (4) and (5), and we simu-

late realizations of zt and ut to generate the ht and yt series.  We then apply the Kalman filter to

this yt series to estimate ht, we construct the standardized returns (zt), and we compute each of

the statistics reported in Table 4.  We repeat this simulation 5000 times.  In Table 4, under

each statistic, we report the probability of realizing in the simulations a value lower than that

observed in the data.  These probabilities indicate that the variance, skewness, and kurtosis of

both daily and weekly returns are significantly greater than we would expect under the model,

as are the autocorrelations of absolute and squared daily returns.

Despite these findings, there is also evidence that the model captures many features of

observed returns.  The deseasonalized returns (  r ) reported in Table 4 evidence large degrees

of skewness and excess kurtosis at both the daily and weekly levels.  The model explains much

of this behavior, for example, reducing the skewness in daily returns by a factor of 17 and the

excess kurtosis by a factor of 6.  The model also reduces the intertemporal dependence

apparent in squared daily returns, absolute and squared weekly returns, and the mean

reversion apparent in weekly returns.  These findings indicate that, although there is evidence

of misspecification, the model performs rather well given its simple AR(1) structure.

IV.  The Effects of Derivative Introductions on Crude Oil Volatility

A.  Introduction of Crude Oil Futures

We now use our stochastic volatility model to evaluate the effect of energy derivative intro-

ductions on the structure of crude oil volatility.  We focus first on the introduction of crude oil

                                                       
14 Note that a simple GMM test for normality would be inappropriate because the volatilities used to construct
the standardized returns are measured with error.



14

futures on March 30, 1983.  Our strategy is as follows.  We first fit our stochastic volatility

model using the post-introduction sample of weekly data.  We then use the resulting

parameter estimates to calibrate the Kalman filter and estimate the weekly series of ht for the

entire sample (both pre- and post-introduction).  Finally, we evaluate the significance of the ht

realizations subsequent to the introduction date.  If the structure of volatility changed

following the introduction, then these realizations will be inconsistent with our fitted model.

The GMM estimation results using the post-introduction sample (770 observations)

are similar to those reported in Table 3 using the entire sample (829 observations).  For a lag

length of l = 24, the estimates of µh, σh
2, and φh, respectively, are –6.8652, 1.4169, and 0.9562.

The largest change from the overall sample is for the σh
2 estimate, but with a standard error

over 0.26 this change is not statistically significant.  The J-statistic for the post-introduction

period is 16.66 (p-value = 0.8256).  These findings suggest that excluding the pre-introduc-

tion sample does not meaningfully alter our fitted stochastic volatility model.

We now use these fitted parameter estimates in our Kalman filter procedure to estimate

the ht series for the entire sample (both pre- and post-introduction).  For this analysis, we use

the one-sided (rather than the smoothed) estimates from the filter so the current volatility

estimates are not influenced by future innovations.  On the last Friday before the introduction

of crude oil futures, March 25, 1983, our estimate of ht is –9.3070, which implies an annual-

ized volatility rate of exp( 1
2 ht) 52  = 6.87%.  Now, we need to determine whether the next k

volatility realizations, conditioned on σt, are consistent with our fitted volatility model.

Fleming, Kirby, and Ostdiek (1998b) demonstrate that, under the model,
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Given the volatility level on March 25, the E[ ht+k | ht ] in equation (12) implies a volatility for the

following week of 7.25%.  The realized volatility was greater than expected, 8.70%.  Using the

distribution in equation (12), the probability of realizing a volatility less than 8.70% is 0.8534.

This indicates that the increase in volatility during this week was not statistically significant.

It may be misleading, however, to use the analytical distribution in equation (12) to

measure abnormal volatility.  Our fitted volatilities are measured with error because we first

estimate the parameters of our volatility model, and then we use the Kalman filter to estimate

the true ht series.  This yields a fitted ht series that is “smoother” than the true (but unobserv-
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able) one.  To assess the impact of these issues, we compare the distribution of ht+1 – E[ ht+1 | ht ]

innovations under equation (12) to the empirical distribution.  Across the entire post-introduc-

tion sample, less than 1% of the realizations fall in the upper 10% of the analytical

distribution, and only 4% of the realizations fall in the lower 10%.  This finding indicates that

the distribution of the fitted ht series is indeed quite different than the analytical distribution.

To control for this difference, we use the empirical distribution of the fitted volatility

innovations to determine whether volatility around the introduction date is abnormal.  We use

our fitted model, and the fitted ht series, to compute the realized ut under equation (10).  We

then simulate the empirical distribution by drawing (with replacement) from the sample of ut

realizations beginning one year after the introduction date.  Starting from ht, we generate a

sequence ut+1, … , ut+52, and use equation (10) to compute the corresponding ht+1, … , ht+52.

Repeating this process 5000 times, we approximate the distribution of ht+k | ht for k = 1, … , 52.

The second, third, and fourth columns of Table 5, respectively, report the fitted

volatilities and their simulated expected values and probabilities for the 52 weeks following

the introduction of crude oil futures.  The second line, for example, shows the increase in

volatility from 6.87% to 8.70% during the first week.  Based on the empirical distribution, this

increase appears to be abnormally high (p-value = 0.9704).  During the following three weeks,

volatility continued to increase, up to 14.52%.  This realization, given σt = 6.87%, is also

significant (p-value = 0.9966).  By the twelfth week, however, volatility fell to 6.27%, and the

volatilities realized after this date perhaps seem unusually low rather than high.

The average volatility statistics, reported in the final three columns of Table 5, allow

us to address whether the average realization during the subsequent k weeks (rather than just

the endpoint) is abnormal.  We approximate the distribution of the average volatility using the

same simulations as before, except now for each ht+k realization we compute the average of

σt+1, … , σt+k.  Consistent with the individual realizations, the average volatility over the first

four weeks is significantly greater than expected.  This similarity is not surprising since

volatility follows a fairly direct path in reaching σt+4.  The average volatility through t + 24, on

the other hand, is less abnormal than the σt+24 realization.  This occurs because volatility

increases sharply and then decreases sharply to reach σt+24.  After 52 weeks, the average

volatility, like σt+52, seems unusually low.  The actual level of volatility increases over this
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period, however, the initial volatility (σt = 6.87%) is below the long-term mean (σ = 23.29%),

and the rate of mean-reversion is slower than expected under our stochastic volatility model.

Conditional on σt, both the realized and average volatility through t + k and t + k + 1 are

correlated.  To focus purely on the innovations between any two dates, we also consider the

expected step-ahead realizations, i.e., E[σt+k+1 | σt+k ].  These expected values, and the realized

p-values, are reported in the fifth and sixth columns of Table 5.  This evidence indicates that

the most unlikely sequence of innovations occur in the first three weeks after the introduction

(p-values of 0.9704, 0.9128, and 0.9692).  If we assume these innovations are iid normal, then

the sum of their squared, standardized values is distributed χ
3
2.  The realized value is 8.8981,

and the probability of realizing a value this high is just 0.0307.  Over the remaining 49 weeks,

the sequence of step-ahead realizations exhibit no apparent pattern.

Based on this evidence, we conclude that volatility indeed increased following the

introduction of crude oil futures.  The increase is prominent over the first three to four weeks,

although an isolated sharp volatility drop occurs in the twelfth week.  As a result of this drop,

the realized and average volatilities after a year seem lower than expected.  This finding may, in

part, actually be symptomatic of a longer-term volatility increase following the introduction.

Trading activity was thin during the first year of the oil futures market, but both volume and

open interest grew by 500% after the first year, and by over 2500% after five years.  Therefore,

any volatility effects in the spot market might develop over a period of time.  Because our

model estimation is based on the entire post-introduction sample, these effects would be

present in the model, but not in the data, during the first year.  Volatility may seem low during

this year only because it fails to revert toward this higher long-term mean volatility.

B.  Subsequent Energy Derivative Introductions

Next, we examine the effect of other energy derivatives introduced after the introduction of

crude oil futures.  If our previous results are due to increasing market completeness, we might

expect similar results following the introduction of crude oil options.  Options may further

complete the market because they allow a one-sided payoff structure that may be difficult or

costly to create when there are market imperfections.  Moreover, crude oil prices are

correlated with other energy prices, and introducing derivatives on these assets may affect

crude oil volatility.  Detemple and Jorion (1990) and Detemple and Selden (1991) model these

direct and cross-market interactions, and show that the volatility effects should be greatest
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following the first derivative introduction and they should decay with subsequent introduc-

tions as the market gradually becomes more complete.

To investigate these issues, we apply our methodology to each of the subsequent intro-

duction dates reported in Table 1.  The only difference is that each of these introductions occurs

after the start of our daily crude oil price series, so we use the daily prices (rather than weekly)

in this analysis.  For each introduction date, we begin by fitting our stochastic volatility model

to the post-introduction sample (i.e., for unleaded gas futures, the sample is December 3, 1984

to December 31, 1997).  We then use the resulting parameter estimates to calibrate the Kalman

filter and estimate the daily ht series for the entire sample.  Finally, we evaluate the signifi-

cance of the ht realizations during the period following the introduction date.

Table 6 reports the results.15  The “Model Parameters” columns in Panel A contain the

GMM parameter estimates of our model for each of the introduction dates.  In general, these

estimates are similar to those reported in Table 3 for the overall sample, and there is not much

variability across introduction dates.  The only differences, perhaps, are the tendency toward a

lower volatility of h, σh , over time, and the dip in the AR(1) coefficient, φh, that occurs near

the middle dates.  As noted earlier, however, these differences are not statistically significant.

The remaining columns of Panel A show the p-values for the average volatility realized

k = 1, 20, 40, … , 100 days after the introduction date.  For the first introduction, unleaded

gas futures, the average volatility is less than expected for the entire 100-day period, in

contrast to our findings for the introduction of crude oil futures.  The source of this pattern is

apparent from the p-values reported in Panel B for the realized volatilities and the volatility

innovations.  After 20 days, the volatility level is abnormally low, but subsequent volatilities

conform more closely with expectations.  The only other marginally abnormal shock (p-value

= 0.063) occurs 120 days after the introduction.  This shock, and the general trend of lower

than expected volatilities for several months, is consistent with the long-term increase in

volatility that we hypothesized earlier.  Unlike our earlier results, however, volatility decreases

initially after the introduction.  This is inconsistent with the directional effect for crude oil

futures, although the evidence here is less conclusive.

                                                       
15 Table 6 does not include results for the introduction of natural gas options because our GMM approach does
not converge for lag lengths of l = 10, 20, 30, or 40.  A possible explanation for this is the small sample size.
This introduction date (October 2, 1992) is the closest one to the end of our sample, and the post-introduction
period includes only 1345 observations (versus 3641 observations in the full sample).
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The introduction effects are even less apparent for the other introduction dates examined

in Table 6.  Few of the average or realized volatilities for these introductions are significantly

different from what we expect.  The primary exception is for natural gas futures, but the run-

up in crude oil volatility following this date (April 3, 1990) can be attributed to Iraq’s invasion

of Kuwait.  Comparing the results across all introductions reveals no systematic patterns within

post-introduction periods and no trends in the effects across introductions.  This evidence

provides little support for the hypothesis that the volatility effects should gradually disappear

with subsequent introductions.  Instead, the effects are ambiguous for the first introduction

after crude oil futures, and they are not at all detectable for any others.

V.  Analysis of Futures Trading Depth and Liquidity Effects

A.  Methodology

In this section, we provide further evidence on the impact of derivatives on the crude oil

market by examining the effect of futures trading on the market depth and liquidity.

Specifically, we assess the relation between spot market volatility and changes in the size of

the futures market (as represented by open interest) and trading volume.  As Figure 3

illustrates, both volume and open interest in NYMEX crude oil futures have increased

dramatically since the inception of the contract.  By 1990, the barrels of oil represented by

NYMEX futures trades in one year actually exceeded the annual world production of oil.

Figure 4 shows that this increasing trend has been accompanied by substantial variability in

daily trading activity.  We focus on the effect of this variability.

Table 7 provides summary statistics for daily futures trading activity and spot volatility.

The volume and open interest data represent aggregate amounts across all open NYMEX crude

oil contracts and the spot prices are for WTI sweet Cushing crude oil.  We estimate the spot

volatility by first fitting our stochastic volatility model to the daily Cushing returns, and then

we use the parameter estimates in the Kalman filter to estimate the stochastic volatility time-

series.  The parameter estimates using these data (µh = –8.6140, σh = 1.4801, φh = 0.9853) are

similar to those reported in Table 3 for the WTI near price series with 40 lags.

The returns and volatilities reported in Table 7 exhibit the same general patterns as

those for the WTI near series reported in Table 2.  The volume and open interest statistics show

the rapid growth in oil futures trading through the 1980s.  In the first year of trading, average
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daily volume represented 1.7 million barrels of oil and average daily open interest represented

8.8 million barrels.  Both series peaked in 1994 with volume of 106.8 million barrels and open

interest of 411.6 million barrels.  The standard deviations for both series substantially increased

over this period as well.  Finally, the autocorrelation statistics reveal strong persistence in the

trading activity and volatility data.

To analyze the relation between futures trading activity and spot market volatility, we

regress unexpected spot volatility (UVOLt) on the expected and unexpected components of

futures volume and open interest (Ati),
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We include daily dummy variables (dj) and lagged volatility shocks (UVOLt–k) to control for

day-of-the-week effects and volatility persistence.  We proxy for UVOLt by subtracting the one-

sided, contemporaneous Kalman filter estimate (realized volatility on day t) from the one-step

ahead Kalman filter estimate (expected volatility on day t – 1).  We distinguish between the

expected and unexpected components of volume and open interest due to the high persistence

in these variables.  Following Bessembinder and Seguin (1992), we first detrend each series by

subtracting its 100-day moving average, and then we fit an ARIMA model to estimate its

expected and unexpected components.  For both variables, the optimal fit is an ARIMA(0,1,21)

which incorporates about one month of data.  We use the expected component from this

model as a proxy for the predictable level of trading activity, and we use the unexpected

component to proxy for the daily shock.  We also include the 100-day moving average in the

regression to represent longer-term shifts in trading activity.  Note that summing these three

components yields the original trading activity series.

B.  Volume-Volatility and Open Interest-Volatility Relations

The first set of columns in Table 8 reports the regression results for the raw trading activity

series over the full sample.  The raw series are scaled so the underlying unit is one million

futures contracts.  The results indicate that the lagged unexpected volatilities and daily dummy

variables in the regression are not significant.  This is expected because we accounted for

seasonalities and volatility persistence in constructing our unexpected volatility estimate.  All of

the trading activity variables, however, are highly significant.  The moving average, expected,

and unexpected components of volume are each significant at the 5% level.  The coefficient
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estimates indicate that the effect of unexpected volume on volatility is by far the strongest,

nearly three times greater than the effect of the moving average component and nearly two

times that of the expected component.  This strong volume-volatility relation, in part, is influ-

enced by the effect of spot market volume on volatility.  We would expect a strong link between

spot and futures market volumes, and we cannot isolate the marginal impact of futures volume

without controlling for spot volume.16

In contrast to the volume coefficients, the coefficients on open interest are all signifi-

cantly negative.  Again, the magnitude of the coefficient on the unexpected component is much

larger than the coefficients on the two predictable components (nearly five times the moving

average component and two times the expected component).  These estimates indicate that,

conditional on futures volume, the long-term increase in open interest is related to lower spot

market volatility, and that unexpected increases in open interest correspond to negative vola-

tility shocks.  Therefore, the volatility shock associated with a given volume is less when

market depth increases.  This finding is consistent with the results obtained by Bessembinder

and Seguin (1992, 1993) for other markets, and supports the idea that futures trading improves

depth and liquidity in the underlying market rather than destabilizing the market.

The negative coefficient on unexpected open interest indicates that an increase in open

interest mitigates the impact of a volume shock on volatility.  We can estimate the magnitude of

this effect by comparing the coefficients on unexpected open interest and unexpected volume.

The marginal impact of an unexpected volume of one million crude oil contracts on volatility

is 1.8391 ± 0.7539 (or ± 41.0%) depending on whether open interest unexpectedly increases or

decreases.  This effect of open interest on the volume-volatility relation may reflect the nature

of trades that increase end-of-the-day open interest.  As Bessembinder and Seguin (1993) argue,

open interest may not only proxy for market depth but also for uninformed trading.  Many

speculators are “day-traders” who exit their positions overnight, so open interest tends to reflect

uninformed trading initiated by hedgers.  To the extent this argument holds, we can distinguish

between the price effects generated by informed versus uninformed trading in the crude oil

market.  Specifically, if an unexpected increase in volume is accompanied by an unexpected

increase in open interest, more of the unexpected volume is attributable to hedgers and, there-

fore, the price revisions are smaller.

                                                       
16 We cannot include spot volume in the regression because reliable spot volume data is not available.
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C.  Robustness Checks

The summary statistics reported in Table 7 suggest some evidence of nonstationarity in the

volume and open interest series across our sample.  Figure 4 shows the daily volume (Panel

A) and open interest (Panel B) over this period, revealing a pattern of increasing variance in

both series.  Detrending the series by the 100-day moving average removes nonstationarity in

the mean, but not in the variance.  Therefore, as a sensitivity check, we repeat the analysis

using the natural logarithms of volume and open interest.  Again, after taking logs, we

decompose each series into its expected and unexpected components.  The regression results

are reported in the second set of columns of Table 8.  For the most part, these results are quite

similar to those for the raw series.  The coefficients for the futures volume components are all

positive and significant, and the coefficients for the open interest components are all negative

although the coefficient on unexpected open interest is now insignificant.

Given this conflicting evidence on the relation between unexpected open interest and

volatility, we repeat the analysis using a reduced sample beginning on April 4, 1988, five years

after the contract was introduced.  Figure 4 and Table 7 suggest that this subsample may

avoid the nonstationarity evident in the entire sample.  The final two sets of columns in Table

8 report the regression results for the reduced sample using both the raw series and log trans-

formations.  In both cases, the original results are confirmed.  The positive volume-volatility

relation is apparent in the reduced sample, as is the negative open interest-volatility relation.

For both the raw and log series, the magnitude of the coefficient on unexpected open interest

is even larger than in the full sample.

D.  Asymmetries in the Volume-Volatility and Open Interest-Volatility Relations

Many empirical studies have documented volatility asymmetries.  Schwert (1989, 1990) for

example, finds that expected volatility increases more with negative stock market returns than

it decreases with equal-sized positive returns.  Bessembinder and Seguin (1993) find asymme-

tries in the relations between spot volatility and unexpected futures volume and open interest.

To assess whether these asymmetries are apparent in the crude oil futures market, we include

interactive dummy variables in our regression to allow the effects of unexpected volume and

open interest on volatility to vary with the sign of the volume or open interest shock.  These

dummy variables equal zero for negative shocks or one for positive shocks.  Table 9 reports the
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results.  The coefficient for the unexpected series represents the marginal impact of a negative

trading activity shock.  To estimate the marginal impact of a positive shock, the coefficient on

the interactive term is added to the coefficient on the corresponding unexpected activity series.

The results indicate no significant asymmetry for unexpected open interest, but we do

find asymmetry in the relation between volatility and unexpected volume.  Specifically, the

coefficient estimates indicate that the volatility increase associated with an unexpected

increase in volume is 80% larger than the decrease in volatility associated with an equivalent

unexpected decrease in volume.  These findings are generally unchanged if we instead use

either the log series of the trading activity variables or the reduced sample period.

VI.  Conclusions

Our empirical results address three aspects of the impact of energy derivatives trading on the

crude oil market.  First, we examine the effect of introducing crude oil futures on the structure

of oil market volatility.  Second, we assess whether this effect differs with subsequent

derivative introductions, including crude oil options and derivatives on related energy com-

modities.  Finally, we evaluate the on-going relation between oil futures trading activity and

the depth and liquidity of the crude oil market.

Our results indicate large unexpected increases in volatility for three consecutive

weeks after the introduction of crude oil futures.  Under our stochastic volatility model, we

expect volatility to increase over this period from 6.87% to 8.14%, but realized volatility

increases to 13.16%.  The probability of such a large increase is just 0.2%.  We also find

evidence of a longer-term (more than a year) volatility increase which coincides with the

growth of the energy derivative markets.  It is inappropriate, however, to attribute this effect

to derivatives.  Derivatives activity grew over this period as a means of managing increased

volatility induced by deregulation of the U.S. energy markets.  Given this linkage, we cannot

conclude that derivatives caused this volatility.

Following the introduction of crude oil futures, there is little evidence that subsequent

derivative introductions had any effect on crude oil volatility.  In particular, we find no effects

following the introduction of crude oil options and no pattern in the effects across the time-

series of introductions of other energy derivatives.  These results are counter to the idea that

subsequent derivative introductions gradually complete the market.  Instead, the effects are

apparent following the first introduction but disappear for subsequent introductions.
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Our findings regarding the relation between futures trading activity and spot market

volatility indicate that deep and liquid futures markets have a mitigating effect on volatility in

the underlying market.  We find a positive relation between futures volume and volatility, but

we cannot determine the marginal impact of futures versus spot market volume because

reliable spot volume data are unavailable.  The relation between open interest and volatility,

on the other hand, is large and negative.  We find that the impact of volume on volatility is in-

versely related to both the unexpected change and long-term predictable component of open

interest.  Our estimates indicate that the volatility increase associated with an unexpected

increase in volume is approximately 40% lower when accompanied by an unexpected increase

in open interest than when the unexpected change in open interest is zero.  These findings

suggest that futures trading improves depth and liquidity in the underlying market, and they

contradict the idea that derivatives destabilize the market.
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Table 1
Introduction Dates for Energy Derivative Contracts

The table reports the introduction dates for each of the primary exchange-traded energy derivative contracts.
Each of these contracts is traded at either the New York Mercantile Exchange (NYMEX) or the
International Petroleum Exchange (IPE).  The dates reported in the table (MM/DD/YY) indicate the first
day of trading for each futures or futures option contract.  Note that the heating oil futures and gasoil futures
contracts (marked with an *) were introduced prior to the start of our crude oil price series.

Introduction Dates

Commodity Exchange Futures Futures Options

Crude Oil NYMEX 3/30/83 11/14/86
Heating Oil NYMEX 11/14/78* 6/26/87
Unleaded Regular Gas NYMEX 12/03/84 3/13/89
Brent Crude Oil IPE 6/23/88 5/11/89
Gasoil IPE 4/06/81* 7/20/89
Natural Gas NYMEX 4/03/90 10/02/92



Table 2
Summary Statistics for Crude Oil Prices

The table summarizes the price levels, returns, and volatility of returns for crude oil.  We report the results based on both daily and weekly observations,
and by year of the sample.  The “initial price” is the closing price level on the last day of the prior year, the “return” is the total return during the year
computed as the log of the closing and initial price levels, and the “standard dev.” is the sample standard deviation of the daily or weekly returns during the
year.  We also report the average two-sided Foster/Nelson volatility estimate (“average vol.”) computed using the procedure described in the text.  All of the
returns and volatilities are reported as annualized amounts on the basis of 252 trading days (or 52 weeks) during a year.  The daily sample begins
September 1, 1983 and ends December 31, 1997.  The weekly sample begins February 5, 1982 and ends December 26, 1997.

Daily Observations Weekly Observations

Initial Return Standard Average Initial Return Standard Average
Sample Obs. Price (%) Dev. (%) Vol. (%) Obs. Price (%) Dev. (%) Vol. (%)

Overall 3641 –4.13 36.95 31.00 829 –3.81 33.36 29.00

1982 47 33.70 –8.17 22.88 19.55
1983 82 32.00 –30.78 9.09 9.93 52 31.30 –7.81 12.39 12.71
1984 251 28.95 –11.18 12.03 11.77 52 28.95 –11.13 11.33 11.55
1985 250 25.90 2.69 22.57 19.74 52 25.90 3.79 18.06 23.02
1986 250 26.60 –41.06 68.57 63.14 52 26.90 –45.31 68.45 62.87
1987 253 17.70 –5.79 25.89 25.11 53 17.10 –2.32 29.17 27.18
1988 255 16.70 0.59 39.02 37.07 52 16.70 0.60 34.31 34.50
1989 252 16.80 26.28 28.47 28.54 52 16.80 26.28 23.71 25.00

1990 254 21.85 26.01 59.71 57.67 52 21.85 23.54 48.47 50.72
1991 256 28.40 –41.66 55.43 38.72 52 27.65 –38.58 55.47 41.83
1992 256 18.60 5.26 19.99 18.83 53 18.80 4.19 17.96 19.30
1993 256 19.62 –30.24 23.95 23.81 52 19.62 –30.72 22.30 22.47
1994 256 14.43 20.05 29.62 28.96 52 14.43 20.37 30.31 29.41
1995 256 17.69 9.34 20.37 21.00 52 17.69 9.49 22.37 24.08
1996 257 19.45 25.71 39.09 38.21 52 19.45 25.62 32.75 31.27
1997 257 25.28 –35.45 28.51 28.43 52 25.13 –31.44 28.23 27.93
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Table 3
GMM Estimation of the Stochastic Volatility Model

The table reports the GMM parameter estimates and overidentifying test statistics (J-statistics) for our
model of the log volatility (ht) in the crude oil market.  The estimation procedure uses the moment conditions
implied by the model for seasonally-adjusted, log squared returns (yt) to estimate the mean (µh), variance
(σh), and AR(1) parameter (φh) of the log volatility process.  The table reports the coefficient estimates
(Coef.) and standard errors (S.E.) for lag lengths of l = 10, 20, 30, 40 for daily returns (Panel A) and l = 12,
16, 20, 24 for weekly returns, as well as the J-statistic which is distributed χ 

2
l – 1 under the model.  The

sample period for the daily estimation is September 1, 1983 through December 31, 1997 (3641
observations) and the sample for the weekly estimation (Friday observations) is February 5, 1982 through
December 26, 1997 (829 observations).

Panel A:  Daily Observations

10 lags 20 lags 30 lags 40 lags
Parameter Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

µh –8.5431 0.046 –8.5368 0.045 –8.5407 0.045 –8.5411 0.045
σh 1.3628 0.109 1.3171 0.094 1.3119 0.088 1.3050 0.083
φh 0.9821 0.007 0.9895 0.003 0.9913 0.002 0.9925 0.001

J-statistic 8.98 13.90 17.24 19.94
p-value 0.4390 0.7897 0.9583 0.9951

Panel B:  Weekly Observations

12 lags 16 lags 20 lags 24 lags
Parameter Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

µh –6.9281 0.099 –6.9267 0.098 –6.9198 0.099 –6.9154 0.098
σh 1.4884 0.280 1.4661 0.275 1.5656 0.266 1.5290 0.258
φh 0.9667 0.014 0.9702 0.010 0.9638 0.010 0.9673 0.008

J-statistic 10.66 11.21 12.96 13.51
p-value 0.4723 0.7375 0.8406 0.9400
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Table 4
Kalman Filter Model Specification Diagnostics

The table reports diagnostic statistics for our stochastic volatility model based on the Kalman filter estimates
of conditional volatility.  We use these estimates to construct the seasonally-adjusted returns (r) and two sets
of residuals under the model: those based on the one-sided volatility estimates (z) and those based on the
smoothed estimates (z*).  Under the model, the residuals should be normally distributed with mean zero and
variance one.  We report the mean, variance, skewness, and excess kurtosis for each series, as well as the
first-order autocorrelations of the series (x), its absolute values (| x |), and its squared values (x2).  Below
each of the residual statistics, we report the corresponding probability value.  These values are based on
5,000 simulations of the data under our model calibrated with our GMM parameter estimates.  We report
the probability of realizing a value lower than that observed given that the model is valid.  The daily sample
period (Panel A) is September 1, 1983 through December 31, 1997 (3641 observations) and the weekly
sample period (Panel B) is February 5, 1982 through December 26, 1997 (829 observations).

Panel A:  Daily Observations

Excess Autocorrelations

Series Mean Variance Skewness Kurtosis x | x | x2

r –– –– 3.7072 41.3037 –0.0093 0.0703 0.2706

z –0.0022 1.1569 0.2062 6.6813 0.0061 0.1452 0.0812
.4517 1.0000 1.0000 1.0000 0.6347 0.9944 0.9786

z* 0.0051 1.1563 0.0704 4.8386 –0.0130 0.0832 0.0269
.6305 1.0000 1.0000 1.0000 0.2188 0.9984 0.9850

Panel B:  Weekly Observations

Excess Autocorrelations

Series Mean Variance Skewness Kurtosis x | x | x2

r –– –– 0.8093 10.9447 –0.1138 0.2447 0.3602

z –0.0001 1.0765 0.5870 3.5688 –0.0279 0.0281 0.0277
.4877 0.8988 0.9970 0.9746 0.2430 0.1710 0.2154

z* 0.0029 1.1468 0.7080 5.7331 –0.0595 0.0091 –0.0041
.5249 0.9998 0.9996 0.9992 0.0504 0.5611 0.7373
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Table 5
Crude Oil Volatility After the Introduction of NYMEX Oil Futures Contracts

The table reports the likelihood under our stochastic volatility model of the Kalman filter volatility estimates
realized just after the introduction of crude oil futures.  We calibrate the model using the GMM parameter
estimates over the sample of weekly observations from April 1, 1983 to December 26, 1997 (770
observations).  We then use the deseasonalized returns over the entire sample (beginning February 5, 1982)
to generate Kalman filter estimates of conditional volatility under the model.  The table reports the actual
and expected realizations for three different measures of volatility: the conditional volatility given the
volatility level just prior to the introduction (σt | σ0), the conditional volatility given the preceding week’s (or
month’s, if t > 4) volatility level (σt | σt – 1), and the average volatility from time 1 to t given the volatility level
at time 0 (σ1; t | σ0).  The expected volatilities and probability values are determined by simulations.  We draw
5,000 52-week sequences (with replacement) from the sample of estimated volatility innovations (ut)
beginning one year after the introduction date.  We use these innovations to construct a corresponding ht-
series to compute the distributions for the conditional, step-ahead, and average volatilities.

Weeks in Conditional Volatility Average Volatility

Advance ( t ) σt E[σt | σ0] p-value E[σt | σt  –  1] p-value σ1;  t E[σ1;  t | σ0] p-value

0 6.87

1 8.70 7.28 0.9704
2 10.61 7.70 0.9912 9.15 0.9128 9.66 7.60 0.9884
3 13.16 8.14 0.9980 11.04 0.9692 10.82 7.84 0.9970
4 14.52 8.57 0.9966 13.53 0.6825 11.75 8.08 0.9978

8 13.78 10.30 0.8206 15.89 0.2641 13.64 9.06 0.9882
12 6.27 12.07 0.0434 15.25 0.0012 12.23 10.04 0.8212
16 7.80 13.71 0.0772 7.98 0.4185 11.03 11.01 0.5345
20 7.87 15.08 0.0602 9.59 0.1982 10.37 11.95 0.3421
24 7.25 16.51 0.0306 9.62 0.1288 9.69 12.86 0.1966
28 7.59 17.68 0.0318 8.94 0.2364 9.29 13.72 0.1180

32 9.25 18.78 0.0526 9.35 0.4429 9.23 14.53 0.0814
36 16.39 19.78 0.3211 10.97 0.9698 9.70 15.28 0.0784
40 10.84 20.76 0.0708 17.66 0.0374 10.12 15.95 0.0762
44 11.88 21.39 0.0880 12.56 0.3813 10.27 16.64 0.0650
48 11.83 22.03 0.0780 13.48 0.2709 10.43 17.25 0.0580
52 11.56 22.45 0.0664 13.52 0.2388 10.58 17.81 0.0530



31

Table 6
Crude Oil Volatility After the Introduction of Other Energy Derivative Contracts

The table reports the likelihood under our stochastic volatility model of the Kalman filter volatility estimates
realized just after the introduction of each energy derivative contract.  We calibrate the model using the
GMM parameter estimates over the sample of daily observations from the introduction date to December 31,
1997.  We then use the deseasonalized returns over the entire sample (beginning September 1, 1983) to
generate Kalman filter estimates of conditional volatility under the model.  The table reports the GMM
parameter estimates, and the actual and expected realizations for three different measures of volatility: the
conditional volatility given the volatility level just prior to the introduction (σt | σ0), the conditional volatility
given the preceding month’s volatility level (σt | σt – 20), and the average volatility from time 1 to t given the
volatility level at time 0 (σ1; t | σ0).  The expected volatilities and probability values are determined by
simulations.  We draw 5,000 120-day sequences (with replacement) from the sample of estimated volatility
innovations (ut) beginning one year after the introduction date.  We use these innovations to construct a
corresponding ht-series to compute the distributions for each volatility measure.

Panel A:  Average Volatility

 Model Parameters σ1; t  | σ0

Date Contract µh σh φh t = 1 t = 20 t = 40 t = 60 t = 80 t = 100 t = 120

12/03/84 Unl. Gas Futures –8.33 0.895 0.988 0.054 0.038 0.058 0.157 0.190 0.152 0.119
11/14/86 Crude Oil Options –8.31 0.594 0.979 0.432 0.142 0.143 0.077 0.101 0.081 0.057
6/26/87 Heating Oil Options –8.28 0.569 0.986 0.819 0.453 0.711 0.767 0.641 0.500 0.480
6/23/88 Brent Crude Futures –8.18 0.457 0.960 0.788 0.969 0.957 0.829 0.841 0.924 0.958
3/13/89 Unl. Gas Options –8.28 0.580 0.978 0.923 0.826 0.849 0.843 0.902 0.853 0.815
5/11/89 Brent Crude Options –8.29 0.539 0.967 0.883 0.569 0.835 0.699 0.626 0.525 0.439
7/20/89 Gasoil Futures –8.31 0.616 0.988 0.821 0.785 0.544 0.439 0.359 0.288 0.309
4/03/90 Natural Gas Futures –8.31 0.626 0.992 0.105 0.995 0.985 0.984 0.983 0.988 0.994

Panel B:  Spot Volatility and Volatility Innovations

 σ t  | σ0 σ t  | σt  –  20

Date Contract t = 20 t = 40 t = 60 t = 80 t = 120 t = 40 t = 60 t = 80 t = 100 t = 120

12/03/84 Unl. Gas Futures 0.011 0.262 0.197 0.313 0.061 0.895 0.272 0.560 0.269 0.063
11/14/86 Crude Oil Options 0.288 0.048 0.122 0.104 0.107 0.051 0.420 0.245 0.087 0.477
6/26/87 Heating Oil Options 0.641 0.826 0.679 0.253 0.730 0.808 0.377 0.088 0.227 0.988
6/23/88 Brent Crude Futures 0.990 0.596 0.800 0.880 0.702 0.249 0.766 0.800 0.778 0.494
3/13/89 Unl. Gas Options 0.764 0.754 0.709 0.939 0.293 0.619 0.567 0.943 0.171 0.191
5/11/89 Brent Crude Options 0.633 0.738 0.585 0.113 0.292 0.691 0.435 0.064 0.611 0.340
7/20/89 Gasoil Futures 0.735 0.279 0.320 0.196 0.711 0.115 0.464 0.214 0.481 0.965
4/03/90 Natural Gas Futures 0.979 0.949 0.980 0.945 0.995 0.700 0.872 0.495 0.915 0.939



Table 7
Summary Statistics for Daily Crude Oil Futures Trading Activity and Spot Volatility Estimates

The table provides the mean, standard deviation (S.D.), and autocorrelation (r) estimates for the daily futures volume and open interest series and the
Kalman filter spot market volatility estimates.  The mean spot return for the period is also reported.  The returns and volatilities are reported as annualized
figures on the basis of 252 trading days during a year.  The full sample period is from April 5, 1983 through December 31, 1997 (3686 observations). The
reduced sample period does not begin until April 4, 1988 (2451 observations).

% Spot Futures Volume (Million Barrels) Open Interest (Million Barrels) Spot Volatility Series (%)
Sample Obs. Return Mean S.D. r(1)  r(2) r(3) Mean S.D. r(1)  r(2) r(3) Mean S.D. r(1)  r(2) r(3)

Overall 3686 –3.51 69.6 42.1 0.82 0.76 0.74 246.3 137.4 1.00 0.99 0.99 23.69 13.73 0.98 0.96 0.95
Reduced 2451 0.32 91.2 30.1 0.52 0.34 0.30 329.2 76.2 0.99 0.99 0.98 25.51 11.99 0.97 0.95 0.93

1983 188 0.68 1.7 1.7 0.79 0.67 0.68 8.8 6.0 0.99 0.99 0.99 8.7 22.96 0.96 0.93 0.88
1984 250 –11.66 7.2 3.6 0.61 0.44 0.40 28.8 4.5 0.94 0.90 0.87 9.3 43.12 0.96 0.93 0.91
1985 243 -0.38 15.2 6.3 0.29 0.17 0.17 55.1 15.1 0.97 0.95 0.94 13.7 43.74 0.93 0.86 0.79
1986 239 –38.50 32.2 13.8 0.66 0.48 0.40 99.1 20.7 0.98 0.96 0.94 46.4 17.76 0.96 0.93 0.91
1987 252 –7.19 57.9 24.1 0.64 0.44 0.30 167.0 25.4 0.97 0.95 0.93 19.5 14.97 0.92 0.83 0.76
1988 252 3.23 74.8 25.2 0.59 0.46 0.44 197.4 20.0 0.94 0.89 0.83 23.1 85.45 0.90 0.83 0.75
1989 251 23.50 81.8 23.8 0.57 0.35 0.36 227.9 18.1 0.96 0.92 0.87 26.9 98.87 0.96 0.93 0.88

1990 251 26.28 94.2 26.3 0.60 0.39 0.27 271.4 23.1 0.80 0.75 0.68 37.6 12.57 0.93 0.88 0.84
1991 253 –39.19 83.0 27.2 0.54 0.31 0.23 280.0 18.8 0.96 0.91 0.86 32.9 23.56 0.99 0.98 0.96
1992 252 2.86 83.8 25.4 0.42 0.17 0.13 324.9 20.6 0.96 0.91 0.83 17.5 85.02 0.94 0.89 0.84
1993 250 –31.85 99.5 33.9 0.52 0.32 0.32 396.5 25.5 0.97 0.93 0.88 17.3 84.14 0.89 0.82 0.75
1994 251 20.28 106.8 29.2 0.42 0.27 0.27 411.6 19.9 0.94 0.87 0.78 22.4 64.96 0.88 0.79 0.70
1995 250 11.61 94.4 30.6 0.41 0.17 0.09 351.7 17.7 0.94 0.90 0.84 20.4 45.03 0.94 0.88 0.80
1996 252 25.95 93.2 31.5 0.52 0.30 0.18 397.8 31.5 0.98 0.96 0.93 31.5 87.28 0.93 0.85 0.79
1997 252 –36.29 97.2 30.8 0.28 0.13 0.13 402.9 25.7 0.63 0.58 0.55 24.4 35.41 0.91 0.85 0.79
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Table 8
Regression of Unexpected Spot Volatility on Futures Volume and Open Interest

The table reports the estimation results for a regression of unexpected spot market volatility (%) on futures
trading activity variables.  We proxy for unexpected spot volatility (UVOL) by differencing the step-ahead
and contemporaneous volatilities obtained from the Kalman filter.  For the trading activity variables, we use
the 100-day moving average and the expected and unexpected components of volume (MVM, EVM, and
UVM, respectively) and open interest (MOI, EOI, UOI), where the expected and unexpected components are
estimated using an ARIMA(0,1,21).  The regression also includes day-of-the-week dummy variables (MON,
TUE, THU, and FRI) and 10 lagged unexpected volatility terms.  The table reports separate results using the
raw trading activity variables and the variables expressed in logs.  The reported p-values are based on the
hypothesis that a given coefficient equals zero, and they are computed using heteroskedasticity and autocorre-
lation consistent standard errors.  The full sample period is from April 5, 1983 through December 31, 1997
(3686 observations) and the reduced sample excludes the period before April 4, 1988 (2451 observations).

Full Sample Reduced Sample

Raw Series Log Series Raw Series Log Series

Parameter Coef. p-value Coef. p-value Coef. p-value Coef. p-value

Intercept –0.0009 0.9003 0.0586 0.1242 –0.0425 0.0943 –0.3834 0.1329

Futures Volumes
MVM 0.6440 0.0295 0.0298 0.0221 1.3563 0.0076 0.0984 0.0153
EVM 0.9961 0.0001 0.0522 0.0001 1.0265 0.0001 0.0660 0.0034
UVM 1.8391 0.0001 0.1060 0.0001 1.6922 0.0001 0.1368 0.0001

Futures Open Interest
MOI –0.1579 0.0300 –0.0309 0.0241 –0.2222 0.0078 –0.0572 0.0138
EOI –0.4124 0.0019 –0.0680 0.0086 –0.3535 0.0094 –0.1055 0.0264
UOI –0.7539 0.0117 –0.0549 0.4530 –1.1233 0.0002 –0.3495 0.0002

Lagged Volatilities
UVOLt–1 –0.0538 0.0881 –0.0555 0.0769 –0.0523 0.1317 –0.0501 0.1500
UVOLt–2 –0.0327 0.2395 –0.0359 0.1988 –0.0020 0.9480 –0.0018 0.9551
UVOLt–3 0.0037 0.8995 –0.0004 0.9896 –0.0222 0.4690 –0.0223 0.4672
UVOLt–4 –0.0050 0.8278 –0.0071 0.7605 0.0047 0.8549 0.0052 0.8376
UVOLt–5 –0.0325 0.2454 –0.0328 0.2378 –0.0629 0.0553 –0.0605 0.0656
UVOLt–6 –0.0023 0.9325 –0.0049 0.8532 –0.0132 0.6426 –0.0140 0.6218
UVOLt–7 –0.0390 0.1699 –0.0404 0.1519 –0.0081 0.7874 –0.0087 0.7718
UVOLt–8 –0.0002 0.9921 –0.0027 0.9100 –0.0109 0.7100 –0.0098 0.7407
UVOLt–9 0.0153 0.5568 0.0132 0.6156 –0.0150 0.5400 –0.0150 0.5398
UVOLt–10 –0.0005 0.9858 –0.0040 0.8825 0.0037 0.9028 0.0020 0.9467

Daily Dummies
MON 0.0134 0.0974 0.0128 0.1214 0.0150 0.1293 0.0136 0.1718
TUE 0.0018 0.8225 0.0019 0.8158 –0.0065 0.5079 –0.0089 0.3672
THU 0.0015 0.8523 0.0008 0.9263 0.0014 0.8862 –0.0001 0.9893
FRI –0.0059 0.5062 –0.0054 0.5473 –0.0112 0.3241 –0.0113 0.3180

Regression R2 0.0600 0.0473 0.0675 0.0583
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Table 9
Regression of Unexpected Spot Volatility on Futures Volume and Open Interest

with Asymmetry Effects

The table reports the estimation results for a regression of unexpected spot market volatility (%) on futures
trading activity variables, with the coefficients for positive and negative shocks estimated separately.  We
proxy for unexpected spot volatility (UVOL) by differencing the step-ahead and contemporaneous volatilities
obtained from the Kalman filter.  For the trading activity variables, we use the 100-day moving average and
the expected and unexpected components of volume (MVM, EVM, and UVM, respectively) and open interest
(MOI, EOI, UOI), where the expected and unexpected components are estimated using an ARIMA(0,1,21).
The regression includes two interactive terms to capture asymmetry in the effects of trading activity shocks,
UVM×DUVM and UOI×DUOI, where DUVM (DUOI) equals one if unexpected volume (open interest) is
positive and zero otherwise.  We also include day-of-the-week dummy variables (MON, TUE, THU, and
FRI) and 10 lagged unexpected volatility terms.  The table reports separate results using the raw trading
activity variables and the variables expressed in logs.  The reported p-values are based on the hypothesis
that a given coefficient equals zero, and they are computed using heteroskedasticity and autocorrelation
consistent standard errors.  The full sample period is from April 5, 1983 through December 31, 1997 (3686
observations) and the reduced sample excludes the period before April 4, 1988 (2451 observations).

Full Sample Reduced Sample

Raw Series Log Series Raw Series Log Series

Parameter Coef. p-value Coef. p-value Coef. p-value Coef. p-value

Intercept –0.0022 0.7563 0.0086 0.8199 –0.0470 0.0675 –0.5075 0.0490

Futures Volumes
MVM 0.5711 0.0548 0.0381 0.0038 1.3558 0.0078 0.1195 0.0036
EVM 0.9234 0.0002 0.0638 0.0001 0.9770 0.0002 0.0855 0.0001
UVM 1.2383 0.0001 0.0370 0.0139 1.1293 0.0001 0.0439 0.0316
UVM×DUVM 1.0237 0.0224 0.1527 0.0001 0.9629 0.0399 0.2062 0.0001

Futures Open Interest
MOI –0.1719 0.0187 –0.0359 0.0095 –0.2395 0.0046 –0.0682 0.0037
EOI –0.3823 0.0040 –0.0723 0.0048 –0.3217 0.0176 –0.1037 0.0248
UOI –1.1604 0.0057 –0.1335 0.2160 –1.2535 0.0016 –0.3497 0.0040
UOI×DUOI 1.1177 0.1681 0.1719 0.2625 0.5082 0.5026 0.0802 0.7348

Lagged Volatilities
UVOLt–1 –0.0539 0.0876 –0.0565 0.0694 –0.0521 0.1338 –0.0485 0.1598
UVOLt–2 –0.0340 0.2193 –0.0381 0.1683 –0.0029 0.9264 –0.0018 0.9527
UVOLt–3 0.0031 0.9154 –0.0001 0.9975 –0.0228 0.4579 –0.0210 0.4948
UVOLt–4 –0.0049 0.8311 –0.0085 0.7139 0.0045 0.8610 0.0038 0.8834
UVOLt–5 –0.0328 0.2405 –0.0342 0.2155 –0.0634 0.0531 –0.0624 0.0567
UVOLt–6 –0.0016 0.9514 –0.0031 0.9086 –0.0125 0.6607 –0.0110 0.6969
UVOLt–7 –0.0393 0.1640 –0.0412 0.1423 –0.0081 0.7847 –0.0082 0.7846
UVOLt–8 –0.0002 0.9931 –0.0025 0.9162 –0.0106 0.7177 –0.0096 0.7448
UVOLt–9 0.0154 0.5544 0.0137 0.5980 –0.0151 0.5351 –0.0151 0.5340
UVOLt–10 –0.0007 0.9777 –0.0034 0.9004 0.0038 0.8986 0.0045 0.8827

Daily Dummies
MON 0.0122 0.1324 0.0117 0.1560 0.0134 0.1766 0.0120 0.2226
TUE 0.0020 0.8006 0.0035 0.6640 –0.0062 0.5301 –0.0065 0.5062
THU 0.0016 0.8469 0.0007 0.9357 0.0017 0.8689 0.0015 0.8848
FRI –0.0072 0.4163 –0.0058 0.5138 –0.0127 0.2577 –0.0124 0.2689

Regression R2 0.0617 0.0572 0.0687 0.0705
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Figure 1
Rolling Volatility Estimates for the Crude Oil Market

The figure shows the time-series of conditional volatility estimates for the oil market obtained using desea-
sonalized returns and the Foster/Nelson (1996) procedure described in the text.  Panel A shows the results
using daily observations over the sample period from September 1, 1983 through December 31, 1997 (3641
observations) and Panel B is based on weekly observations over the period February 5, 1982 to December
26, 1997 (829 observations).  For each series, we plot both the one-sided (forward looking) and two-sided
(smoothed) estimates.  The estimates are annualized on the basis of 252 trading days (for the daily
estimates) or 52 weeks (for the weekly estimates) per year.
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Figure 2
Stochastic Volatility Estimates for the Crude Oil Market

The figure shows the time-series of conditional volatility estimates for the oil market obtained by applying
the Kalman filter to our stochastic volatility model.  Panel A shows the results using daily observations over
the sample period from September 1, 1983 through December 31, 1997 (3641 observations) and Panel B is
based on weekly observations over the period February 5, 1982 to December 26, 1997 (829 observations).
For each series, we plot both the one-sided (forward looking) and two-sided (smoothed) estimates.  The
estimates are annualized on the basis of 252 trading days (for the daily estimates) or 52 weeks (for the
weekly estimates) per year.
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Panel B:  Weekly Observations
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Figure 3
Annual Volumes of Crude Oil Production and NYMEX Crude Oil Futures Trading Activity

The figure shows the annual world production of crude oil and the annual trading volume of NYMEX crude
oil futures contracts, reported by year since 1980.  Both the production and trading volumes are stated in
billions of barrels.  For the futures contract, the volume amounts are aggregated across all of the available
delivery months and the data begin on the contract’s introduction date, March 31, 1983.  The production
volume for 1997 is an estimated amount.
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Figure 4
Daily NYMEX Futures Contract Trading Volume and Open Interest

The figure shows the daily trading volume (Panel A) and open interest (Panel B) for NYMEX crude oil
futures contracts.  The data are from the inception of trading on March 31, 1983 through December 31,
1997.  Both trading volume and open interest amounts are aggregated across all of the available delivery
months.  The futures contract size is 1000 barrels.
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Panel B:  Open Interest
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