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This chapter examines the performance of volatility-timing strategies. We consider a short-
horizon investor who uses mean-variance optimization to allocate funds between stocks,
bonds, gold, and cash. Specifically, the investor rebalances his portfolio daily based on
the current estimate of the conditional covariance matrix of returns. Our results indicate
that volatility timing can yield substantial benefits. Moreover, the benefits are robust to
practical considerations such as estimation risk and transaction costs.

A great deal of evidence suggests that volatility in financial markets is predictable.1

This is reflected in products such as Barra’s Short Term Risk Model and J.P. Mor-
gan’s RiskMetrics that promise to use volatility modeling to enhance the perfor-
mance of standard portfolio optimization and risk management techniques. In addi-
tion, Busse (1998) finds that many portfolio managers behave like volatility timers,
reducing their market exposure during periods of high expected volatility. Despite
this anecdotal evidence that volatility timing matters, researchers have yet to es-
tablish whether these strategies yield any real economic benefits. We examine this
issue by measuring the value of volatility forecasts to investors who engage in short-
horizon asset allocation strategies.

We consider a short-horizon investor who uses mean-variance optimization to al-
locate funds between stocks, bonds, gold, and cash. The investor’s objective is to
maximize expected return (or minimize volatility) while matching the volatility (or
expected return) of a fixed-weight benchmark portfolio. To solve the portfolio prob-
lem, we need inputs for the conditional expected asset returns and the conditional
covariance matrix. There is little evidence, however, that we can detect short-term
variation in expected returns. Therefore, we treat the expected returns as constant,
and let the variation in the optimal portfolio weights be driven purely by changes
in the conditional covariance matrix.

To estimate this matrix, we use a general nonparametric approach developed by
Foster and Nelson (1996). The estimator is a rolling weighted average of the squares
and cross products of past return innovations, constructed to be asymptotically
optimal. This approach accommodates a variety of return generating processes and
nests most ARCH, GARCH, and stochastic volatility models as special cases. We
use the time-series of these covariance matrix estimates to construct the investor’s
optimal portfolio weights. This yields a dynamic trading strategy that specifies
the proportion of funds invested in each asset class as a function of time. The

1. See Bollerslev, Chou, and Kroner (1992) for a review of this literature.
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performance differential between the dynamic strategy and an appropriate fixed-
weight benchmark portfolio reveals the economic value of the volatility forecasts.

Our analysis is based on a 15-year sample of daily returns for stock, bond, and
gold futures.2 The results indicate that volatility timing can have substantial bene-
fits. Ignoring the uncertainty in estimating expected returns, the dynamic strategy
that minimizes conditional volatility reduces the portfolio’s realized volatility from
11.3% to 8.8% relative to a traditional benchmark portfolio (a 60/40 split between
stocks and bonds for 95% of the portfolio and 5% invested in gold). The maximum
expected return strategy increases the realized return from 8.1% to 11.6%. The
benefits are smaller, but still positive, after we control for estimation risk and the
uncertainty in selecting an appropriate benchmark portfolio. Moreover, although
these benefits are achieved by active trading, they are still apparent after we ac-
count for transaction costs.

1.1 Data

Our data consist of daily returns for stock, bond, and gold futures for January 3,
1983 to December 31, 1997. The specific contracts are the S&P 500 index futures
traded at the Chicago Mercantile Exchange, the Treasury bond futures traded at
the Chicago Board of Trade, and the gold futures traded at the New York Mercantile
Exchange. The gold futures contract closes at 1:30 CST each day while the bond
and stock contracts close at 2:00 CST and 3:15 CST, respectively. To align the price
observations across contracts, we use daily closing prices for gold futures and the
last transaction prices before 1:30 CST for the bond and stock contracts. The source
for the gold futures data is Datastream International and the source for the bond
and stock futures data is the Futures Industry Institute’s intraday transactions
data. To maintain a uniform measurement interval across contracts, we exclude all
days when any of the three markets is closed.

We compute the daily returns using the day-to-day price relatives for the nearest
to maturity contract. As the nearby contract approaches maturity, we switch to a
new contract, timing the switch to capture the contract month with the greatest
trading volume. This results in switching contracts for S&P 500 futures once the
nearby contract enters its final week and for bond and gold futures once the nearby
contract enters the delivery month. This procedure yields a continuous series of

2. We use futures data to avoid problems induced by infrequent trading, but our analysis gener-
alizes to the underlying spot assets via the no-arbitrage relation between futures and spot prices.
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3,763 daily returns for each market. The summary statistics indicate that the
average return is highest for stock index futures (10.82%) followed by bonds (6.53%)
and then gold (−7.76%). Stocks also have a greater volatility (16.2%) than bonds
(10.5%) and gold (14.7%). Finally, the correlation between stock and bond returns
is positive (0.397), while the correlations between stock and gold returns (−0.105)
and bond and gold returns (−0.157) are negative.

1.2 Conditional covariance matrix estimation

Numerous techniques for estimating conditional covariance matrices have been
developed in the literature.3 We rely on a simple nonparametric approach that uses
rolling estimators constructed in an asymptotically optimal manner. This approach
nests a broad range of ARCH and GARCH models as special cases and has some
distinct advantages in our application. Unlike multivariate ARCH and GARCH
models, the computational demands of rolling estimators are modest and it is easy
to ensure that the covariance matrix estimate is invertible. In addition, the general
nature of the approach allows us to provide baseline evidence — without searching
for the “best” volatility model — on the economic significance of volatility timing.

To develop the rolling estimator, let rt+1, µt ≡ Et[rt+1], and Σt ≡ Et[(rt+1 −
µt)(rt+1 − µt)′] denote, respectively, a 3 × 1 vector of returns on stock, bond, and
gold futures, the conditional expected value of rt+1, and the conditional covariance
matrix of rt+1. The rolling estimator can be written as

Σ̂t =
T−t∑

l=−t+1

ωt+l(rt+l − µt+l)(rt+l − µt+l)
′ (1.1)

where ωt+l is the weight placed on the product of the return innovations for date
t + l and T is the number of observations in the sample. Foster and Nelson (1996)
demonstrate that the optimal weights depend on the characteristics of the process.
If volatility is stochastic, the optimal weights for the two-sided rolling estimator are
given by

ωt+l = (α/2)e−α|l|, (1.2)

where α is the decay rate. This is called a two-sided estimator because it uses both

3. Officer (1973) and Fama and MacBeth (1973) employ ad hoc rolling estimators. Merton (1980),
Poterba and Summers (1986), and French, Schwert, and Stambaugh (1987) divide the data into
nonoverlapping blocks and treat the variances and covariances as constant within each block. More
recently, ARCH models [e.g., Engle (1982) and Bollerslev (1986)] have gained popularity.



4 1. Does Volatility Timing Matter?

Figure 1.1
Daily volatility estimates for S&P 500, T-bond, and gold futures returns.

leads and lags of returns to estimate Σt. To construct the corresponding one-sided
estimator, we set ωt+l = 0 for l > 0 and double each of the weights for l ≤ 0.

We estimate the optimal decay rate using the procedure developed by Fleming,
Kirby, and Ostdiek (1999). This yields α = 0.0679. The resulting two-sided estimates
of the conditional volatilities are plotted in Figure 1.1.4 The average estimates
are consistent with the unconditional volatilities reported earlier with stocks the
most volatile, followed by gold and then bonds. Moreover, the variability in these
estimates suggests that volatility changes over time.

Figure 1.2 shows the two-sided estimates of the conditional return correlations.
As with the volatilities, the average estimates are generally consistent with the

4. As is common practice, we use seasonally-adjusted data to generate these estimates. We begin
by regressing the raw returns on a set of six variables: a dummy variable for each weekday and
a variable (NTDYS) that counts the number of nontrading days covered by each return. The
residual in this regression, r∗it, is the unexpected component of the day t return in market i. To
remove the daily seasonal in volatility, we estimate the regression,

[
(r∗it)

2/var(r∗it)
]
− 1 = β1iMONt + β2iTUEt + · · ·+ β5iFRIt + β6iNTDYSt + et

where var(r∗it) is the sample variance of r∗it. The resulting coefficient estimates are used to construct
the seasonally-adjusted returns,

rit = r∗it/
√

1 + β1iMONt + β2iTUEt + · · ·+ β5iFRIt + β6iNTDYSt,

that we use to construct the covariance matrix estimates.
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Figure 1.2
Daily correlation estimates between S&P 500, T-bond, and gold futures returns.

unconditional correlations and there is considerable evidence that the correlations
change over time. In particular, the estimated stock/gold and bond/gold correla-
tions sharply decrease after 1986 and the stock/bond estimates widely fluctuate
throughout the sample.

1.3 Volatility timing in a mean-variance framework

To determine whether the variation in the conditional covariance matrix can be
exploited to improve asset allocation decisions, we consider a hypothetical investor
who uses conditional mean-variance analysis to allocate funds.5 The investor wants
to minimize his portfolio’s conditional variance subject to achieving a particular
conditional expected rate of return. For each date t, he solves the quadratic program

min
wt

w′
tΣtwt

s.t. w′
tµt = µpt,

(1.3)

5. Sufficient conditions for an investor to demand a conditionally mean-variance efficient portfolio
are (i) returns are conditionally multivariate normal, which is consistent with an important class
of trading models [see, e.g., Clark (1973) and Tauchen and Pitts (1983)]; and (ii) the investor has
lognormal utility of wealth.
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where wt is a 3 × 1 vector of portfolio weights on stock, bond, and gold futures.
Note that we omit the riskless interest rate from this specification because we are
dealing with futures returns. Under the cost-of-carry model, the return on a futures
contract equals the total return on the spot asset minus the riskless rate. 1 −w′

t1
represents the weight held in “cash equivalent” securities which earn an excess
return equal to zero. The solution to our optimization problem,

wpt =
µptΣ−1

t µt

µ′
tΣ

−1
t µt

, (1.4)

delivers the weights on the risky assets.6

To construct the optimal dynamic portfolio weights, we use the one-step-ahead
forecasts of the conditional covariance matrix from Section 1.2. We also, in general,
need one-step-ahead forecasts of the expected returns. However, there is little evi-
dence to suggest that we can detect daily variation in expected returns. Therefore,
we treat the expected returns as constant and let the trading decisions depend only
on changes in our estimates of the conditional covariance matrix.

We could conduct a similar analysis where the investor’s objective is to maximize
conditional expected return subject to achieving a particular conditional variance.
Therefore, our optimal portfolio analysis suggests two candidate volatility-timing
strategies. First, we solve for the weights that set the expected return equal to some
fixed target and minimize volatility (the “minimum volatility strategy”). Second,
we solve for the weights that set volatility equal to some fixed target and maximize
expected return (the “maximum expected return strategy”).

Implementing the dynamic strategies To implement our methodology, two
remaining issues must be resolved. The first is that we must estimate the expected
returns for the assets. One possible approach is to use data available at the be-
ginning of our sample period. Unfortunately, this produces unreliable estimates for
bonds and gold due to dramatic changes in the 1970s caused by the shift in Federal
Reserve interest rate policy and the elimination of the gold standard. Alternatively,
we could use the first few years of our sample to estimate the expected returns and
use the remaining period to evaluate the dynamic strategies. This is also problem-
atic, however, because the expected return estimates would be very imprecise.

We address this issue by adopting a bootstrap approach [Efron (1979)]. First,
we randomly sample with replacement from the actual data to generate a series of

6. Fleming, Kirby, and Ostdiek (1999) show that under standard no-arbitrage arguments we would
obtain the same weights by formulating the optimization in terms of spot assets.
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artificial returns. We then compute the mean returns in this artificial sample and
use them, along with our conditional covariance matrix estimates, to compute the
optimal portfolio weights. Finally, we apply the weights to the actual returns and
evaluate the performance of the dynamic strategies. This approach ensures that
our analysis is based on a representative sample and allows us to directly assess the
impact of estimation risk.

The second unresolved issue is how to measure the performance gains attributable
to volatility timing. The most straightforward approach is to compare the perfor-
mance of the dynamic strategies to that of a fixed-weight benchmark portfolio. But
then we must choose an appropriate benchmark. To control for the uncertainty re-
garding this choice, we adopt the following approach. Initially, we use a traditional
benchmark portfolio, defined as a 57/38/5 split between stocks, bonds, and gold.
This reflects the general guideline among asset allocation managers of a 60/40 split
between stocks and bonds, with five percent of the portfolio invested in gold to
provide a hedge against inflation. After providing this evidence, we evaluate the
performance of the dynamic strategies relative to the ex-post efficient frontier.

Results of the optimal portfolio analysis We now examine the optimization
results for the limiting case in which the true expected returns are known. These
results are obtained by solving for the optimal portfolio weights in Equation (1.4)
where the inputs are (i) the sample mean returns for each asset, and (ii) our
estimates of the conditional covariance matrix. We refer to this as the case of no
estimation risk.7

Figure 1.3 plots the optimal weights for the minimum volatility strategy. The
sign and magnitude of each weight depends on the estimated expected returns and
the forecasted volatilities and correlations. For example, the average return on gold
futures is negative in our sample and, in general, the weight in gold is negative. But
the size of this short position decreases when the forecasted gold volatility increases,
as in 1985 and 1993 (Figure 1.1), and also when gold’s forecasted correlation with
stocks and bonds becomes more negative, as in early- to mid-1987 and the beginning
of 1991 (Figure 1.2). Similarly, the split between stocks and bonds is sensitive to
their relative volatilities. Stock volatility decreases steadily from 1991 to 1994 while
bond volatility remains relatively constant. As a result, the weight in stocks steadily
increases over this period while the weight in bonds decreases. The opposite occurs
from 1996 to 1998 as stock volatility rises and bond volatility falls.

7. We use this terminology loosely because we still face the risk associated with estimating the
conditional covariance matrix. However, Merton (1980) implies that this risk is likely small in
comparison to that associated with estimating expected returns.



8 1. Does Volatility Timing Matter?

Figure 1.3
Optimal dynamic portfolio weights with minimum volatility.

Figure 1.4 shows the anticipated reduction in volatility according to our opti-
mization results. The unconditional return on the benchmark portfolio is 8.26%,
but its forecasted volatility changes as a function of our daily covariance matrix.
The average volatilities for the benchmark and dynamic portfolios are, respectively,
10.6% and 7.7%. Not surprisingly, the anticipated volatility reduction is greatest
during periods of high stock market volatility such as 1986, the 1987 crash, the 1989
mini-crash, and near the end of the sample. During these periods, the minimum
volatility strategy has a much lower weight in stocks than the benchmark portfolio.

Turning to the maximum expected return strategy, the optimal weights (not
shown) are similar to those for the minimum volatility strategy. The main difference
is that the changes tend to be more pronounced because a greater risk exposure
is generally needed to match the benchmark’s volatility. Figure 1.5 shows the
anticipated improvement using this strategy, measured with the estimated expected
returns. The strategy’s average expected return is 13.42%, a gain of more than five
percentage points over the benchmark portfolio (8.26%), although gains of more
than ten points are apparent during much of the second half of the sample.

1.4 Evaluating the performance of the dynamic strategies

Our portfolio optimization results suggest that the anticipated benefits to volatility
timing are substantial. In practice, however, the realized benefits may be smaller
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Figure 1.4
Ex-ante comparison of the minimum volatility dynamic strategy to the static benchmark portfolio.

Figure 1.5
Ex-ante comparison of the maximum return dynamic strategy to the static benchmark portfolio.
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Table 1.1
Ex-post performance of the static and dynamic asset allocation strategies.

Static: Dynamic: Dynamic:
Benchmark Portfolio Minimum Volatility Maximum Return

Period µ σ SR µ σ SR µ σ SR

Entire Sample 8.13 11.30 0.719 8.01 8.84 0.906 11.62 12.65 0.919

1983−1985 6.35 10.03 0.633 6.77 7.46 0.907 10.47 12.38 0.846
1986−1988 7.64 16.73 0.457 8.46 12.59 0.672 6.54 13.27 0.493
1989−1991 8.15 10.05 0.811 8.31 9.33 0.891 9.69 12.85 0.754
1992−1994 2.77 7.71 0.358 3.37 6.33 0.533 5.07 12.07 0.420
1995−1997 15.67 9.70 1.615 13.09 6.86 1.909 26.50 12.61 2.102

Excluding:
Oct 19-30, 1987 8.12 10.43 0.778 7.49 8.66 0.865 11.15 12.56 0.888
1986−1988 8.25 9.41 0.877 7.89 7.59 1.040 12.93 12.49 1.035

than anticipated (Figures 1.4 and 1.5) because the portfolio weights are based on
estimates of the expected returns and conditional covariance matrix. To assess the
realized benefits, we need to form the portfolios implied by the dynamic weights
and compute their realized returns and volatilities.

We compute the ex-post return for each strategy by multiplying the portfolio
weights on a given day by the observed next-day returns on stock, bond, and gold
futures. Table 1.1 summarizes the results. For the minimum volatility strategy, the
average return is comparable to that of the benchmark portfolio, but its sample
volatility (8.8%) is considerably lower than the benchmark’s (11.3%). As a result,
the Sharpe ratio for this strategy (0.91) is substantially higher than the Sharpe
ratio for the benchmark (0.72), indicating greater ex-post efficiency. The maxi-
mum expected return strategy achieves similar results. Ex-post, the strategy has a
slightly higher sample volatility (12.7%) than the benchmark, but a substantially
greater average return (11.6%). Therefore, its Sharpe ratio (0.92) also indicates
improvement.

Table 1.1 also breaks down the ex-post returns by three-year subperiods. These
subperiod results indicate that our general findings are robust across the sample. Al-
though there is substantial variation in the average returns and sample volatilities,
both of the dynamic strategies outperform the benchmark portfolio in every three-
year subperiod except 1989−1991. Even in this subperiod, the minimum volatility
strategy outperforms the benchmark and the maximum expected return strategy
achieves a Sharpe ratio (0.75) that is comparable to that of the benchmark (0.81).
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The final two lines of Table 1.1 show the impact of the 1987 crash. Excluding
the crash has a greater impact on the benchmark than on either of the dynamic
strategies. At the time of the crash, the conditional volatilities for both stocks
and bonds are relatively high (Figure 1.1). Therefore, the dynamic strategies are
predominately invested in cash, with relatively low weights in stocks and bonds
(Figure 1.3), causing them to outperform the benchmark. It is unclear, however,
how much we should credit this to “timing” ability. The large cash positions persist
before and after the crash, making it difficult to evaluate the strategies over a
noncrash sample. If we exclude the period when the strategies did well because
they were holding cash, we should also exclude the surrounding period when, for
the same reason, they did poorly. One alternative is to simply exclude the entire
1986−1988 subperiod. As shown in Table 1.1, the relative performance of the static
and dynamic strategies over this sample is similar to that over the full sample.

Significance tests We assess the statistical significance of the performance gains
for the dynamic strategies by comparing the results in Table 1.1 to those obtained
when the asset returns are generated independently of the portfolio weights. This is
accomplished using a simple randomization scheme. First, we form a permutation
of the actual data series by randomly sampling without replacement from the joint
distribution of returns. Next, we apply the actual weights for the dynamic strategies
to the randomized returns to get a time-series of daily portfolio returns.8 We repeat
this process 10,000 times. Note that the mean return and volatility of the benchmark
portfolio are the same as in the actual data because we sample without replacement.

If the performance gains of the dynamic strategies are significant, then these
strategies should perform substantially worse in the artificial samples than they
do using the actual data. We find this to be the case. For the minimum volatility
strategy, the mean return for the 10,000 trials is 8.0% with a standard error of
1.3%. The mean volatility is 10.6% with a standard error of 0.3%. None of the
10,000 trials produce an ex-post volatility as low as that observed using the actual
return series (8.8%), and only 11.2% of the trials yield a higher Sharpe ratio. For
the maximum expected return strategy, the mean return is 13.0% with a standard
error of 2.6%, and the mean volatility is 18.3% with a standard error of 0.6%. Only
7.3% of the trials produce a Sharpe ratio that is higher than that observed for the
actual returns. These findings indicate it is unlikely that the superior performance
of the dynamic strategies is due to chance.

8. This procedure is asymptotically equivalent to using the actual returns series and randomizing
the portfolio weights. Either way, the portfolio weights are independent of the realized returns on
the assets.
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The impact of estimation risk We evaluate the impact of estimation risk
on our results using the bootstrap approach described earlier. First, we randomly
sample with replacement from the actual returns to generate a series of 3,763
artificial returns. We then compute the average return for each asset in this artificial
sample and use these averages (instead of the true sample means) to determine the
optimal portfolio weights. Finally, we apply these weights to the actual returns
and evaluate the performance of the dynamic strategies as before. Relying on the
artificial sample to estimate the expected returns mimics the uncertainty about
expected returns that an investor would face in practice.9 Therefore, if the dynamic
strategies still outperform the benchmark portfolio, we can conclude that estimation
risk does not offset their superior performance.

In this set of experiments, the mean return for the minimum volatility strategy
is 7.2% and the mean volatility is 8.5%, with an average Sharpe ratio of 0.84. This
is lower than the value obtained using the true sample means (0.91), but higher
than that for the benchmark (0.72). In 94.4% of the trials, this strategy produces a
higher Sharpe ratio than the benchmark portfolio. This indicates that the benefits
of the dynamic strategy are apparent even after we account for the uncertainty
about expected returns. The results for the maximum expected return strategy are
similar — the mean return is 10.8% and the mean volatility is 12.6%. The average
Sharpe ratio for this strategy is 0.85 and 96.6% of the trials produce a higher Sharpe
ratio than the benchmark portfolio. Based on these results, it does not appear that
the superior performance of the dynamic strategies is eliminated when we account
for estimation risk.

1.5 Robustness Tests

The evidence reported in Section 1.4 is consistent with the view that volatility tim-
ing can improve the performance of asset allocation decisions. However, our analysis
to this point assumes a specific benchmark portfolio, a given target expected re-
turn or volatility, no transaction costs, and infinitely divisible contract sizes. In this
section, we assess the impact of these issues on our results.

9. Most investors would also weigh the expected returns obtained from sampling against their prior
expectations. Specifically, asset pricing theory suggests that the unconditional expected returns
for stock and bond futures should be positive, and that returns should be highest for stocks,
followed by bonds and then gold. We incorporate these priors into our bootstrap experiment by
requiring that the average returns in each of our artificial samples satisfy these conditions.



1.5. Robustness Tests 13

Figure 1.6
Ex-post performance of the static portfolio using different combinations of weights.

Alternative benchmark portfolios To control for the uncertainty about the
appropriate benchmark portfolio, we consider all possible combinations of static
weights in stocks, bonds, and gold. For each combination, we compute the real-
ized return and volatility during our sample. This set of benchmarks, plotted in
Figure 1.6, defines a region in expected return/standard deviation space whose
boundary is the ex-post minimum variance frontier. To allow a positive weight in
cash, we would draw a line from the origin through the tangency portfolio. The
slope of this line represents the highest Sharpe ratio we could have attained using
the most efficient (ex-post) set of static portfolio weights. Note that the Sharpe
ratios for the two dynamic strategies are even greater.

The implication of this finding is clear. It is unlikely that we would have chosen
ex-ante the portfolio that turns out to be most efficient; but, even if we had, the
dynamic strategies still would have outperformed it. This indicates that our earlier
findings are robust to alternative benchmarks.

Varying the target expected returns and volatilities Table 1.2 shows how
the performance of the dynamic strategies varies with the target expected return or
volatility used in solving our daily portfolio optimizations. For comparison, the mid-
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Table 1.2
Ex-post performance of the dynamic strategies under different target returns and volatilities.

Minimum Volatility Strategy Maximum Return Strategy
Target Realized returns Target Realized returns
Return µ σ SR Volatility µ σ SR

6.00 5.77 6.43 0.898 9.00 9.31 10.10 0.921
6.50 6.27 6.96 0.900 9.50 9.84 10.66 0.923
7.00 6.77 7.50 0.902 10.00 10.35 11.21 0.923
7.50 7.26 8.03 0.904 10.50 10.85 11.76 0.923
8.00 7.75 8.56 0.905 11.00 11.33 12.31 0.921

8.26 8.01 8.84 0.906 11.31 11.62 12.65 0.919

8.50 8.24 9.09 0.906 11.50 11.80 12.86 0.918
9.00 8.74 9.62 0.908 12.00 12.27 13.41 0.915
9.50 9.23 10.15 0.909 12.50 12.75 13.95 0.914
10.00 9.72 10.68 0.910 13.00 13.22 14.50 0.912
10.50 10.21 11.21 0.910 13.50 13.69 15.05 0.910

dle line of the table contains the results from Section 1.4 where the target is based
on the benchmark portfolio’s mean return or volatility. As expected, lowering the
target return or volatility reduces both the realized return and volatility, however,
the effects on the Sharpe ratios are ambiguous. Moreover, across the entire range of
target parameter values, there is little variation in the realized performance. This
indicates that the dynamic strategies are relatively insensitive to variation in the
target return or target volatility.

Transaction costs We evaluate the effect of transaction costs by first estimating
the transaction costs for S&P 500 futures. We estimate the bid/ask spread using
the Smith and Whaley (1994) approach based on intraday transaction prices. This
yields an average spread of 0.0593, or $29.65 per contract.10 In addition, roundtrip
commissions and fees for large institutions are about $6.00 per contract.11 Combin-
ing these estimates with the average index level during our sample period (384.51)
indicates that the average one-way transaction cost is $17.825 on a contract size of
$384.51×500, or 2.34% annualized. In other words, if we traded one contract every
day for a year (buy or sell), transaction costs would reduce the realized return by
234 basis points. We assume that the transaction costs for T-bond and gold futures
are comparable to those for S&P 500 futures.

10. This slightly exceeds the estimate of 0.0508 reported in Smith and Whaley (1994) because
their sample ends in 1987 while ours extends through 1997.

11. This estimate is the same as that used in Fleming, Ostdiek, and Whaley (1996).
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Table 1.3
Performance of the static and dynamic asset allocation strategies after imposing transaction costs.

Static: Dynamic: Dynamic:
Benchmark Portfolio Minimum Volatility Maximum Return

Pct. Costs µ σ SR µ σ SR µ σ SR

0.0% 8.13 11.30 0.719 8.01 8.84 0.906 11.62 12.65 0.919

0.5% 8.11 11.30 0.717 7.95 8.84 0.899 11.52 12.65 0.911
1.0% 8.09 11.30 0.716 7.89 8.84 0.892 11.42 12.65 0.903
1.5% 8.07 11.30 0.714 7.83 8.84 0.886 11.32 12.65 0.895
2.0% 8.05 11.30 0.712 7.77 8.84 0.879 11.22 12.65 0.887
2.5% 8.03 11.30 0.711 7.71 8.84 0.872 11.12 12.65 0.879

3.0% 8.01 11.30 0.709 7.65 8.84 0.866 11.02 12.65 0.871
3.5% 7.99 11.30 0.707 7.59 8.84 0.859 10.92 12.65 0.863
4.0% 7.97 11.30 0.706 7.53 8.84 0.852 10.81 12.65 0.855
4.5% 7.95 11.30 0.704 7.47 8.84 0.846 10.71 12.65 0.847
5.0% 7.93 11.30 0.702 7.41 8.84 0.839 10.61 12.65 0.839

Table 1.3 shows the effect of various levels of transaction costs, centered around
our estimate of 2.34%. We impose the transaction costs on every trade, includ-
ing those required for establishing the initial position, daily rebalancing, rolling
into each subsequent contract month, and liquidating the position at the end of
the sample. For the dynamic strategies, the daily rebalancing represents the trad-
ing required to track time-variation in the optimal portfolio weights and, for the
benchmark portfolio, it represents the trading needed to maintain a constant weight
in each asset. The transaction costs are imposed each day by subtracting the per-
centage cost from that day’s realized return.

As the table indicates, transaction costs have the greatest effect on the maximum
expected return strategy. This is not surprising because, as noted earlier, the weights
for this strategy exhibit the most time-variation. Imposing transaction costs of, say,
2.5% reduces the strategy’s realized return from 11.6% to 11.1% with just a trivial
effect on its volatility. As a result, the strategy still earns a greater Sharpe ratio
(0.88) than the benchmark portfolio (0.71). In order to equate the Sharpe ratios
for the two strategies, transaction costs would need to be 15.9% (not shown in the
table) — an amount that is almost seven times our previous estimate.

A related issue is whether the strategies require so much trading that they
impact market prices. To examine this, we need to consider a specific value for the
underlying portfolio. Suppose we begin with $100 million, which by the end of our
sample grows to over $300 million. The contract sizes for the stock, bond, and gold
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futures contracts are, respectively, 500, 1000, and 100 times price.12 Given these
parameters, the maximum return strategy requires, on average, daily trade sizes of
23, 67, and 116 contracts (in absolute value), respectively, for stock, bond, and gold
futures. For comparison, the average daily volumes in these markets during our
sample period are 59,000 for stocks, 267,000 for bonds, and 30,000 for gold. Based
on this evidence, it seems unlikely that the dynamic strategies entail market-impact
costs large enough to materially affect their performance.

Trading discrete quantities of contracts Our analysis to this point assumes
that we can trade fractional contracts, i.e., if we have $100 to invest, and the optimal
weight is 0.50 for a contract worth $100, we can buy only half a contract. If instead
we require each trade to be a discrete number of contracts, then we incur rounding
error in the sense that our portfolio weight is suboptimal. This error has the greatest
effect when the portfolio value (i.e., the number of contracts traded) is small.

We examine the impact of this rounding error using the following procedure. For
a given level of initial wealth, we compute the number of contracts implied by our
optimal weights and we round to the nearest integer. Any residual funds created
by the rounding procedure are held in cash.13 After each day, we compute our new
portfolio value, and we apply the same rounding procedure to the optimal weights
for the following day to determine the new number of contracts. Table 1.4 reports
the results.

Imposing discrete trade sizes has an unpredictable effect on the mean returns,
but generally increases volatility. As expected, the effects are greatest for smaller
initial portfolio values. Beginning with $100,000, for example, the volatilities for
each trading strategy sharply increase relative to those using continuous trade sizes.
The mean returns are higher for the benchmark and minimum volatility strategy
but lower for the maximum return strategy. These effects cause the Sharpe ratios to
increase for the benchmark portfolio and decrease for the dynamic strategies. This
result seems random, however, when compared to the results using other levels of
initial wealth. In any case, the effect of discrete trade sizes disappears quickly. For
an initial wealth as low as $5,000,000, the performance of each of the strategies is
comparable to that using continuous trade sizes. This suggests that rounding error
does not have much of an effect for even moderately-sized portfolios.

12. The contract size for S&P 500 futures changed to 250 times price after October 31, 1997.

13. A more precise procedure for determining the number of contracts would be to include the
quantity discreteness in our daily portfolio optimization. This approach, however, is more complex
and seems unnecessary given the small effects we report below using the simpler approach.
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Table 1.4
The effect of trading discrete contract sizes on the ex-post performance of the static and dynamic
asset allocation strategies.

Static: Dynamic: Dynamic:
Benchmark Portfolio Minimum Volatility Maximum Return

Initial Wealth µ σ SR µ σ SR µ σ SR

$ 100,000 12.46 17.30 0.720 8.21 9.18 0.894 11.29 12.84 0.880
500,000 7.94 11.58 0.686 8.46 8.95 0.945 11.94 12.71 0.939

1,000,000 8.18 11.17 0.733 8.01 8.88 0.903 11.66 12.65 0.922
5,000,000 8.12 11.29 0.719 8.03 8.84 0.908 11.67 12.65 0.922

10,000,000 8.12 11.30 0.718 8.02 8.84 0.907 11.60 12.65 0.917
50,000,000 8.13 11.30 0.719 8.01 8.84 0.906 11.62 12.65 0.919
100,000,000 8.12 11.30 0.719 8.01 8.84 0.906 11.63 12.65 0.919
500,000,000 8.13 11.30 0.719 8.01 8.84 0.906 11.62 12.65 0.919

1.6 Conclusions

Our results indicate that volatility timing can improve the performance of short-
horizon investment strategies. In particular, an investor trading stock, bond, and
gold futures can use daily forecasts of the conditional covariance matrix to form a
dynamic trading strategy that outperforms any fixed-weight benchmark portfolio.
For the limiting case with no estimation risk, the dynamic strategies that minimize
volatility and maximize return realize Sharpe ratios of 0.91 and 0.92, respectively.
By comparison, the Sharpe ratio for a traditional benchmark portfolio is 0.72. The
benefits of volatility timing are smaller, but still positive, after we account for
estimation risk and the optimal choice of benchmark portfolio.

Additional tests indicate that the performance differential is robust to several
practical considerations. First, accounting for the transaction costs of active trading
and for discrete contract sizes does not eliminate the advantage of the dynamic
strategies. Second, the results are insensitive to the target level of expected return
or volatility. Finally, our results may be conservative in that they rely on a simple
volatility specification rather than on a more complex parametric model.
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