
Economics Letters 91 (2006) 343–348

www.elsevier.com/locate/econbase
Bootstrap tests of multiple inequality restrictions on variance ratios

Jeff Fleming a, Chris Kirby b,*, Barbara Ostdiek a

a Jones Graduate School, Rice University, Houston, TX 77005, United States
b John E. Walker Department of Economics, Clemson University, Box 341309, Clemson, SC 29634-1309, United States

Received 9 February 2005; received in revised form 1 December 2005; accepted 8 December 2005

Available online 19 April 2006
Abstract

We develop a block bootstrap method for testing multiple inequality restrictions on variance ratios. The

proposed test has reasonable size and power in the presence of strong persistence in conditional variances, making

it well suited to applications in financial econometrics.
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1. Introduction

Variance ratio tests have many uses in economics and finance. One well-known application is testing

the random-walk model of stock prices (Lo and MacKinlay, 1988). Under the random-walk model, the

variance of k-period stock returns divided by the variance of single-period stock returns equals the

horizon k. Although asymptotic methods can be used to test this restriction, studies of related tests

suggest that these methods are unreliable if the data display strong persistence in conditional variances

(see, e.g., Andersen et al., 2001). Resampling and subsampling methods, on the other hand, appear to

perform well under such circumstances, at least in the context of testing the random-walk model (see,

e.g., Whang and Kim, 2003).
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In other applications, the analysis of variance ratios generates multiple inequality restrictions.

Fleming et al. (in press), for example, study the ratio of trading-period to nontrading-period return

variances for weather-sensitive commodities. Under their model, this ratio should be smaller during

the weather-sensitive season than during the rest of the year. Even if the analysis does not focus on

variance ratio inequalities, it may suggest hypotheses that can be formulated in terms of these

inequalities. For instance, Engle and Colacito (in press) use portfolio variances to assess the relative

performance of competing estimators of the conditional covariance matrix of asset returns. The

hypothesis that a given covariance matrix estimator is superior to all others considered can be

expressed as a set of variance ratio inequalities.

In this paper, we propose a bootstrap test of multiple inequality restrictions on variance ratios.

Since inequality restrictions do not specify unique parameter values, they are more challenging to

test than equality restrictions. The usual strategy for resolving the ambiguity inherent in the null

hypothesis is to construct critical values using the parameter configuration least favorable to the

alternative hypothesis (see, e.g., Perlman, 1969; Wolak, 1987, 1989). There are a few studies, such

as White (2000), that use bootstrap methods to implement inequality tests. However, little is known

about the performance of these tests under autoregressive conditional heteroscedasticity (ARCH),

especially for restrictions that involve unconditional variances. We use simulations to address this

issue.
2. Test statistic and bootstrap procedure

Suppose that Yt=(Y0t, Y1t, . . . , Ynt)V is generated by a stationary stochastic process of the form

Yt ¼ lþ et; ð1Þ

where et is vector white noise.1 Let VRi =r0
2 /ri

2 denote the ratio of var(Y0t) to var(Yit). To illustrate our

methodology, we consider the null and alternative hypotheses

H0: VRiV1 8 i ¼ 1; 2; . . . ; n; HA: VRiN1 for some ia 1; 2; . . . ; nð Þ: ð2Þ

Other types of inequality restrictions can be tested using the same approach. For example, Fleming et

al. (in press) test hypotheses about differences in variance ratios.

Let Y ¼ Y1; Y2; . . . ;YTð Þ; lT Yð Þ ¼ 1=Tð Þ
PT

t¼1 Yt; and et ¼ Yt � lT Yð Þ. Our test of H0 is based

on the statistic

hT Yð Þ ¼ max
1ViVn

ffiffiffiffi
T
p VRiT Yð Þ � 1

ciT Yð Þ

�
;

�
ð3Þ

where

VRiT Yð Þ ¼ r2
0T Yð Þ

r2
iT Yð Þ ; ð4Þ
1 We specify a serially uncorrelated process for ease of exposition. The results generalize to autoregressive specifications in a

straightforward fashion.
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r2
0T Yð Þ ¼ 1=Tð Þ

PT
t¼1 e

2
0t; r2

iT Yð Þ ¼ 1=Tð Þ
PT

t¼1 e
2
it; and ciT Yð Þ denotes a consistent estimator of

ci ¼ r�2i

Xl
s¼�l

E e20t � VRie
2
it

� �
e20t�s � VRie

2
it�s

� �� � !1=2

: ð5Þ

It is straightforward to show that
ffiffiffiffi
T
p

VRiT Yð Þ � VRið Þ=ciT Yð ÞYd N 0; 1ð Þ:2 Thus, hT (Y) is simply the

largest of the t-statistics obtained by setting VRi=1 for each i=1, 2, . . . , n. We studentize the variance

ratios because using asymptotically pivotal or nearly pivotal statistics improves the performance of

bootstrap methods.

Now suppose we have T observations y=( y1, y2, . . . , yT) from the process in Eq. (1) and let

FT(c)=P(hT(Y)Vc) denote the probability that hT (Y) is less than or equal to c. We use a block bootstrap

approach to approximate FT(c). First, we construct a resample y*=( y1*, y2*, . . . , yT*) using the stationary

bootstrap of Politis and Romano (1994).3 The resample is such that, in general, if yi*=yt, then y*i+1=yt+1
with probability p and y*i+1 is drawn randomly from ( y1, y2, . . . , yT) with probability 1�p. This delivers

an expected block length of L̄=1/ (1�p). Second, we calculate

h4
1ð Þ

T ¼ max
1ViVn

ffiffiffiffi
T
p VRiT Yð ÞjY¼y4 � VRiT Yð ÞjY¼y

ciT Yð ÞjY¼y4

!
:

 
ð6Þ

Finally, after replicating the first two steps M times to obtain hT*
(1), hT*

(2), . . . , hT*
(M), we approximate

FT(c) by

F̂FT cð Þ ¼ 1

M

XM
m¼1

I h4
mð Þ

T � hT Yð ÞjY¼yVc
� �

; ð7Þ

where I(d ) denotes the indicator function. This corresponds to bootstrapping the distribution of hT(Y)
under the least favorable configuration (LFC), i.e., when all the inequalities are binding (Wolak, 1987).4

The resulting critical value for testing H0 at significance level m is given by inf{c : F̂T(c)z1�m}.
3. Monte Carlo experiments

We use simulations to investigate the size and power of the test under various assumptions about the

data generating process. For our baseline case we take Yt|yt�1, . . . , y1 to be N(0,R) with Rij =rirjqij. We

set n=5, r0=1, and qij=0:3 for all i p j. Since the test size depends on the number of binding

inequalities, we consider three configurations: VRi =1 for (i) i=1; (ii) iV3; and (iii) 8i. The non-binding
inequalities have VRi=0.5. For the power calculations, we set VR1=1.5 and keep all the other
2 To see this, consider an exactly identified GMM system based on the moments E(e0t)=0, E(eit)=0, and E(e20t�VRie
2
it)=0.

We assume that E(eit
2ejt)=0 for all i =0, 1, . . . , n and j =0, 1, . . . , n, so that

ffiffiffiffi
T
p

VRiT Yð Þ � VRið Þ is asymptotically independent

of
ffiffiffiffi
T
p

l0T Yð Þ � l0ð Þ and
ffiffiffiffi
T
p

liT Yð Þ � lið Þ: This can easily be relaxed if skewness is important.
3 See Goncalves and de Jong (2003) for a proof of the first-order asymptotic validity of the stationary bootstrap under the

existence of only slightly more than second moments.
4 The LFC implies that

ffiffiffiffi
T
p

VRiT Yð Þ � 1ð Þ is asymptotically distributed as N(0,ci
2) 8i =1, 2, . . . , n. Since the bootstrap

distribution of
ffiffiffiffi
T
p ðVRiT Yð ÞjY¼y4 � VRiT Yð ÞjY¼yÞ is centered at zero, it follows that the bootstrap delivers critical values for

the LFC. See White (2000).



Table 1

Monte Carlo evidence on size and power

Observations Binding Homoscedastic data GARCH data

L̄=5 L̄=10 L̄=20 L̄=40 L̄=5 L̄=10 L̄=20 L̄=40

Panel A: Estimated size of hT

T=320 1 0.013 0.011 0.013 0.016 0.070 0.036 0.027 0.018

3 0.036 0.031 0.035 0.051 0.157 0.087 0.061 0.058

5 0.059 0.049 0.054 0.072 0.216 0.128 0.095 0.083

T=640 1 0.012 0.011 0.016 0.019 0.063 0.044 0.032 0.022

3 0.035 0.032 0.038 0.045 0.153 0.096 0.068 0.052

5 0.054 0.058 0.055 0.066 0.216 0.141 0.095 0.078

T=1280 1 0.010 0.017 0.012 0.016 0.063 0.044 0.026 0.024

3 0.029 0.034 0.037 0.040 0.154 0.098 0.074 0.056

5 0.047 0.046 0.055 0.059 0.213 0.138 0.104 0.080

T=2560 1 0.016 0.014 0.017 0.019 0.068 0.047 0.032 0.024

3 0.035 0.032 0.038 0.035 0.160 0.100 0.074 0.049

5 0.057 0.049 0.060 0.053 0.226 0.145 0.110 0.070

Panel B: Estimated power of hT

T=320 0 0.928 0.919 0.881 0.817 0.654 0.567 0.421 0.297

2 0.927 0.919 0.881 0.817 0.664 0.572 0.431 0.313

4 0.927 0.919 0.881 0.818 0.673 0.579 0.444 0.322

T=640 0 0.999 0.999 0.998 0.996 0.875 0.809 0.710 0.604

2 0.999 0.999 0.998 0.996 0.876 0.811 0.711 0.606

4 0.999 0.999 0.998 0.996 0.879 0.811 0.711 0.609

T=1280 0 1.000 1.000 1.000 1.000 0.985 0.971 0.948 0.908

2 1.000 1.000 1.000 1.000 0.985 0.971 0.948 0.908

4 1.000 1.000 1.000 1.000 0.985 0.971 0.949 0.908

T=2560 0 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999

2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999

4 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999

The table documents the size and power of the test under homoscedasticity and under ARCH. Panel A reports the estimated size

at 5%. Panel B reports the estimated power at 5% based on a violation of the first inequality. bBindingQ is the number of binding

inequalities. The parameter settings are given in the text. All results are based on 2000 simulation trials with 2000 bootstrap

replications per trial.
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parameters the same. To illustrate the impact of ARCH on the test, we take Yt|yt�1, . . . , y1 to be N(0,Ht)

with Hijt=hit
1 / 2hjt

1 / 2qij, where hit and hjt are univariate GARCH(1,1) processes of the form

hit ¼ fi þ bihit�1 þ aiy
2
it�1; ð8Þ

with fi=ri
2(1�ai�bi). We set ai=0.05, bi=0.9 and hi0=ri

2 for all i=0, 1, . . . , n. The values of qij are

identical to the baseline case.

We generate samples of 320, 640, 1280, and 2560 observations from each process. To construct

hT(Y), we need to estimate ci. This is accomplished using a standard kernel-based estimator of the form

ciT Yð Þ ¼ r�2iT Yð Þ x 0ð Þ
iT Yð Þ þ

Xq
s¼1

2 1� s 1þ qð Þ�1
� �

x sð Þ
iT Yð Þ

 !1=2

; ð9Þ
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where

x sð Þ
iT Yð Þ ¼ 1

T

XT
t¼sþ1

e20t � VRiT Yð Þe2it
� �

e20t�s � VRiT Yð Þe2it�s
� �

: ð10Þ

The lag truncation parameter q is set 40% larger than the expected block length, i.e., q=1.4L̄. We

consider four values of L̄: 5, 10, 20, and 40. In all cases, we perform 2000 simulation trials with

M=2000 bootstrap replications per trial.

Table 1 summarizes the results. Panel A reports the estimated size of the test at a nominal

significance level of 5%. The rejection rate under homoscedasticity is not sensitive to either the

value of T or the value of L̄. The rate is close to 5% for the scenario in which all of the inequalities

are binding, and falls (as expected) as the number of binding inequalities decreases. This relation

follows from using the LFC to construct critical values. In contrast, the rejection rate under ARCH is

sensitive to the value of L̄. For the scenario in which all of the inequalities are binding, the rejection

rate falls from about 22% with L̄=5% to 7% or 8% with L̄=40. Thus, using a moderate to large

block length seems prudent if ARCH is suspected.

Panel B reports the estimated power of the test at a nominal significance level of 5% based on a

violation of the first inequality restriction. We focus on the results for L̄=40, i.e., the expected block

length that shows the least evidence of size distortions. In general, the test has good power for the

homoscedastic case. The rejection rate exceeds 99% for Tz640. Not surprisingly, the presence of

ARCH leads to a reduction in power, but even in this case the rejection rate exceeds 90% for

Tz1280. To put this in context, five years of daily stock return data is about 1260 observations, and

samples larger than this are common place in the volatility modeling literature. Therefore, it appears

that the power under ARCH is adequate for empirically relevant values of T.
4. Concluding remarks

We develop a bootstrap test of multiple inequality restrictions on variance ratios. Our test is easy to

implement and has reasonable size and power for data that display strong persistence in conditional

variances provided the choice of block length is not too conservative. Given these findings, it would be

interesting to investigate the performance of our test using an automatic block-length selection procedure

like that of Politis and White (2004). We leave this to future research.
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