Use of Analytical Models in Prospect Evaluation of Gas Hydrate Reservoirs

Mehran Pooladi-Darvish

Hart Conference – Commercialization of Gas HydratesDecember 5, 2006, HoustonSCHULICH
School of Engineering

Prospect Evaluation: Realm of High Uncertainty

Limited Data

2

Objectives

• For a hydrate reservoir with underlying free gas

- Develop, validate and use analytical models for quantifying of
 - The upside in gas recovery associated with the hydrates (forward model)
 - Hydrate reserve (backward model)

Production by Depressurization

Simplest: Produce from the gas Least energy intensive: No external heating agent Examples: Messoyakha, Alaska, Mackenzie Delta

Not a proven technology yet: Use mathematical models!!

Depressurization Mechanisms

- Decomposition rate is controlled by our ability to
 - 1. Provide heat of decomposition: 11,000 BTU/ft³ hydrate

5

Depressurization Mechanisms

- Decomposition rate is controlled by our ability to
 - Provide heat of decomposition: 11,000 BTU/ft³ hydrate
 - From surrounding rock

Depressurization Mechanisms

- Decomposition rate is controlled by our ability to
 - 2. Reduce the pressure within the hydrate zone

Development of Analytical Model

Assumptions

- Deep decomposition
 - No vertical gradient (time-scale of one month)
- Tank-type model (zero-dimensional modeling)
 - No radial gradient (time-scale of one month)
- Equilibrium decomposition
- Complete contact between the gas and the hydrate
- No water flow
- Constant gas production rate

A Material (& Energy) Balance Equation

Material Balance

- $G_p = q.t$
- G_H = Gas generated from the hydrates
- $G_p G_H =$ Net gas produced
- Heat equation:

Heat from cap and base + sensible heat = Heat available for decomposition (G_H)

Equilibrium relation

$$p = \exp\left(a + \frac{c}{T}\right)$$

 $\frac{p}{Z} = \frac{p_i}{Z_i} \left(1 - \frac{G_p - G_H}{G} \right)$

The three unknowns, p, T, and G_H are found

Solutions (CIPC 2006-018)

$$\mathbf{q_g(t)} = \frac{\mathbf{B_H} \mathbf{A} \mathbf{H} \mathbf{\rho} \mathbf{c_p}}{\mathbf{\rho_H} \Delta \mathbf{H}} \mathbf{b(t)} \left(\frac{\mathbf{4} \mathbf{\rho_r} \mathbf{c_{pr}}}{\sqrt{\pi} \mathbf{\rho} \mathbf{c_p}} \frac{\sqrt{\alpha_r}}{\mathbf{H}} \sqrt{\mathbf{t}} + 1 \right)$$

$$b(t) = \frac{q_{p}}{\left[\frac{1 - (p_{oe}Z_{i})/(p_{i}Z_{oe})}{T_{i} - T_{oe}}G_{f} + \frac{B_{H}AH\rho c_{p}}{\rho_{H}\Delta H} \left(\frac{8}{3H\rho c_{p}}\sqrt{k_{cr}\rho_{r}C_{pr}t} + 1\right)\right]}$$

$$p = \exp\left(a + \frac{c}{T}\right) \qquad T = T_i - b(t)t$$

Solutions (SPE 102234)

$$\psi_{wf} = \overline{\psi} - \frac{q_w p_{sc} T}{\pi T_{sc} k h_t} \left[\ln \left(\frac{r_e}{r_w} \right) - \frac{3}{4} + S \right]$$

$$Ste = \frac{\rho c_p \Delta T}{\rho_H \phi S_H \Delta H} \qquad N_p = \frac{q_p / G_f}{\alpha / H^2} \qquad N_b = \frac{b / \Delta T}{\alpha / H^2}$$

Validation against Numerical Simulator (Hydrsim)

Heat flow

- Conduction and convection
- Decomposition heat of hydrate
- Heat input from the cap/base rock
- Heat output by the producing fluids

Fluid flow

- Multi-phase flow through porous media
- Generation of fluids due to decomposition
- Gravity, capillary and viscous forces
- Intrinsic Kinetics of decomposition
 - The Kim-Bishnoi model
- No geomechanical changes

Base Case

Validation – Average Pressure

Various Cases

- Porosity
- Thermal conductivity
- Production rate
- Net pay
- Drainage area
- Initial Pressure
- Permeability

Validation – Hydrate Recovery

SCHULICI School of Engineeri

Validation – Flowing BHP

17

SCHULIC

Prospect Evaluation Uncertain Input Parameters

- Thickness of the hydrate layer (10, 30, 50 ft)
- Thickness of the free gas zone (3, 10, 30 ft)
- Hydrate Saturation (0.5, 0.6, 0.8)
- Porosity

18

- Drainage Area
- **Equilibrium relation**

Total vs. Free Gas In Place

SCHULICH School of Engineerin

Hydrate Recovery

SCHUI

Bottomhole Pressure

Hydrate Contribution in Rate

SCHUU

22

Why Analytical?

Limited data requires risk analysis (hundred's of runs)

Speed-up factor

- One simulation run:
- 10,000 analytical runs:
- Speed-up factor:

10 hours 2 minutes 3×10⁶

Availability and ease of use

Reserve Estimation

Conclusions

- For the cases studied
 - Hydrate contribution to gas production was significant
- A "simple" material (and energy) balance equation was developed
- The simple model allows prospect evaluation and large number of runs required in risk analysis
 - Evaluate the upside due to contribution of hydrates
 - Etc.
- In an inverse mode, the model can be used for reserve estimation

Acknowledgments

- H. Hong, S. Gerami, A. Shahbazi, ...
- University of Calgary, Hydrate Resource Recovery Consortium
- Fekete Associates Inc and Mineral Management Services
- Imperial Oil, CMG, GSC, NSERC, AERI, NRCan
- Mallik Research team, Drs. Scott Dallimore & Fred Wright

Thank you!

Questions?

