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Prospect Evaluation:
Realm of High Uncertainty

Limited Data

——> Analytical Models

Need for large number of runs

and risk analysis

Recoverable Reserve
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Objectives

m For a hydrate reservoir with underlying free gas
m Develop, validate and use analytical models for

quantifying of

m The upside in gas recovery associated with the

hydrates (forward model)

m Hydrate reserve (backward model)
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Production by Depressurization

Simplest: Produce from the gas
Least energy intensive: No external heating agent

Examples: Messoyakha, Alaska, Mackenzie Delta

Not a proven technology yet: Use mathematical models!!
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Depressurization Mechanisms

m Decomposition rate is controlled by our ability to
1. Provide heat of decomposition: 11,000 BTU/ft3 hydrate

-Hydrate: Su¢
1 . Rock and water: (1-¢)+ S\,\%«ﬁ/'

1
| Ste=pc, AT/p, S, ¢4H ‘
| Ste=0.1 —-0.45

R,=10% to 45%

1 ft3 > 160 SCF
(2500 psia, equivalen
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Depressurization Mechanisms

m Decomposition rate is controlled by our ability to
m Provide heat of decomposition: 11,000 BTU/ft3 hydrate
m From surrounding rock

10 y
2
CAP ROCK T m
-5 3%
5T
C
3
0 _______________________________________________________
-§- HYDRATE ZONE
£ 5
o
o
(=]
10
15
FREE GAS ZONE
20
4 6 8 10 12
—- Temperature (C)

SCHULICH " &

School of anmwring_ ]



Depressurization Mechanisms

m Decomposition rate is controlled by our ability to
2. Reduce the pressure within the hydrate zone

K(S,) = 0.01 mD
o = 30%

n=1cp 15 20
c,—= 1x10-5 psi-? Time (days)
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Depressurization Mechanisms

m Decomposition rate is controlled by our ability to
2. Reduce the pressure within the hydrate zone

K(S,) = 0.01 mD
b = 30%

p=1cp

c,= 1>10" psi-t

1 1.5 2

Time (years)
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Development of Analytical Model

m Assumptions

m Deep decomposition
m No vertical gradient (time-scale of one month)

m Tank-type model (zero-dimensional modeling)
m No radial gradient (time-scale of one month)

m Equilibrium decomposition

m Complete contact between the gas and the hydrate
m No water flow

m Constant gas production rate
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A Material (& Energy) Balance

Equation
m Material Balance
m G, = Gas generated from the z _Z G

hydrates
= G, — G, = Net gas produced

m Heat equation:
Heat from cap and base + sensible heat =
Heat available for decomposition (G.)

m Equilibrium relation C
p=expla+ T

m The three unknowns, p, T, and G, are found
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Solutions (CIPC 2006-018)

0,0 PR )| R0

p ].[AH 1/1?9 cp H
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Ti _Toe pHAH 3H,0 Cp\/;

p=exp(a +f) T=T -5t

{1—( peri)/(nZoe)Gf+BHAFlPCp( 8 fopc Hlﬂ
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Validation against Numerical
Simulator (Hydrsim)

m Heat flow
m Conduction and convection
m Decomposition heat of hydrate
m Heat input from the cap/base rock
m Heat output by the producing fluids
m Fluid flow
m Multi-phase flow through porous media
m Generation of fluids due to decomposition
m Gravity, capillary and viscous forces

m Intrinsic Kinetics of decomposition
m The Kim-Bishnoi model

m No geomechanical changes
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Base Case

One well per 160 acres g = 1 MMSCF/day
1490 ft
| |

30 ft
p; = 1240 psia
— Swi= 0.2
toft K = 50 mD
B o = 30%
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Validation — Average Pressure

m  Various Cases
m Porosity
m Thermal conductivity
m Production rate
m Net pay
m Drainage area
m Initial Pressure
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Validation — Hydrate Recovery

Somewhat optimistic!

<
S
>
—
(O]
>
o
(&)
(]
e
(]
)
©
} -
©
>
T

24
Time (months)

S— _.I_ .‘-. -
scHyUCH "G

i of E

16 ‘Qﬁm




Validation — Flowing BHP
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Prospect Evaluation
Uncertain Input Parameters

m Thickness of the hydrate layer (10, 30, 50 ft)
m Thickness of the free gas zone (3, 10, 30 ft)
m Hydrate Saturation (0.5, 0.6, 0.8)

m Porosity

m Drainage Area

m Equilibrium relation

Triang(10, 30, 50) Triang(3, 10, 30) Triang(0.2, 0.3, 0.5)
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Total vs. Free Gas In Place

8 10 12
Total and Free Gas In Place (BCF)




Hydrate Recovery

-0.5 0

R, = N, 7 Ste Jr+N,
h Ba

10% 20% 30% 40% 50%
Hydrate Recovery at 5 years




Bottomhole Pressure
{In[ij—EJrS
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Freezing at 330 psia

500 600 700 800 900
Bottomhole Pressure at 5 years
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Hydrate Contribution in Rate
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Why Analytical?

m Limited data requires risk analysis (hundred’s of runs)

m Speed-up factor

m One simulation run: 10 hours
m 10,000 analytical runs: 2 minutes
m Speed-up factor: 3x106

m Availability and ease of use
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Reserve Estimation

OGIP #m# Analytical #
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Conclusions

For the cases studied
m Hydrate contribution to gas production was significant

A “simple” material (and energy) balance equation was
developed

The simple model allows prospect evaluation and large number
of runs required in risk analysis

m Evaluate the upside due to contribution of hydrates
m Etc.

In an inverse mode, the model can be used for reserve
estimation
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Thank you!

Questions?
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