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Building Working Models:

The Earth Energy System

In Section 1II, we introduced the Earth energy We can identify two drivers in this model,
system model and then modified the input side “Solar Constant” and “Earth Albedo.”

and discussed some changes to the output side. Although we are treating both as constants

We now add several more elements to produce this time, they could become variables.

a working model of the Earth energy system. “Solar Constant,” the amount of solar

The physical principle invoked in this model is radiation a square meter receives each year at
the conservation of energy. Radiant energy in the top of the Earth’s atmosphere at the Earth’s
the form of visible sunlight is absorbed by the average distance from the Sun (see Glossary),
Earth’s surface; this energy warms the surface could change to reflect changes in the Earth’s
and the temperature increases. The Earth orbit, and “Earth Albedo,” the percentage of
radiates energy into space in the infrared region  that radiation Earth reflects back into space,

of the electromagnetic spectrum,; this loss of could change in response to global ice cover
energy tends to cool the surface. The model for and global cloudiness. (Both ice and clouds

the Earth energy system conserves the energy reflect radiation.) Other converters have been
flowing to and from the Earth and finds the added to the diagram to permit the computa-
temperature at which the energy flows are tion of the needed parameters and variables. I
balanced. have introduced two small separate subsystems

Earth Energy
Solar to Earth Infrared to Space
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SYSTEM BEHAVIOR AND SYSTEM MODELING

at the bottom of the system diagram. The one
on the left uses “Earth Diameter” to compute
the “Earth Cross Section” and “Earth Surface
Area.” These two parameters are ghosted into
the main diagram. To the right, the converter
“Seconds per Year” is used to convert “Solar
Constant” and “Stefan Boltzmann” to annual
values. (See equations 10, 11, and 13.)

All physical models work in time units of
seconds, but it becomes awkward to express a
year as 31,557,600 s when working with global
models. (This number assumes 365.25 days/
year to include leap years.) We can use other
time units in our models, but we must carefully
convert all physical parameters involving time
to the new time units.

When a working part of the model is set
aside from the main system diagram (the main
program), we call it a subroutine. The output
from the subroutine computation can be con-
nected to the main program with a connector,
but it is best to ghost it in. Similarly, parameters

Earth Energy Model Equations

for us.}

w N

Temperature”™4 {K4}
Density_Water = 1000. {kg/m3}
Earth_Albedo = 0.30 {30% as a fraction}

Earth_Diameter = 12742¢3 {m}

o e N oy e

Specific_Heat_Water {J/kg K}
10. Seconds_per Year = 3.15576E7 {s/yr}

12. Specific Heat Water = 4218. {J /kg K}

needed by the subroutine should be ghosted
into it.

Below are listed all of the equations and
constants used by the model; we will not go
through all of them in detail as we did with the
bathtub model. All physical parameters are
expressed in SI units. (The SI stands for Systeme
Internationale d'Unités, which is the interna-
tionally endorsed form of the metric system
similar to the MKS [Meter-Kilogram-Second]
system.)

The curly brackets, { |, have been used exten-
sively in these equations to document the units
involved and other modeler's comments.

We have chosen to store the “Earth Energy”
In a one-meter layer of water covering the
Earth’s surface. This decision is frequently used
by global modelers, and such models are called
“swamp models” because to simplify the model
they treat the Earth’s surface as if it had the
uniform conditions similar to the surface of a
swamp. Equations 4, 9, 12, and 14 are involved

1. Earth_Energy(t) = Earth_Energy(t - dt) + (Solar_to_Earth - Infrared_to_Space) * dt
INIT Earth_Energy = 0.0 {]J, We do not know to put here yet. Let the model compute it

Solar_to_Earth = Solar_Constant {J/m2 yr} * (1-Earth_Albedo) * Earth_Cross_ Section {m2}
Infrared_to_Space = Earth_Surface_Area {m2} * Stefan_Boltzmann {J/m2 yr K4} *

Earth_Cross_Section = PI*Earth_Diameter”2 /4 {m?2}

Earth_Surface_Area = PI*Earth_Diameter™2 {m2}

Heat_Capacity = Water_Depth {m} * Earth_Surface_Area {m2} * Density_Water (kg/m3} *
11. Solar_Constant = 1368 {]/m2 s} * Seconds_per_Year {s/yr}

13. Stefan_Boltzmann = 5.67E-8 {J]/m2 s K4} * Seconds_per_Year {s/yrl

14. Temperature = Earth_Energy {J} / Heat_Capacity {J/K, 1st Law of Thermodynamics|
15. Water_Depth = 1.0 {m, temporary assumption}
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in the computation of the “Temperature.” In
Equation 9 the mass of the layer of water is
computed and multiplied by the specific heat
capacity of water to obtain the “Heat Capacity”
of our swamp Earth. Equations 2 and 14 were
discussed in Section III. Note that in Equation

1 we have set the initial value of the “Earth
Energy” at zero; this is arbitrary, but allows
us to watch the Earth warm up from
absolute zerc.

This mode] produces the output plotted
on the graph below.

The format for this graph is the same as the
bathtub graphs. All of the vertical axis scales
have been set to place the maximum value of
each plotted variable at the top of the graph.
This enables us to read the maximum values
directly from the upper axis scales.

“Salar to Earth” (3) in the graph is a constant
in this scenario; our only reason for plotting
it was to obtain its value on the vertical axis
scale. “Temperature” (1) and “Earth Energy”
(4) are plotted exactly on top of each other. This
always happens when two variables are linearly
related and the plotting scales are normalized

=

1: Temperature 2: Infrared to Space

3: Solar to Earth 4:

to their maximum values; Equation 14 gives the
linear relationship between “Temperature” (1)
and “Earth Energy” (4). “Infrared to Space” (2)
follows a different curve because “Infrared to
Space” is proportional to the fourth power of
“Temperature,” T* (Equation 3). When T'is
small relative to its maximum value, then T? is
very, very small, as shown on the lower left
corner of the graph; as the two variables
approach their maximum values, “Infrared to
Space” catches up with “Temperature,” and
they both slowly merge to their maximum
values. This type of system behavior, in which
output variables ultimately achieve a constant
value and approach that value slowly, is called
an “asymptotic apprcach to a steady-state
solution.”

Looking again at the output graph, we
see that the model in the steady-state region
predicts a temperature for the Earth of 255 K,
or —187 C. This may seem low, but is actually
a valid answer, since it represents a global
average including the polar regions and the
entire atmosphere, where temperature
decreases approximately 7° C for every

Earth Energy
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kilometer increase in altitude. At the tropopause
(the top of the lowest layer of the atmosphere,
at about 12 km altitude) the temperature is

—60° C! If the Earth’s mean temperature were
measured from space using infrared detectors,
the value would be close to 255 K. The temper-
ature computed using a planet’s radiation
balance is called the “effective planetary
temperature”; it closely matches the planet’s
temperature measured from space. The

effective planetary temperature is an important
parameter for characterizing a planet’s relation-
ship to the Sun and its fundamental thermal
condition. At this temperature the planet radi-
ates into space exactly the same energy per day
that it receives from the Sun. This is a very
delicate balance, and any deviation will cause
the planet to warm or cool. The effective plane-
tary temperature and the black-body radiation
law act together like an overall negative

long to be seen with our eyes.

A new physical equation is introduced in Equation 3, on page 28, the Stefan-
Boltzmann or “blackbody” radiation law. It is:

R,=oT*

b

The Stefan-Boltzmann constant, @, is 6= 5.67 x10* Wm2K* its value is given in
Equation 13 (where the units are also changed to the annual value). The Stefan-
Boltzmann law computes the total power radiated per unit area, R, from a perfect
black material at a uniform temperature, T.

The name “blackbody radiator” seems a strange name to apply to our Earth, which
we know from space photographs is predominantly blue, white, and green. The visible
colors of the Earth, however, are the reflected light from the Sun, not the radiation
produced by the Earth itself. We would need infrared eyes to see the Earth’s own
radiation, and we would see an entirely different Earth. When we look at an object
that absorbs all the radiation that strikes it, it appears completely black. Physicists
have proven that all materials radiate electromagnetic energy at each wavelength
with exactly the same efficiency that they absorb radiation at the same wavelength
(Kirchhoff's law). A “blackbody radiator,” which is a perfect absorber, is, therefore,
also a perfect radiator of electromagnetic radiation. It is the most efficient radiator
possible; it emits the maximum radiation possible at a given temperature, and the
distribution of that energy among the various wavelengths of the electromagnetic
spectrum follows a specific law that depends upon the temperature.

There are many examples of blackbody radiators in our everyday environment;
solar radiation is blackbody radiation. Because of the high temperature of the apparent
visible solar surface (approximately 6,000 K), solar radiation occurs primarily in the
visible light wavelengths. The incandescent light bulb is another example; the tem-
perature of the filament in the light bulb is approximately 2,800 K, and its light is
yellowish white. (When you use a dimmer on an incandescent light bulb you lower
the temperature of the filament; the light bulb produces less light, and the light
becomes yellow to red as it dims.) White lightning has a temperature about 30,000 K,
and is bluish white. The Earth’s effective temperature is around 255 K, and its radia-
tion is in the infrared part of the electromagnetic spectrum, at wavelengths much too
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behavior. Basically they mean that one sy
has a specific meaning in mathematics. If
variable, x, they are linearly related if the
tionship can be written: y = ax + b, where

“Bathtub” is a linear function of time whi

call it a quadratic relationship.

The terms linear and linearly related are frequently used in describing a system’s

function of another system variable, will plot as a straight line. This linear relationship

of this equation is that x has the power one (i.e., x'). Again, the word linear is used
because when y is plotted as a function of x, the result is a straight line. In Section IV,

If the algebraic relationship were y = ax*+ bx + c (c is another constant), we would

stem variable, when plotted on a graph as a
one variable, y, is a function of another

algebraic expression describing their rela-
a and b are constants. The important aspect

le the fill valve is on.

feedback process for the planet’s climate.
Because of the blackbody radiation law (radi-
ated power ¢ T?), a small increase in planetary
temperature will produce a proportionately
much larger increase in outward infrared radi-
ation, which will cool the planet. Similarly a
small decrease in planetary temperature will
cause a decrease in energy radiated, which will
warm the planet.

To obtain a temperature for the Earth’s sur-
face that more closely matches the actual sur-
face conditions, we need to modify the model to
include an atmosphere, so that greenhouse warm-
ing of the surface is incorporated. The figure
below illustrates the principles involved in the

Solar

IR to Space

Earth

{no atmosphere)

greenhouse effect. On the left is the situation
that we modeled, the Earth without an atmo-
sphere; the incoming solar energy is exactly
balanced at 255 K by the outgoing infrared
radiation to space.

Suppose the atmosphere lets all solar radia-
tion pass through, totally absorbs all infrared
radiation, and has a constant temperature.
What is the temperature of such an atmosphere?
The answer has to be 255 K, because the Earth
ultimately must reradiate to space all of the
energy received from the Sun, and our model
has computed 255 K as the temperature
required to do the job. In a simple model with
the atmosphere, it is the atmosphere, not the

IR to Space
Solar

&atmosphere

1 =253 K

tsimple atmosphere)
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Earth’s surface, that radiates into space. There-
fore it is the atmosphere that has the 255 K
temperature. But the temperature of the surface
under this atmosphere is no longer 255 K. Why?
Because it is now receiving both solar and
atmospheric radiation, and in our simple
scenario these two radiation sources are equal.
This is depicted on the right side of the figure
on page 31. (The atmosphere must radiate as
much radiation downward as it does upward,
because the molecules are emitting radiation in
all directions.) Now the Earth’s surface must
acquire a temperature sufficient to radiate twice
as much energy as before in order to reach a
steady state. Our blackbody equation tells us
that to achieve twice the radiation power the
temperature must increase by the factor /2 .*
Our new value for the surface temperature with
an atmosphere is 303 K = 30° C, which is about
right for June in Houston, but too high for a
global average surface temperature. The reason
our simple model gave us a temperature too
high was that we assumed a totally opaque
atmosphere in the infrared, where it is actually
partially transparent. However, by adding
greenhouse gases such as carbon dioxide to

the atmosphere we decrease the atmospheric
transparency in the infrared and make it more
opaque.

Let’s turn our attention to time constants. We
can make a reasonable guess at the warming
time constant for the “one-meter swamp Earth”
from the graph; approximately three months
were required for the Earth to reach the steady-
state temperature. But the change is slow
during the final two months. If we extend the
straight line portion (roughly the first month) of
the “Temperature” curve (1), which is also the
“Earth_Energy” curve (4), from time = 0.0 until

it crosses the top line representing the steady-
state solution, we find a time of approximately
1.5 months. Our guess is that the model Earth
warming time constant is between 1.5 and 3
months.

T

W

1

“Earth Energy”/”Solar to Earth”
5.48e+23/3.85e+24 = 0.142 years
= 1.7 months

We compute the warming time constant, wa
by dividing the reservoir “Earth Energy” (use
the steady-state value) by flow “Solar to Earth”;
this computation yields 1.7 months, an answer
close to that found from extending the straight
line portion of the graph. Notice that the
cooling time constant, TC = “Earth Energy”/
“Infrared to Space,” has exactly the same value
as the warming time constant; this is necessary
for the system to remain in the steady state.

Our “one-meter swamp” Earth model would
be totally useless for studying daily changes in
the Earth system because the water averages
out all thermal changes occurring in periods of
less than a month. But it could be modified to
explore seasonal or longer changes in the Earth
system because the water could respond to
changes occurring over periods longer than
1.7 months.

Why did we use one meter of water? It was
an arbitrary choice. One of the really satisfying
things about creating a working model is that
it can easily be modified to try other ideas. We
can, for instance, change the depth of the water
or change the water to rock and see what
happens. If we adapt our “swamp Earth” to
create two new Earth models, one with a half-
meter layer of water and the other with five
meters of rock, and run all three models, they
all reach the same final temperature: 255 K.

*Let R, and R, be the blackbody radiant powers emitted at temperatures T, and T; then we have R, =6 T *
and R, = 6 T,* when we apply the blackbody radiation law. If we now divide the second equation by the first
wegetR, /R =(0T,")/(cT") which simplifies to giveus R, / R, = (T, / T )*or T,/T, = im . For the
simple greenhouse model considered here, R, is 2R ; hence T, / T, = V2.
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This is not surprising, because it is a steady-
state model and we have not changed the two
drivers, “Solar Constant” and “Albedo.” The
difference is in how long it takes the models to
reach this temperature. The time constant for a
half-meter of water is exactly half that for one
meter of water; there is half as much water to
heat up, so it can reach any particular tempera-
‘ture twice as fast. The time constant for five
meters of rock is approximately four months.
If we had used an Earth-sized rock in the
model, we would still have ended up with a
temperature of 255 K, but it would have taken
a long time to reach a steady-state solution
(which is one reason for using a meter of
water). Another interesting comparison is to
find the thicknesses of various substances that
have the same warming time constant; the
values in the box that follows will probably
surprise you.

Now let’s ask the question in a different way.
Suppose we wanted a model with a surface that
would respond to the daily heating of the Sun.
How thick should we make the surface? We

Thicknesses for Equivalent Warming
Time Constants

1 meter of water = 2 meters of rock =
4,500 meters of air

know that a meter of water has a time constant
of 0.142 years; therefore, a centimeter of water
will have a time constant of 0.00142 years, or
12.4 hours, still a little too long to closely follow
daily solar heating. The daily thermal variations
between night and day do not penetrate more
than a few centimeters into the surface of this
planet. And seasonal variations, summer to
winter, all occur in the upper few meters.

In the oceans, currents and waves keep
the upper hundred meters of the water mixed;
the ocean temperature does not change signifi-
cantly with the seasons. The atmosphere, how-
ever, responds to changes on all of these time
scales. One centimeter of water has the same
time constant as 45 meters of air, and seasonal
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variations are felt through the entire tropo-
sphere, 12 kilometers thick.

We saw in the swamp Earth model that the
time constants for heating and cooling were
equal in the steady-state solution. Now imagine
that we have a switch to turn the Sun on and
off. Our model output tells us that when we
turn the Sun on, the Earth’s temperature
increases with a time constant of 1.7 months.
When the Sun is turned off, the Earth’s temper-
ature must decrease at the same rate. The Earth
has stored the solar energy, and cannot release
it faster than is allowed by the time constant. In
the swamp model there is always a delay of 1.7
months between a solar input change and the
readjustment of temperature to the new steady
state. This delay, or shift in the output variable
(temperature) relative to the driver (solar input)
is called a phase shift. We know from experience

that the hottest month of the year is usually
August in the northern latitudes but that the
largest daily input of solar energy occurs at
solstice on June 22, when the Northern Hemi-
sphere is at its maximum tilt toward the Sun.
Similarly, the hottest part of a summer day may
occur several hours after noon. These phase
shifts occur in many variables in many systems,
and can usually be traced to some time constant
related to a reservoir and a flow.

The time constant of a system plays an
important role in how the system responds
to system drivers with different time periods.
Consider the situation in which the system
driver is changing much faster than the time
constant of the system. The system in this case
responds by reducing or damping its response
to the driver; the system tends to average the
effect that the driver tries to produce. A meter

In our model and discussions we have included only the science that relates to
radiation laws, and we found a direct relationship between the energy received
by the Earth’s surface and the resulting steady-state temperature. For the real Earth,
processes like ocean currents or volcanic eruptions influence the measured global
average temperature. Over the longer time scales (longer than decades) radiation
processes will have the dominant influence.
At least part of the global warming controversy is semantics. Warming to the
scientist means increasing the radiant energy to the Earth’s surface; warming to
many others means increasing the temperature. Consider a pot of water on the stove.
As heat is added the temperature rises, but when the water starts boiling the tempera-
ture remains constant. Would you say that you were no longer warming the pot? The
scientists would say that the warming is continuing as before because heat is still
being added to the pot; others might respond that you are no longer warming the pot
because the temperature is no longer rising. Scientists look at the Earth and say with
certainty that increasing greenhouse gases cause global warming because they know
that additional greenhouse gases increase the infrared radiant energy from the atmo-
sphere to the Earth’s surface. In fact, there is as much scientific certainty in this conclu-
sion as there is in the law of gravity. Scientists are less concerned about the year-to-
year changes in global average temperature because these variations are normal and
expected. The use of global annual average temperatures as proof of global warming is
fraught with problems because they are difficult to measure and show a lot of natural
variability and because it takes a long time to demonstrate an unambiguous tempera-
ture increase using rigorous statistical techniques.
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thickness of water will exhibit a small tempera-
ture change in response to daily cycles in solar
radiation; yet the water will achieve an average
temperature corresponding to the average
solar input over a season. If the system driver
changes much more slowly than the system
time constant, the system will follow the
changes in the driver in a continuously evolv-
ing steady state. The average temperature of a
one-meter layer of water will gradually change
with the seasonal changes in solar radiation.

In systems capable of natural oscillations,

a special response can occur when the driver
period matches the system time constant. In
this case the system’s response is greater than it
would be to the same driver operating at slower
periods. This response is often called a resonance
response. We can illustrate all three responses
with a glass half filled with water. The glass

of water is the system, your hand the driver.

To determine the system time constant, push
the glass quickly to one side. The water sloshes
back and forth with a certain period, which is
the system time constant. When we move the
glass across the table more slowly than the time
constant, the water follows along with little
sloshing. If we wiggle the glass rapidly back
and forth at periods faster than the time con-
stant, we can create lots of small waves in the
glass, but the average height of the water in the
glass is unchanged. (You need to move your
hand fairly fast to make sure that you are faster
than the sloshing time constant.) Finally, when
we move the glass back and forth at a period
close to the system time constant, we observe
the sloshing amplitude grow and eventually
the water sloshes out of the glass.

In a large complex system like the Earth,
there are many subsystems and components
with many different time constants. The output
from such a system has a lot of natural varia-
bility; for a given set of drivers the system will
approach a steady state, but superposed on it
will be natural fluctuations. The system compo-
nents with time constants matching driver
periodicities will exhibit the largest regular

35

responses; the other system components pro-
duce apparently random variations sometimes
referred to as noise. It is only the average that is
steady in the steady state of a complex system.
One needs to look no further than the weather
to find a perfect example of large fluctuations
superposed upon a steady state. In fact, the
weather fluctuations are so large that defining
their averages becomes very difficult.

Exercises

1. The steady-state solution to the Earth energy
problem corresponds to the condition in
which the incoming solar radiation is exactly
balanced by (equal to) the outgoing infrared
radiation. We can write this steady-state
solution as an algebraic expression using
previously defined parameters.

S(1-A)nri=cT*4nr?
This equation simplifies to
S(1-A)=4cT*

The temperature in this equation is called
the effective planetary temperature; for the
Earth this is T, where T = 255 K. We now
form a difference equation from the steady-
state solution by allowing S and A to be
variables. (You may think of the difference
equation as the time derivative of the equa-
tion multiplied by the time difference, dt.)

dS (1-A)-SdA =4 ¢ 4T3dT

We divide this equation by the previous
equation (left-hand side by left-hand side
and right-hand side by right-hand side),
and rearrange the resulting equation.

dT 1 dS 1 A dA
T 4 S 4 (1A A
This form of the difference equation
expresses the fractional change in the Earth’s
steady-state temperature as a function of the
fractional change in the solar constant and

10
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the fractional change in the Earth’s albedo.
Equations written in this form are useful for
sensitivity studies. Note that the solar con-
stant variation term is positive, correspond-
ing to an increase in temperature associated
with an increase in solar constant. The Earth
albedo variation term is negative because
increases in albedo produce decreases in the
Earth’s temperature.

The sensitivity of the Earth’s temperature
to changes in the solar constant is measured
by the increase in temperature produced by
a 1% increase in the solar constant.

a. Find the sensitivity of the Earth’s
temperature to solar constant changes.

b. Find the sensitivity of the Earth’s
temperature to changes in the Earth’s
albedo (again, for a 1% change in albedo).
Assume a steady-state albedo, A =0.3
(30%).

c. Find the temperature sensitivities of
Venus (A= 0.71 [71%]) and Mars (A=0.17
[17%]) to albedo changes.

2. We can modify the first equation in Exercise

1 to include greenhouse warming of the
surface at temperature T, (=288 K) by an
atmosphere at temperature T ,. See the figure
for the greenhouse model on page 31.

S(A-A)rr’+aocT,4nr’=cT/ 4nr>

This equation expresses the energy
balance at the surface, which must occur for
the steady-state solution. The new second
term on the left-hand side of the equation
represents the infrared radiation incident on
the Earth’s surface from the atmosphere. We
have introduced a new parameter “a,” which
is the effective gray-body absorptivity for the
atmosphere. (A gray body is similar to a
blackbody but less efficient by the factor
“a.”) We have also used the property (known
as Kirchhoff's law) that a material emits
radiation at a given wavelength with the
same efficiency with which it absorbs
radiation at that same wavelength. The factor

36

“a” can take values between 0.0 and 1.0; a =
1.0 corresponds to a blackbody, and

a = 0.0 would be an atmosphere totally
transparent to infrared radiation and also
incapable of emitting infrared radiation. The
factor “a” is directly related to the amount of
greenhouse gases in the atmosphere.

The first equation in Exercise 1 is the
equation that defines the effective planetary
temperature T, (=255 K); so, we may use this
definition to replace the first term in the
equation above with 6 T,*4n r? Our
equation can now be expressed in a rather
simple form.

TS +aT,*=T*

This is still the energy balance equation
for the surface, but we are using temperature
variables to simplify the form of the
equation. We now want to write a similar
equation for the energy balance that must
occur in the atmosphere.

aTf=2aT,!

The left-hand side of this equation is the
radiation energy (per square meter) from the
surface (at T,) that is absorbed in the gray-
body atmosphere (with efficiency a). The
right-hand side is the total radiated energy
(per square meter) emitted by the atmo-
sphere; the factor 2 appears here because
the atmosphere radiates equal amounts of
energy upward into space and downward
to the surface. You may want to think of the
atmosphere as having two surfaces of equal
area, one facing upward and one facing
downward. Several algebraic steps were left
out in developing this last equation; you
should fill in the missing steps.

We can use this last equation to eliminate
the atmospheric temperature T, from our
previous result. Fill in the missing steps.

T = 1-2)T4
] 2 -

Following the methods that were used
in Exercise 1, we now form a difference

11
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equation allowing T, and “a” to be variables
but keeping T, constant. When the resulting
equation is written in the fractional format
for sensitivity analysis, we have the
following result.

dTS 1 a da

T

. a
5 8 (1—5) d

Specifying “a” for our model atmosphere
is somewhat difficult, because the real
atmosphere has many layers at many
different temperatures, rather than the sin gle
one used here, and the Earth’s atmosphere
has clouds that come and go at several
different levels. When an overall average
for the outgoing radiation for the whole
Earth is determined, we find that 7% of the
outgoing radiation comes from the surface,
with the balance of 93% from the atmo-
sphere, including the clouds. To use this
information we need to write an equation
for the fraction of the outgoing radiation
that originates within the atmosphere.

aT,ﬂ.4

= 0.93
aT,* + (1-a) T,

The numerator, you will recognize, is the
outward radiation (per square meter) from
the atmosphere. The denominator is the total
outward radiation; the second term is the
surface radiant energy that did not get
absorbed in the atmosphere. With the help
of the third equation in this problem, solve
the above equation for “a.” (Hint: Form the
ratio T,* / T.* in both equations.)

Using the value that you found for “a”,
find the sensitivity of the Earth’s surface
temperature to changes in the effective
gray-body absorptivity (again use a 1%
change in “a”).

Compare your result for the sensitivity
of the Earth’s surface temperature to changes
in the effective gray-body absorptivity
to your results from Exercise 1 for the
sensitivities to solar constant and albedo
changes. Considering that “a” is the result
of atmospheric greenhouse gases, comment
upon the relationship of humankind’s
alteration of the global concentration of
greenhouse gases to the natural global

~ energy balance.

12



