

The Emick Family Ranch

Water Flowing in a Pipe with Cross-section A and Velocity V

x is position of a parcel of water;
dx is the distance the parcel moves in the element of time dt .
Mass Flow $\{\mathrm{kg} / \mathrm{s}\}=\rho A d x / d t=\rho A V$
Mass is conserved; ρ and A are constant for this situation; therefore, V must also be constant.
Note that if there is a short section where A is reduced, then V must increase through the restriction.

Water Flowing in a Pipe with Cross-section A and Velocity V

x is position of a parcel of water;
$d x$ is the distance the parcel moves in the element of time $d t$.

$$
\begin{gathered}
\text { Mass Flow }\{\mathrm{kg} / \mathrm{s}\}=\rho A d x / d t=\rho A V \\
\text { Energy Flow }\{J / s\}=1 / 2 \rho A d x V^{2} / d t=1 / 2 \rho A V 3
\end{gathered}
$$

If we place a device in the flow as depicted above to extract energy from the flow, then by the second equation V must decrease, but this is not allowed by the first equation. Logically, if the water on the left is moving more slowly than the water on the right, there is insufficient space on the left for water on the right to go. The water must slow to the velocity of the water on the left; in which case no energy is extracted from the flow.

The problem is solved by increasing the crosssectional area on the left; now the water can move more slowly but still conserve the mass flow.
The amount of energy that can be extracted is controlled by the increase in cross-sectional area.

Working with wind generators is slightly different because air is compressible; however, the same principles that we found for the water example still apply for the wind. If we extract energy from the wind, the outflow will require a larger cross-sectional area.
The drawing below depicts the wind generator interaction.

- The equations that we used for water apply here as well.
- The behavior of the flow in the interaction zone is complex. Some of the air will pass between the generator blades and maintain its input velocity. Some of the air interacts with the blades producing the generator rotation. And, some of the air goes around the generator.
- In the interaction zone downwind of the generator turbulence mixes the air parcels producing an average flow velocity V_{0}.
- Farther downwind turbulent interactions with the flow beyond the generator will produce an overall average flow.
- Recall that the pressure depends only upon the mass of air over a point. The only pressure perturbations in the wind generator flow are in the interaction zone.

Turbine Trivia

 The Rotor:(). From cuff to tip, a 1.5 MWW wind turbine blade measures approximately 112 feet (34 meters) and weighs 35,000 pounds.
O) The diameter of the three-blade rotor set measures approximately 231 feet (70.5 meters) - 10\% longer than the wingspan of a jumbo jet. A Boeing $747-$ 400 has a wingspan of about 210 feet (64 meters).
©) The blades on each 1.5 MW wind turbine make 11-20 full revolutions per minute - one revolution every 2-3 seconds.

Turbine Trivia
 The 1.5 MW Wind Turbine:

()) Together, the Fenner Wind Power Facility's 108 wind turbines add 162 megawatts of clean wind power to the Colorado electricity grid.
O) The 108 turbine if to kiof will provide enough clean, re, waoble electricity to annually serve approximately 52,000 average American homes.
() With a capacity of 1.5 MW , one wind turbine can supply the annual electricity needs of more than 400 average American homes.

Turbine Trivia

 The Nacelle:
Turbine Trivia

 The Tower:(0) The 1.5 MW wind turbine sits atop a steel, tubular tower
(O) It weighs approximately $190,000 \mathrm{los}$ and is approximately 263 feet tall (80 meters).
() The tower has been designed in accordance with the Uniform Building Code, the International Electrotechnical Committee's 1400-1 Standard, Germanischer Lloyd's Rules and Regulations for Wind Turbine Design (DIBT), and a type approval under German Bauarnt Office (DIBT).

Area - 4657 m 2
 Air Density - $\mathrm{kg} / \mathrm{m}^{3}$
 Wind Velocity - $12 \mathrm{~m} / \mathrm{s}(-27 \mathrm{mi} / \mathrm{hr}$)
 Energy Flow $=$ Power $=4.02 \mathrm{MW}$
 Efficiency at $12 \mathrm{~m} / \mathrm{s}-37.3 \%$
 Efficiency at $20 \mathrm{~m} / \mathrm{s}-8.1 \%$

See also:
www.gewindenergy.com http://shell.com/emick

1. Nacelle
2. Heat Exchanger
3. Generator
4. Control Panel
5. Main Frame
6. Impact Noise Insulation
7. Hydraulic Parking Brake
8. Gearbox
9. Impact Noise Insulation
10. Yaw Drive
11. Yaw Drive
12. Rotor Shaft
13. Oil Cooler
14. Pitch Drive
15. Rotor Hub
16. Nose Cone

Operating Data

1.5sle

Rated capacity
$1,500 \mathrm{~kW}$
Cut-in wind speed
$3.5 \mathrm{~m} / \mathrm{s}$
Cut-out wind speed 600 s average
$25 \mathrm{~m} / \mathrm{s}$
Cut-out wind speed 30 s average
IEC s: $28 \mathrm{~m} / \mathrm{s}$
Cut-out wind speed 3 s average
IEC s: $30 \mathrm{~m} / \mathrm{s}$
Cut-back-in wind speed 300 s average
IEC s: $22 \mathrm{~m} / \mathrm{s}$
Rated wind speed
$12 \mathrm{~m} / \mathrm{s}$

Rotor

1.5sle

Number of rotor blades
3
Rotor diameter
77 m
Swept area
4,657 m2
Rotor speed (variable)
10.1-20.4 rpm

Tower
1.5sle

Hub heights (m)
$61.4+/ 64.7+/ 80+/ 85+$

Powercurve : 1.5 MW

STELLA Model of the Wind Generator Efficiency

Air_Density $=\mathrm{I}\left\{\mathrm{kg} / \mathrm{m}_{3}\right\}$
efficiency_in_\% = (Power_Curve/Power_In)*ioo
Generator_Cross_section $=4657\{\mathrm{~m} 2\}$
mi_per_hr = Wind_Velocity $\{\mathrm{m} / \mathrm{s}\}^{*} 3600\{\mathrm{~s} / \mathrm{hr}\} / \mathrm{IoOO}\{\mathrm{m} / \mathrm{km}\}^{*} 0.62\{\mathrm{mi} / \mathrm{km}\}$
Power_In = (o.5*Air_Density * Generator_Cross_section * Wind_Velocity ${ }^{\wedge}$ 3)/ı^^6 \{megaWatts\}
Wind_Velocity = TIME \{make velocity the independent variable\}
Power_Curve = GRAPH(Wind_Velocity)
(0.00, 0.00), (r.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.03), (5.00, 0.08), (6.00, 0.18), (7.00, 0.33), (8.00, 0.52), (9.00, 0.75), (i0.0, 1.01), (11.0, 1.26), (12.0, 1.50), (i3.0, 1.50), (14.0, 1.50), (15.0, 1.50), (16.0, 1.50), (17.0, 1.50), (18.0, 1.50), (19.0, 1.50), (20.0, 1.50), (21.0, 1.50), (22.0, 1.50), (23.0, 1.50), (24.0, 1.50), (25.0, 1.50), (26.0, 1.50),
(27.0, 1.50), (28.0, 1.50), (29.0, 1.50), (30.0, 1.50)

