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1. Two externally tangent unit circles are constructed inside square ABCD, one tangent to AB
and AD, the other to BC and CD. Compute the length of AB.

Answer: 2 +
√
2

Solution: Observe that the diagonal of the square has length 2 + 2
√

2. Therefore, the square

has side length 2 +
√

2

2. We say that a triple of integers (a, b, c) is sorted if a < b < c. How many sorted triples of positive
integers are there such that c ≤ 15 and the greatest common divisor of a, b, and c is greater
than 1?

Answer: 46

Solution: If the greatest common divisor is not 1, then it must be 2 or 3 or 4 or 5. If it is 2
or 4, there are

(
7
3

)
= 35 such triples. If it is 3, there is

(
5
3

)
= 10 such triples. If it is 5, there is(

3
3

)
= 1 such triple. Therefore, there are a total of 35 + 10 + 1 = 46 such triples.

3. Two players play a game where they alternate taking a positive integer N and decreasing it by
some divisor n of N such that n < N . For example, if one player is given N = 15, they can
choose n = 3 and give the other player N − n = 15 − 3 = 12. A player loses if they are given
N = 1.

For how many of the first 2015 positive integers is the player who moves first guaranteed to win,
given optimal play from both players?

Answer: 1007.

Solution:

Define a losing position for Player 1 as a position where all moves will allow Player 2 to win.
Define a winning position for Player 1 as a position where there exists a move which puts Player
2 into a losing position. After testing some small cases, we hypothesize the winning positions
for Player 1 are exactly those where N is even. We can prove this using strong induction.

The base case is simple. By definition, Player 1 loses when N = 1.

For the inductive step, assume that all positions P < N , P is a losing position if P is odd and
is a winning position if P is even. We must show the same holds for N . If N is even, then
Player 1 can decrease N by 1, giving Player 2 the number N − 1, which is a losing position by
our inductive hypothesis. Therefore, if N is even, N is a winning position. If N is odd, then all
factors of N are odd, so any move Player 1 makes will give Player 2 an even number, which, by
our inductive hypothesis, is a winning position. Therefore, if N is odd, N is a losing position.
This completes the inductive step.

Because all even numbers are winning positions for Player 1, there are
⌊
2015
2

⌋
= 1007 winning

positions.

4. The polynomial x3− 2015x2 +mx+n has integer coefficients and has 3 distinct positive integer
roots. One of the roots is the product of the two other roots. How many possible values are
there for n?

Answer: 16

Solution: Let the roots be r, s, and rs. By Vieta’s formulas, we see that r+ s+ rs = 2015 and
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n = −r2s2. Note that since r and s are positive integers, we get:

r + s+ rs = 2015

1 + r + s+ rs = 2016

(1 + r)(1 + s) = 2016.

We factor 2016 to get 25 · 32 · 7. We see that since 2016 has 6 · 3 · 2 distinct factors, there are 36
possible pairs for r and s. However, we count each of these twice, so there are 36/2 = 18 distinct
pairs for r and s. We need to exclude the case r = 0 because we only want positive roots. Also,
if r = 1, we no longer have distinct roots because rs = s. Therefore, there are 18 − 2 = 16
possible values that n = −r2s2 can take.

5. You have a robot. Each morning the robot performs one of four actions, each with probability
1/4:

• Nothing.

• Self-destruct.

• Create one clone.

• Create two clones.

Compute the probability that you eventually have no robots.

Answer:
√
2− 1

Solution: Let p(n) designate the probability that, starting with a group of n robots, eventually
all robots in this group die off. One first sees that p(n) = p(1)n.

With this observation, we can just write down p(1) = 1/4 + 1/4p(1) + 1/4p(2) + 1/4p(3) =
1/4(1 + p(1) + p(1)2 + p(1)3). Setting p = p(1), we obtain the equation

p =
1

4

(
1 + p+ p2 + p3

)
.

p = 1 is a solution but clearly does not satisfy the problem. There is a negative root, but

probabilities aren’t negative. So the answer is the positive root < 1, which is
√

2− 1 .

6. Four spheres of radius 1 are mutually tangent. What is the radius of the smallest sphere
containing them?

Answer: 1 +
√

3
2

Solution: Call the containing sphere S and the smaller spheres si for i = 1, 2, 3, 4. By symmetry
of the arrangement S is tangent to each si, and the point of tangency must be the point on the
sphere si farthest away from the center of mass of all 4 small spheres si. Said another way,
if three of the spheres are placed on a table with the fourth on top of them then the point of
tangency on the top sphere is the heighest point from the table. So it sufices to find the distance
of this point from the center of mass. Because the spheres are tangent their centers define a
tetrahedron of side length 2 by symmetry. The center of mass (CM) of the spheres is also the
center of mass of the tetrahedron. We seek the distance from CM to a vertex (a sphere center).
Because it is a center of mass, the sum of vectors from CM to each vertex is 0. Therefore one
vector’s length equals 3 times the projection of the other vectors onto it. Thus, if φ > π/2 is
the angle between two of the vectors and l is the vector length,

l = 3l cos(π − φ) =⇒ cos(φ) = −1/3



RMT 2015 Team Test Solutions February 14, 2015

Thus by the law of cosines and the side length of the tetrahedron the vector length is:

22 = 2l2 − 2l2 cos(φ) =⇒ l =

√
3

2

So the radius of S is 1 +
√

3
2 .

7. Find the radius of the largest circle that lies above the x-axis and below the parabola y = 2−x2.

Answer: 2
√

2−1
2

Solution: First, note that the center of such a circle must lie on the y-axis and the circle must
be tangent to the x-axis and the parabola. Now, consider a circle with center (0, c) and radius
r. Since the circle is tangent to the x-axis, necessarily c = r. The top half of the circle thus
has equation y = r +

√
r2 − x2. For the circle to be tangent to the parabola, there needs to be

exactly 2 solutions to the equation r +
√
r2 − x2 = 2− x2. We compute:

r +
√
r2 − x2 = 2− x2

r2 − x2 = (2− r − x2)2

r2 − x2 = x4 − 2(2− r)x2 + (2− r)2

x4 + (2r − 3)x2 + (4− 4r) = 0

This gives a quadratic in x2 so the determinant must be zero. Thus, (2r − 3)2 + 16r − 16 = 0.

This simplifies to 4r2 + 4r − 7 = 0 and hence r = −4±
√
128

8 = −1±2
√
2

2 . Since r > 0, it follows

that the maximum radius is
2
√

2− 1

2
.

8. For some nonzero constant a, let f(x) = eax and g(x) = 1
a log x. Find all possible values of a

such that the graphs of f and g are tangent at exactly one point.

Answer:
{
1
e
,−e

}
.

Note that f and g are inverses of each other, so any intersection point must lie on the line
y = x. We can prove this by noticing that f(x) = g(x) =⇒ f(f(x)) = x. If f is monotonically
increasing (i.e. a > 0), f(x) > x =⇒ f(f(x)) > f(x) > x, and f(x) < x =⇒ f(f(x)) <
f(x) < x, so we must have f(x) = x. The same argument with the inequalities reversed works
if f is monotonically decreasing (i.e. a < 0).

Moreover, since f and g are tangent at this point, their derivatives must be equal. But since
they are inverses, their derivatives are also reciprocals, so the slope m of the tangent line satisfies
m = 1

m ⇐⇒ m = ±1. We try both cases.

First, by looking at f , m = 1 yields the system

eax = x

aeax = 1.

Solving this gives x = e, a = 1
e .

Second, we consider m = −1, which yields

eax = x

aeax = −1.
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Solving this gives x = 1
e , a = −e.

Hence, report

{
1

e
,−e

}
.

9. Consider a regular pentagon and connect each vertex to the pair of vertices farthest from it by
line segments. The line segments intersect at 5 points to form another smaller pentagon. If
the large pentagon has side length 1, compute the area of the smaller pentagon. Express your
answer without trigonometric functions.

Answer: 1
8

√
250− 110

√
5

Solution: It is clear by symmetry the the smaller pentagon is also regular. Let the original
pentagon have vertices ABCDE. Label the smaller pentagon with vertices A′B′C ′D′E′ where
the primed vertex, X ′, is the single primed vertex farthest away from the unprimed one, X.
Call the lengths A′B′ = x and AC ′ = y. It is clear from similar triangles that AB

A′B′ = AC
B′C or

1
x = 2y+x

y . But it is also clear that x + y = 1. This can be seen by the congruent triangles,

4ABC and 4AB′C, because AD ‖ BC. Thus, x = 1
2

(
3−
√

5
)
, y = 1

2

(√
5− 1

)
.

It is easy to see that the area of a regular pentagon of sidelength d can be calculated by sum-
ming the areas of triangles formed with the center and two vertices. The height (apothem) is
d/2 cot (2π/10). So the area of the whole pentagon is 5× 1

2 × d/2 cot (2π/10)× d. So the small
pentagon area is:

5

4
cot(π/5)

(
1

2

(
3−
√

5
))2

=
5

8

(
7− 3

√
5
)

cot(π/5)

And it remains to calculate cot(π/5). Notice that π/5 radians is actually 36◦. So we can instead
compute cot(36◦). For this is suffices to calculate cos(36◦). Using addition formulas,

1 = cos(90◦) = cos(72◦ + 18◦) = cos 72◦ cos 18◦ − sin 72◦ sin 18◦

= (2 cos2 36◦ − 1)
√

1+cos 36◦

2 − 2 sin 36◦ cos 36◦
√

1−cos 36◦
2

Then cos(36◦) = u satisfies the equation:

0 = (2u2 − 1)
√

1+u
2 − 2

√
1− u2 · u

√
1−u
2

Because 0 < u < 1 this can be simplified,

2
√

1 + u
√

1− u · u
√

1− u = (2u2 − 1)
√

1 + u

2u(1− u) = 2u2 − 1

So u = 1+
√
5

4 . Thus the cotangent is
1+
√
5

4√
1−
(
1+
√
5

4

)2
=
√

1 + 2√
5
. So the area becomes,

5

8

(
7− 3

√
5
)√

1 +
2√
5

=
1

8

√
250− 110

√
5
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10. Let f(x) be a function that satisfies f(x)f(2 − x) = x2f(x − 2) and f(1) = 1
403 . Compute

f(2015).

Answer: 25

Solution: Plugging in x = 2k + 1, we obtain

f(2k + 1)f(−(2k − 1)) = (2k + 1)2f(2k − 1)

f(2k + 1) = (2k + 1)2
f(2k − 1)

f(−(2k − 1))

and plugging in x = −(2k − 1), we obtain

f(−(2k − 1))f(2k + 1) = (2k − 1)2f(−(2k + 1))

f(−(2k + 1)) =
(2k + 1)2

(2k − 1)2
f(2k − 1)

Now, note that obviously f(1) = f(1) and plugging in x = 1 gives f(−1) = (f(1))2. Inductively
using the above formulas to compute f(3), f(−3), f(5), f(−5), . . ., we see that f(2k + 1) and
f(−(2k + 1)) equal (2k + 1)2 times a rational function of f(1). It turns out that the rational
function of f(1) part is periodic, with period 6:

f(3) = 32 · 1

f(1)

f(−3) = 32 · f(1)

f(5) = 52 · 1

(f(1))2

f(−5) = 52 · 1

f(1)

f(7) = 72 · 1

f(1)

f(−7) = 72 · 1

(f(1))2

f(9) = 92 · f(1)

f(−9) = 92 · 1

f(1)

f(11) = 112 · (f(1))2

f(−11) = 112 · f(1)

f(13) = 132 · f(1)

f(−13) = 132 · (f(1))2

Thus, we see that f(2k+1)
(2k+1)2

= f(2(k+6)+1)
(2(k+6)+1)2

it is periodic in k with period 6. Since 2015 = 2 ·1007+1

and 1007 ≡ 5 (mod 6). It follows that f(2015)
20152

= f(2·5+1)
(2·5+1)2

= f(11)
112

.

As computed above, f(11) = 112 · (f(1))2 so f(2015) = (2015f(1))2 =
(
2015
403

)2
= 25 .

11. You are playing a game on the number line. At the beginning of the game, every real number
on [0, 4) is uncovered, and the rest are covered. A turn consists of picking a real number r such
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that, for all x where r ≤ x < r + 1, x is uncovered. The turn ends by covering all such x. At
the beginning of a turn, one selects such a real r uniformly at random from among all possible
choices for r; the game ends when no such r exists. Compute the expected number of turns that
will take place during this game.

Answer:
11− 4 ln 2

3

Solution: Let f(n) be the expected number of turns that can be played on an interval of length
n. When n < 2, we have that f(n) = bnc, obviously. When n ≥ 2, consider the first move.
r will be chosen uniformly from an interval of length n − 1, so that we will be left with two
regions to play in, one with length r, the other with length n − r − 1. The number of moves
we can expect to make then, given r, is 1 + f(r) + f((n − 1) − r). Averaging over r, we have

f(n) = 1 +
1

n− 1

∫ n−1

0
f(r) dr +

1

n− 1

∫ n−1

0
f((n − 1) − r) dr = 1 +

2

n− 1

∫ n−1

0
f(r) dr. We

can therefore compute f(n) explicitly when 2 ≤ n ≤ 3, and can therefore also compute f(n)

explicitly when 3 ≤ n ≤ 4, to get f(4) =
11− 4 ln 2

3
.

12. Consider the recurrence:
an+1 = 4an(1− an)

Call a point a0 ∈ [0, 1] q−periodic if aq = a0. For example, a0 = 0 is always a q−periodic fixed
point for any q. Compute the number of positive 2015−periodic fixed points.

Answer: 22015 − 1

Solution: The recurrence can be solved exactly. Make the substitution, an = sin2 πθn, which
works because we know that an ∈ [0, 1] for all n (To see this, note that the RHS is a parabola
with maximum of height 1).

sin2 πθn+1 = 4 sin2 πθn(1− sin2 πθn) = (2 sinπθn cosπθn)2 =⇒ sinπθn+1 = sin 2πθn =⇒ θn =
θ02

n.

In particular, aq = sin2
(
arcsin(

√
a0)2

q
)

solves the original recurrence. But this is actually a
degree−2q polynomial in a0, call it f(x) = sin2 (arcsin(

√
x)2q). We can see this by composing

the RHS of the original recurrence with itself q times. All of this function’s 2q−1 maxima are of
height 1 and are in [0,1]. It also has 2q−1 + 1 zeros in [0,1] two of which are on the ends on the
interval. So it intersects y = x at least 2q fixed points and at most 2q + 1. But f is a degree−2q

polynomial and so is x − f(x) so the latter case is not possible because such a polynomial has

at most 2q roots. Plugging in q = 2015 and removing 0 gives us 22015 − 1 2015-fixed points.

One does not actually need to solve the recurrence to do this problem. It suffices to notice that
the function f is a polynomial, as described above, with 2q−1 maxima are of height 1. You can
see this by looking at the RHS, 4an(1 − an). This is a parabola of height 1 so it is continuous
and onto [0,1]. Additionally 1/2 is mapped to a maximum and a maximum is mapped to 0. So
after q iterations the desired result follows, the function acquires another bend each time.

13. Let a, b, c ∈ {−1, 1}. Evaluate the following expression, where the sum is taken over all possible
choices of a, b, and c: ∑

abc(2
1
5 + a2

2
5 + b2

3
5 + c2

4
5 )4.

Answer: 768
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Solution: Replace 2i/5 with xi−1 and let the sum be f(x0, x1, x2, x3). Notice that f is symmetric
in its variables; swapping xi wth xj does not change the result of the summation. Next, we
compute

f(0, x1, x2, x3) =
∑

abc(ax1 + bx2 + cx3)
4.

But note that a particular choice of (a, b, c) gives the same fourth power as (−a,−b,−c) but
their products have different signs. In other words, we can split the sum into pairs of the form

(ax1 + bx2 + cx3)
4 − (−ax1 − bx2 − cx3)4 = 0

and we conclude that f(0, x1, x2, x3) = 0. Because f is symmetric, we conclude that f = 0 for
xi = 0 for any i. Then, because f is a polynomial in each xi, xi must divide f for every i. But
the product x0x1x2x3 has overall degree 4, and because f is the sum of fourth powers, it must
have overall degree at most 4. We conclude that

f(x0, x1, x2, x3) = Kx0x1x2x3

where K is a constant. All we must do is find K. But observe that, when we expand abc(x0 +
ax1 + bx2 + cx3)

4, the x0x1x2x3 term has coefficient 4!(abc)2 = 24. Because there are 8 such
terms in the sum, we conclude that

f(x0, x1, x2, x3) = 8 · 24x0x1x2x3 = 192x0x1x2x3.

All that remains is to plug in the given values of x0, x1, x2, x3 to get 192 · 210/5 = 192 · 4 = 768 .

14. A small circle A of radius 1
3 rotates, without slipping, inside and tangent to a unit circle B. Let

p be a fixed point on A, and compute the length of the closed curve traced out by p as A rotates
inside B.

Answer: 16
3

Solution: The curve traced is a deltoid. First of all it is clear that the radius of the small
circle is 1

3 . It is easy to write equations for the point’s trajectory using polar coordinates. Let
θ be the polar angle in the frame of A (from its center) and φ be similar for B. The center
of A is always at a radius 2

3 from the center of B. So the trajectory of the center of A is
2/3(cosφ, sinφ). The coordinate of the point on A moves in a circle of its radius in the opposite
direction, 1/3(− cos θ, sin θ). Because the point starts at a double tangency there is no phase
differnce between the two and from simple geometry θ = 2φ. Therefore the point’s trajectory is:

x =
2

3
cos(φ)− 1

3
cos(2φ)

y =
2

3
sin(φ) +

1

3
sin(2φ)

To compute the arc length we could try to eliminate the parameter but this is highly tedious.
The correct way is to calculate the length in polar coordinates. Applying the well known formula:∫ 2π

0

√(
dx

dφ

)2

+

(
dy

dφ

)2

dφ =

∫ 2π

0

√(
−2

3
sin(φ) +

2

3
sin(2φ)

)2

+

(
2

3
cos(φ) +

2

3
cos(2φ)

)2

dφ

=
2

3

∫ 2π

0
2

√
cos2

(
3φ

2

)
dφ =

16

3
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15. Let x1, x2, x3, x4, x5 be distinct positive integers such that x1+x2+x3+x4+x5 = 100. Compute
the maximum value of the expression

(x2x5 + 1)(x3x5 + 1)(x4x5 + 1)

(x2 − x1)(x3 − x1)(x4 − x1)
+

(x1x5 + 1)(x3x5 + 1)(x4x5 + 1)

(x1 − x2)(x3 − x2)(x4 − x2)

+
(x1x5 + 1)(x2x5 + 1)(x4x5 + 1)

(x1 − x3)(x2 − x3)(x4 − x3)
+

(x1x5 + 1)(x2x5 + 1)(x3x5 + 1)

(x1 − x4)(x2 − x4)(x3 − x4)
.

Answer: 729000

Solution: The given expression is cyclic in x1, x2, x3, x4 so clearly x5 plays some special role.
One definite goal is to determine a way of eliminating (or at the very least, not being bothered
by) the denominators of this expression. Toying around with some ideas, we see that each
denominator is a product of (xi − xj) for fixed i and j 6= i (and j 6= 5). So what if instead we
looked at pi(x) =

∏4
k=1,k 6=i(xk − x)? Then we have the denominators are 1

pi(xi)
. In a leap of

faith, we look at the expression pi(x)
pi(xi)

. This is equal to 1 when we plug in xi and is equal to

0 when we plug in xj for j 6= i, 5. Then the polynomial p(x) =
∑4

i=1
pi(x)
pi(xi)

has p(xi) = 1 for

1 ≤ i ≤ 4. Note that p(x) has degree at most 3- hence it is identically equal to 1, because p(x)−1
has 4 roots. If we plug in x = 1

x5
and multiply both sides of the equation by x35 we get that the

given expression is identically equal to x35. Then, in order to maximize it, we must minimize
x1+x2+x3+x4. These are distinct positive integers, so their sum will be smallest when we have
{x1, x2, x3, x4} = {1, 2, 3, 4}, giving x5 ≤ 90. This gives us our maximum of 903 = 729000 .

Comment: This problem is somewhat related to computing the contour integral of 1
q(z) for

polynomial q(z) with distinct (not necessarily real) roots over a contour containing all these
roots. If you are interested, explore in that direction and you will find interesting results.


