
RMT 2014 Power Round February 15, 2014

Time limit: 50 minutes.
Maximum score: 200 points.
Instructions: For this test, you work in teams of eight to solve a multi-part, proof-oriented
question.

Problems that use the words “compute” or “list” only call for an answer; no explanation or
proof is needed. Unless otherwise stated, all other questions require explanation or proof. Answers
for problems should be written on sheets of scratch paper, clearly labeled, with every problem on
its own sheet. If you have multiple pages for a problem, number them and write the total number
of pages for the problem (e.g. 1/2, 2/2).

Write the name of your team on every submitted page. Only submit one set of solutions for the
team. Do not turn in any scratch work. After the test, put the sheets you want graded into your
packet. If you do not have your packet, ensure your sheets are labeled extremely clearly and stack
the loose sheets neatly.

In your solution for a given problem, you may cite the statements of earlier problems (but not
later ones) without additional justification, even if you haven’t solved them.

The problems are ordered by content, NOT DIFFICULTY. It is to your advantage to attempt
problems from throughout the test.
No calculators.
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Introduction

This Power Round develops the many and varied properties of the Thue-Morse sequence, an infinite
sequence of 0s and 1s which starts 0, 1, 1, 0, 1, 0, 0, 1, . . . and appears in a remarkable number of
different contexts in recreational and research mathematics. We will see applications to geometry,
probability, game theory, combinatorics, algebra, and fractals. Nevertheless, we won’t even come
close to exhausting the amusing and useful properties of this sequence, some of which require
mathematics beyond our scope to discuss.

Remark: Regardless of which problem you decide to work on, it is recommended that you read
Problem 1 first to become familiar with the definitions.

Remark 2: The following problems rely heavily on the technique of proof by induction. If
you are not yet comfortable with induction, we have copies of an introduction available for you to
consult—ask your proctor.

Defining the Thue-Morse sequence

The first sign that there’s something special about the Thue-Morse sequence is that it’s hard to
make up your mind about how to define it, because there are numerous very different-looking
definitions which all turn out to be equivalent. In this problem, we work through a few of these
definitions and determine that each of them gives the same result. We refer to the nth term of the
Thue-Morse sequence by tn, starting with t0, t1, t2, . . . .

1. (a) [3] Our first definition is a simple recursive one. The zeroth term of the Thue-Morse
sequence is t0 = 0. For n a nonnegative integer, after the first 2n terms of the Thue-
Morse sequence (including the zeroth term) have been specified, construct the next 2n

terms by taking the first 2n terms, replacing each 0 by a 1, and replacing each 1 by a
0 (simultaneously). (This is called “bitwise negation”.) Therefore, we have t1 = 1, and
the next two terms are t2 = 1, t3 = 0. The zeroth through fifteenth terms (leaving out
the commas, as we will often do for convenience) are 0110100110010110.

Write down (no justification required) the 16th through 31st terms.

(b) [6] Our second definition is direct. The Thue-Morse sequence is the sequence {tn}
(n = 0, 1, . . . ) where tn is 1 if the number of ones in the binary (base-2) expansion of n
is odd and 0 if the number of ones in the binary expansion of n is even. For example, 5
is 1012 in base 2, which has two ones, so t5 = 0.

Prove that this definition gives the same sequence as the one from part (a).

(c) [6] Our third definition is recursive again, but uses a different recursion. The Thue-Morse
sequence is the sequence {tn} satisfying t0 = 0, t2n = tn, and t2n+1 = 1− tn.

Prove that this definition is equivalent to either of the first two definitions.

(d) [6] Our fourth definition is by a certain algorithm (known as a Lindenmeyer system).
We start with the single digit 0 (call this stage zero). At each stage, we take the digits
we already have, replace each 0 by a 01, and replace each 1 by a 10 (simultaneously). So
stage one is 01, stage two is 0110, and so on. The Thue-Morse sequence is the sequence
{tn} whose first 2n terms are the digits from stage n.

Prove that this definition is equivalent to any of the first three definitions. (Note that
as stated, it is not clear that this definition is even coherent, since it redefines each term
over and over again. Your job is to show that it nevertheless uniquely defines each term
as the corresponding term of the Thue-Morse sequence as given by parts (a)-(c).)
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Now we derive a few simple properties of the Thue-Morse sequence, just to play with it some
more.

2. (a) [5] Prove that the string t0t1 · · · t22n−1 is a palindrome for all n ≥ 0. (Recall that a
palindrome is a string of digits which reads the same forward and backward.)

(b) Let A be the set of all nonnegative integers n such that tn = 0. Let n ⊕m denote the
binary xor of n and m. (To compute the binary xor of n and m, we write both n and
m in binary, then add them without carrying. For example, if n = 5 and m = 13, then
n = 1012 and m = 11012, so n⊕m = 10002 = 8.)

(i.) [1] Compute 14⊕ 23.

(ii.) [5] Prove that if n and m are both in A, then n⊕m is also in A.

(c) [6] Prove that given any finite string X = tata+1 · · · tb of consecutive terms from the
Thue-Morse sequence, there exists a number nX such that every string of nX consecutive
terms tk+1tk+2 · · · tk+nX

from the sequence must contain X.

(d) [6] Given a finite or infinite string T of 0s and 1s, let f(T ) be the string created by
simultaneously replacing each 0 by a 01 and each 1 by a 10. For example, if T = 001,
then f(T ) = 010110. Note that we previously saw this procedure in problem 1, part d.
A fixed point of f is an infinite string T such that f(T ) = T . Prove that f has exactly
two fixed points: the Thue-Morse sequence {tn}, and its bitwise negation (meaning the
sequence constructed from {tn} by replacing each 0 with a 1 and each 1 with a 0).

Greedy Galois Games

Time for some probability and game theory. Alice and Bob are in a duel where in each round (be-
ginning with round 0), one duelist fires a shot at the other, hitting them with a success probability
of p. The first person to fire a successful shot wins. They want to choose the shooter each round
in a way that’s fair—just switching back and forth after every shot wouldn’t be fair, since we can
see intuitively that whoever goes first is more likely to win. Also, they’re both terrible at aiming,
so p is very low, though positive. What do they do?

They come up with the following idea: Alice shoots first. Then, Bob shoots as many times as
is necessary for his win probability to meet or exceed that of Alice’s win probability so far. Then,
Alice starts shooting again, again taking as many turns as is necessary for her win probability to
meet or exceed that of Bob’s win probability. And so on (if at any point, they have the same
probability of winning, we let the person who was not shooting in the previous round shoot in the
next round).

For example, suppose p = 1/3. Alice shoots during round 0, after which her win probability is
1/3 and Bob’s win probability is 0. Bob shoots during round 1. For Bob to win during round 1,
Alice has to miss in round 0, which happens with probability 2/3, and Bob has to hit in round 1,
which happens with probability 1/3. So after round 1, Bob’s win probability is (2/3)(1/3) = 2/9,
which is still less than Alice’s win probability of 1/3. Therefore, Bob shoots again in round 2. By
the same logic, his overall win probability after round 2 is (2/3)(1/3) + (2/3)(2/3)(1/3) = 10/27,
which is now higher than 1/3. So Alice gets to shoot in round 3. And so on.

Let P (A) be Alice’s overall win probability after a given round, and P (B) be Bob’s win prob-
ability. We summarize the above information in the following table:
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Round # Shooter P (A) P (B)

0 Alice 1/3 0

1 Bob 1/3 2/9

2 Bob 1/3 10/27

3 Alice ? 10/27

4 ? ? ?

3. (a) (i.) [2] Fill in the question marks in the above table (no justification required).

(ii.) [3] Fill in the same table for p = 1/4 instead of 1/3 (no justification required).

(b) [6] Let q = 1− p. Let {an} be the sequence such that an = −1 if Alice shoots in round
n and an = 1 if Bob shoots in round n. Let P (An) be Alice’s overall win probability
after round n, and P (Bn) Bob’s overall win probability after round n. Finally, let

fn(x) = an

 n∑
j=0

ajx
j

 .

Prove that

an+1 =

{
−an if fn(q) ≥ 0,

an otherwise.

(c) [3] Prove that regardless of the value of p, we always have a0 = −1, a1 = 1, a2 = 1.

(d) [3] Determine, with proof, all values of p such that a3 = −1.

Our goal is now to prove that as p gets close to 0, or equivalently as q gets close to 1, the
pattern of who shoots who becomes more and more like the Thue-Morse sequence, in the following
sense. Recall that we define an to be −1 if Alice shoots in round n and 1 if Bob shoots in round n,
and that {tn} is the Thue-Morse sequence. Let {t′n} be the sequence such that t′n = −1 if tn = 0
and t′n = 1 if tn = 1. That is, {t′n} is basically also the Thue-Morse sequence, just using −1 and 1
instead of 0 and 1, since that’s more convenient for our current application. We’re going to show
that as p gets close to 0, more and more of the first few terms of {an} equal the first few terms of
{t′n}.

4. (a) [8] Prove that for each n ∈ N, there is an ε > 0 such that the sequence a0, a1, . . . , an is
the same for all q ∈ (1 − ε, 1). Intuitively, this shows that as the success probability p
nears zero, more and more of the first few terms of an stabilize and become fixed. (Hint:
start with your solution to Problem 3).

(b) (i) [3] Prove that for any m, we have
∑2m+1

i=0 t′i = 0.

(ii) [7] Suppose that there exists ε > 0 such that for all q ∈ (1 − ε, 1), ai = t′i for
0 ≤ i ≤ 2m. Prove that then there is an ε′ > 0 such that a2m+1 = −a2m for all
q ∈ (1− ε′, 1).

(c) [6] Suppose that there exists ε > 0 such that for all q ∈ (1 − ε, 1), ai = t′i for 0 ≤ i ≤
2m+ 1. Prove that when q ∈ (1− ε, 1), f2m+1(q) = (q − 1)fm(q2).

(d) [6] Prove that for each n ∈ N, there is an ε > 0 such that the sequence a0, a1, . . . , an is
the same as the sequence t′0, t

′
1, . . . , t

′
n for all q ∈ (1− ε, 1). (This demonstrates the claim

we made in the paragraph before this problem.)
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Pattern avoidance

Now we develop and prove some more complicated but really cool properties of the Thue-Morse
sequence. The goal of the next problem is to prove that no string of consecutive terms in the
Thue-Morse sequence repeats itself three times consecutively. That is, the Thue-Morse sequence
contains no cubes, where a cube is a nonempty string of consecutive terms which looks like www,
where w is any string of 0s and 1s (for example, 001001001 is a cube with w = 001). As in some
previous problems, we will leave out the commas between terms for convenience.

5. (a) [3] Of course, the simplest cubes are 000 and 111. Prove directly that in the Thue-Morse
sequence, there are never three consecutive 0s or three consecutive 1s. (You may leave
this part blank and receive full credit for it, but only if you receive full credit on the
entire rest of this problem.)

(b) We define an overlapping factor to be a nonempty string x of consecutive terms which
begins with a string w of length shorter than x, and ends with the same string w, such
that the two occurrences of w overlap in at least one term. For example, x = 11011011
is an overlapping factor because it both begins and ends with w = 11011, and the two
instances of 11011 overlap by two terms (the middle two 1s).

(i.) [3] Prove that if a sequence contains a cube, then it also contains an overlapping
factor.

(ii.) [8] Prove that if a sequence contains an overlapping factor, then it also contains
an overlapping factor of the form avava, where a is a single term and v is a (possibly
empty) string of terms.

(c) [5] Suppose that x = a0a1 · · · a2n−1 where each ai is either 0 or 1 and each string
a2ia2i+1 is either 01 or 10. Prove that it is not possible to write 0x0 or 1x1 in the form
b0b1 · · · b2n+1 where each bj is either 0 or 1 and each string b2ib2i+1 is either 01 or 10.

(d) Given a string T of 0s and 1s, let f(T ) be the function from problem 2, part d—that is,
the string created by simultaneously replacing each 0 by a 01 and each 1 by a 10.

(i.) [6] Suppose f(T ) = xavavay where a is a single term (0 or 1) and x, v, y are strings
of 0s and 1s. Prove that v consists of an odd number of terms.

(ii.) [7] Prove that if f(T ) contains an overlapping factor, then T also contains an
overlapping factor.

(iii.) [3] Prove that the Thue-Morse sequence contains no overlapping factors, and
therefore no cubes.

Miscellaneous

Just for fun, here are a few more cute and unexpected things you can do with the Thue-Morse
sequence.

6. (a) The Koch snowflake is a well-known fractal that is constructed over iterations as follows.
Our initial “snowflake”, the zeroth iteration, is just a straight line segment.

In the first iteration, we take the middle third of the line segment, draw an equilateral
triangle using that middle third as a base, and then erase the middle third, resulting in
the following figure.
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In the second iteration, we take every line segment in the above figure and repeat the
same procedure: replacing the middle third of the line segment with the other two sides
of the outward-facing equilateral triangle that has that middle third as a base.

In general, we create the nth iteration of the Koch snowflake by taking each line segment
in the (n − 1)th iteration and replacing the middle third by a “corner” in the shape of
an equilateral triangle, in the same way as before.

(i) [2] Draw (no justification required) the third iteration of the Koch snowflake.

(ii) [7] A turtle reads the Thue-Morse sequence t0, t1, . . . and decides to crawl according
to the sequence, as follows. At the nth step, if tn = 0, it will crawl forward one unit
and then turn 60 degrees to the left. If instead tn = 1, it will turn 180 degrees (without
moving). Prove that after 22n+1 steps (that is, after following the sequence from t0, t1, . . .
up to t22n+1−1), the turtle will have traced out the nth iteration of the Koch snowflake.
(Of course, we are ignoring the scale of the resulting snowflake here; we are only interested
in its shape.)

(b) [9] Let N = 2n+1. Let AN be the set of integers i in {0, 1, . . . , N − 1} such that ti = 0,
and let BN be the set of integers j in {0, 1, . . . , N − 1} such that tj = 1. Prove that∑

i∈AN

ik =
∑
j∈BN

jk

for all integers k from 1 to n. (This is a special case of the Prouhet-Tarry-Escott problem.)

(c) [11] As in the discussion after Problem 4, let {t′n} be the Thue-Morse sequence using
−1, 1 instead of 0, 1. Prove that(

1

2

)t′0
(

3

4

)t′1
(

5

6

)t′2
· · · =

∞∏
n=0

(
2n+ 1

2n+ 2

)t′n

=
√

2.
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