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1. Answer: 273

Solution: The integers which are valid have a 1-1 correspondence to days in the first 9 months
- this is straightforward to see for all positive integers that do not have a 1 in the hundreds
place and just requires careful inspection of the case where 1 is in the hundreds place. There
are 365− 31− 30− 31 = 273 such days.

2. Answer: 60

Solution: The restriction on the median means either x ≤ 27 or 3|x and x < 55. Hence, the
sum of all five numbers is 24 + 27 + 55 + 64 + x = 170 + x < 225, so the average is > 170

5 = 34
and < 225

5 = 45. The only prime numbers in this range are 37, 41, and 43, which yield x = 15,
x = 35, or x = 45. 35 is greater than 27 but not a multiple of 3, so it doesn’t work. Hence, the
answer is 15 + 45 = 60 .

3. Answer:
7

8

Solution: Consider the rectangle with lower-left corner at (4, 11) and upper-right corner at
(6, 13). We want to compute the probability that a randomly generated point inside the rectangle
falls above the line y = x+6. The line cuts out a right triangle with legs of 1 each, so therefore the

probability that a randomly generated point in the rectangle falls above the line is
4− 1

2
4

=
7

8
.

4. Answer: 3657214

Solution: When the numbers are ordered the first 6! = 720 numbers all have 1 in the millions
place value. The next 720 numbers all have 2 in the millions place value. The 2013th number
must then lie in the next batch with 3 as the millions place value digit. Within the third batch
of 720 numbers, the first 5! = 120 have a 1 in the hundred thousands place value, the next 120
have a 2 in the hundred thousands place, the next 120 have a 4, and so on. Continuing in the
same manner we can deduce that the 2013th number is 3657214 .

5. Answer:
273

16

Solution: If Matt’s first coin flip is heads, then in expectation, Matt needs to flip the coin 17
16

times to get a tail. If Matt’s first coin flip is tails, then in expectation, Matt needs to flip the

coin 17 times to get a head. Therefore, the answer is 1 +

(
16 +

1

16

)
=

273

16
.

6. Answer: 39

Solution: The constraint that x.y is an integer multiple of x/y is equivalent to the claim that
there exists an integer n such that

nx/y = x + y/b =⇒ nx = xy + y2/b =⇒ x(n− y) = y2/b =⇒ x =
y2

b(n− y)
.

We see that b cannot be prime, since then b | y2 would imply that b | y =⇒ y ≥ b. In fact, for
exactly the same reason, b cannot be the product of distinct primes.

We now claim that any b that is not the product of distinct primes is neat. Say b has one prime
factor p that occurs m > 1 times in its prime factorization. Then, set y = b/p and n = y + 1.
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b | y2 because y2 has a factor of p2m−2 and m > 1 =⇒ 2m− 2 ≥ m, and all other prime factors
of b are also clearly contained in y2 in sufficient numbers. Finally, x = y2/b < b2/b = b because
y < b, so it is also a base-b digit.

Hence, we just need to count the number of integers less than or equal to 100 that have at least
one prime factor repeated more than once. This prime factor can be either 2, 3, 5, or 7 (since
112 > 100). We can count using the Principle of Inclusion-Exclusion: considering only positive
integers greater than 1 and less than or equal to 100, there are 25 multiples of 22, 11 multiples
of 32, 4 multiples of 52, and 2 multiples of 72. We’ve double-counted two multiples of 36 (36
and 72), as well as 100, but any other number that might be multiple of more than one of these
squares would have to be too big. Hence, report 25 + 11 + 4 + 2− 3 = 39 .

7. Answer:
13

29
Solution: Let ai be the probability that Robin plays the highest note before the lowest note
given a starting position of the ith lowest note. a1 = 0 and a88 = 1, clearly. Furthermore, for
all intermediate i, we have that ai = ai−1+ai+1

2 . From here, we can compute a2 = a1+a3
2 = a3

2 .
So then a3 = 2a2. Continuing, we see a4 = 3a2, a5 = 4a2, and more generally an = (n − 1)a2,
for n between 1 and 88. Plugging in n = 88 and a88 = 1, we see a2 = 1/87, and thus an = n−1

87 ,

so therefore a40 =
13

29
.

8. Answer: 58

Solution: The way to achieve 58 is as follows: burn a big candle together with two small
candles, one after the other, leaving one 2-minute candle. Burn the 2-minute candle together
with two small candles, in parallel, leaving two 5-minute candles. Burn one of the 5-minute
candles together with two small candles, leaving two 2-minute candles. Burn the other 5-minute
candles together with two 2-minute candles, one after the other, leaving a 1-minute candle.
That’s 1 big candle and 6 small candles for 16 + 7 · 6 = 58 cents.

To motivate that we can see this quickly, note that 5 ·7−2 ≡ 1 (mod 16). Note that if we buy 5
small candles, 1 big candle, and then buy one extra small candle, we can make that small candle
a 2-minute candle as outlined above and then be bought those additional 2 minutes so we can
get a 1-minute candle.

To show that we can’t do better, we just check a lot of possibilities. If we have 3 big candles,
we can have 1 small candle. If we have 2 big candles, we can have 3 small candles. If we have
1 big candle, we can have 5 small candles. If we can show that it is impossible in all of these
cases, then we are done.

Case 1: 3 big candles, 1 small candle. In this case, we can extract a 9-minute candle at best by
burning a big candle and a small candle in parallel.

Case 2: 2 big candles, 3 small candles. In this case, we can extract a 9-minute candle at the cost
of one small candle. This can get us a 2-minute candle, but we can’t extract a 1-minute candle
as a consequence.

Case 3: 1 big candle, 5 small candles. We can burn one big candle and one small candle in
parallel to get one 9-minute candle and four 7-minute candles. We could do this with one 7-
minute candle and three 2-minute candles, but then we would need five 7-minute candles to
begin with. Having more than one 9-minute candle is similarly ineffective.

Thus, the cheapest possible cost is 58 cents.
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9. Answer: 16

Solution: Let N = 2013, E = 61, L = 3. Suppose we have G groups. Consider a set of E + 1
cows such that each cow is enemies with all E of the others. Each group can have at most L+ 1
of these cows, so a valid partition is not always possible if (L + 1)G < E + 1. Therefore, we
must have G ≥ E+1

L+1 for a valid partition to always exist.

We will now prove that this is also a sufficient condition. Take any partition of the cows into G
groups. Choose any cow with more than L enemies in her group. If all groups have more than L
of her enemies, then E ≥ (L + 1)G. So if E < (L + 1)G =⇒ E + 1 ≤ (L + 1)G =⇒ G ≥ E+1

L+1 ,
then there exists a group with at most L of her enemies, and we can move her to this group.
Making this move strictly decreases the total number of pairs of enemies within the groups,
since the only affected pairs are those involving the moved cow, and we removed more than L
pairs of enemies from the old group but created at most L in the new group. Therefore, we can
repeatedly move a cow in a group with more than L of her enemies to a group with at most L of
her enemies. This process cannot continue indefinitely since the number of pairs cannot decrease
below 0, so it must yield a partition in which no cow has more than L enemies. Therefore, if
G ≥ E+1

L+1 , then a valid partition is always possible.

Therefore, the minimal number of groups such that a valid partition is always possible is G =⌈
E+1
L+1

⌉
= 16 .

10. Answer: 652

Solution: We claim that if b is a valid positive integer if it satisfies any of the following
conditions:

(a) b is relatively prime to both 17 and 18

(b)
b

2
is a perfect square relatively prime to 17 and 3.

There are 632 numbers that fit the first condition, and 20 additional numbers which don’t satisfy
the first condition that fit the second condition. This gives us an answer of 652 .

It remains to prove that these conditions are necessary and sufficient.

We first prove that, for any set of pairwise relatively prime integers x1, . . . , xn, there exists
some integer N such that N

xi
is a perfect xith power for all xi. This follows from the Chinese

Remainder Theorem. Let n have prime factorization pa11 . . . pakk . We have n modular recurrences
for each prime, each modulo being relatively prime, so by CRT, there exists some solution for
the ai and therefore some N exists.

To prove that the second case holds, note that the power of two in N must be 1 (mod 18)
and also 1 (mod 2r2), which is acceptable if r is relatively prime to 3 and 17 because then the
exponents of 3 and 17 remain unaffected and there is no conflict on the parity of the exponent
of 2.

It remains to show that no other integer is valid. Any other integer which is a scalar multiple of
17 will be multipled by some prime power pk. It must be the case that the prime p must be 0
(mod 17) and also k (mod 17pk), which is a contradiction unless pk is a 17th power, but that is
impossible in our desired range. The same logic holds for the scalars of 2 and 3. This completes
the proof that no other integer is valid.


