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Introduction

Shuffling a deck of playing cards is a very important life skill. The standard riffle shuffle goes like this: you
take a stack of cards, split it into two piles, hold one pile in your left hand and the other in your right, and
drop cards from each hand onto a common pile on the table in random order. After repeating this several
times, your card deck is hopefully fairly well-mixed and ready for a game or maybe a magic trick. (Of course,
in practice, the easiest way to perform the riffle shuffle is to allow the cards to interleave without dropping
them, but this is mathematically equivalent.)

People often perform only three or four riffle shuffles in a row before using a standard deck of 52 playing
cards. One might ask if this is really enough. It’s not hard to see that after one riffle shuffle, many orderings
of the cards are impossible to reach and many others are much more likely than they ought to be in a
uniformly random probability distribution. How many shuffles in a row do you really need to approximate
uniform randomness? This Power Round builds up some of the basic ideas you need to answer this question.

In order to understand how to mathematize shuffling, we first discuss the basic concept of a permutation
and some specific properties that we will need. Next, we give a mathematically precise definition of the
Gilbert-Shannon-Reeds riffle shuffle, which has been shown in experiments to be a good model for how real
people shuffle, and develop the theory of the probabilities it generates. Unfortunately, actually computing
the necessary number of shuffles for approximate uniform randomness is beyond the scope of this test,
but hopefully you will come to believe that such a number is indeed computable. Finally, we develop the
mathematics of the perfect shuffle, a deterministic shuffle very useful in magic tricks to those able to perform
it. Have fun!

Permutation Enumeration

One of the key tools that we will use to analyze shuffles is the permutation. A permutation of a set S is
defined as a listing of elements of S in some order (with each element appearing precisely once); for example,
permutations of S = {1, 2, 3, 4, 5} include (4, 2, 3, 5, 1) or (3, 2, 1, 4, 5).

1. (a) List all permutations of {1, 2, 3}.
(b) Give an expression for the number of permutations of {1, 2, 3, . . . , n} in terms of n. Compute the

number for n = 5.

We can also think of a permutation as an operation or a process that we perform on some ordered listing
to get another ordered listing. For instance, with S = {1, 2, 3}, we can think of the permutation (2, 1, 3) as
the operation of swapping the first and second elements in an ordered listing of three elements, and leaving
the third in place. In general, we interpret a permutation (σ(1), σ(2), . . . , σ(n)) as the operation that sends
the σ(1)th element to the first position, the σ(2)th element to the second position, and so on. The listings
we previously wrote down are just what we get when we apply the permutation to (1, 2, . . . , n). Note that
the permutation whose listing is itself (1, 2, . . . , n) corresponds to doing nothing at all—for this reason, we
call it the identity permutation, and write it as 1.

Given this interpretation, we define the notions of composition and inverse. The composition σ ◦ τ of
two permutations σ and τ is the operation of performing τ first, then σ. The inverse σ−1 of a permutation
σ is the permutation such that σ−1 ◦ σ = 1.

2. (a) Compute the composition σ ◦ τ of permutations σ = (1, 5, 4, 3, 6, 2) and τ = (2, 4, 6, 3, 1, 5).

(b) Compute the inverse of (3, 1, 4, 2) and the inverse of (2, 4, 6, 3, 1, 5).

(c) Show that (σ ◦ τ)−1 = τ−1 ◦ σ−1 for all permutations σ and τ of {1, 2, . . . , n}.

When talking about shuffles, both of these interpretations of permutations have a natural meaning.
The listing interpretation corresponds to a state of the deck, and the process interpretation corresponds to
shuffling the deck form one state to another.
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3. (a) Suppose that a process shuffles a deck of σ into τ . Which permutation will be produced when
(1, 2, · · · , n) is shuffled by that process? Justify.

So far, we’ve talked about permutations as deterministic processes that always produce the same result
on the same input. But in real shuffling, people usually don’t produce the same result every time (unless
they’re trained magicians!). Thus, we will mainly focus on shuffling processes that are random processes,
i.e. different outcomes occur with certain probabilities. The probability that a random shuffle turns a deck
σ into a deck τ is called the transition probability from σ to τ .

4. For any random shuffle, show that the transition probability from σ to τ is same as from 1 to τ ◦σ−1.

Now, let’s return to permutations. An ascent of a permutation σ of {1, 2, . . . , n} is any position 1 ≤ i < n
such that σ(i) < σ(i+ 1). For example, the permutation (2, 7, 1, 3, 5, 4, 8, 6) has ascents at positions 1, 3, 4, 6.
Similarly, a descent of a permutation σ is any position where σ(i) > σ(i+ 1). In our example, the descents
occur at positions 2, 5, 7. Note that every position i < n is either an ascent or a descent.

5. (a) List the ascents and descents of (9, 2, 7, 6, 3, 1, 8, 4, 5).

(b) Compute the number of permutations of {1, 2, 3} with exactly one descent.

(c) There are 11 permutations of {1, 2, 3, 4} with exactly two ascents. List them.

No explanations required.

Define the Eulerian number
〈
n
k

〉
as the number of permutations of {1, 2, . . . , n} with k ascents. For

example, as given in the preceding problem,
〈
4
2

〉
= 11.

6. Prove the symmetry property of Eulerian numbers:〈
n

k

〉
=

〈
n

n− k − 1

〉
.

7. Prove that the Eulerian numbers satisfy the recurrence〈
n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
.

8. Using the recurrence for Eulerian numbers, compute a table of Eulerian numbers. Include
〈
n
k

〉
for

0 ≤ k ≤ n ≤ 6.

9. Prove Worpitzky’s Identity:

xn =

n∑
k=0

〈
n

k

〉(
x+ k

n

)
.

To ensure that the binomial coefficient makes sense, assume that x is an integer and x ≥ n.1

A rising sequence of a permutation σ is a maximal sequence of consecutive numbers appearing as a
subsequence of σ. Every permutation decomposes into disjoint rising sequences. For example, the permuta-
tion (6, 1, 2, 4, 7, 5, 3) decomposes into three rising sequences: (1, 2, 3), (4, 5), and (6, 7). Here, (1, 2, 3) is a
rising sequence of (6, 1, 2, 4, 7, 5, 3) because the numbers 1, 2, 3 appear in order in σ but 1, 2, 3, 4 do not.

10. Recall the definition of the inverse of a permutation from the text before problem 2. Show that the
number of rising sequences of a permutation σ is equal to one more than the number of descents of
σ−1. That is, show

#{rising sequences of σ} = #{descents of σ−1}+ 1.

1This actually works in greater generality. We can define generalized binomial coefficients
(a
b

)
for any real numbers a and b,

and Worpitzky’s identity holds in this more general context.
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The Gilbert-Shannon-Reeds shuffle

As remarked in the introduction, the Gilbert-Shannon-Reeds (GSR) shuffle is a mathematical model which
has been shown in experiments to fit the way real people shuffle real card decks. Here we will develop this
model and a number of its interesting properties.

First we introduce some standard notation. Let j1, j2, . . . , ja be nonnegative integers so that j1 + j2 +
· · ·+ ja = n. We define (

n

j1, j2, . . . , ja

)
=

n!

j1!j2! · · · ja!
.

This number is called a multinomial coefficient. Of course, when a = 2, this is just a binomial coefficient,
which we will usually refer to as

(
n
j1

)
.

11. Compute (no explanations required):

(a)
(

7
3,2,2

)
,

(b)
(

8
2,2,2,2

)
, and

(c)
(

100
99,1,0,0,0

)
.

The standard GSR shuffle works like this. Take a deck of n cards and cut it into a left pile and a right
pile containing the bottom x cards and top y cards respectively (so x + y = n), in such a manner that the
probability of putting x cards into the left pile is

(
n
x

)
/2n. Drop cards from the bottom of either the left or

the right pile one at a time, in such a manner that if at any point you’re holding X cards on the left and Y
cards on the right, the probability that the next card dropped comes from the left is X/(X + Y ).

12. Take a stack of three cards labeled 1, 2, 3 from bottom to top and apply the GSR shuffle once. Consider
the resulting pile, from bottom to top, as a permutation of 1, 2, 3.

(a) Are any permutations impossible to get? If so, which one(s)?

(b) Compute the probability of putting (i) 0, (ii) 1, (iii) 2, (iv) 3 cards into the left pile during the
cut.

(c) Compute the probability of the final permutation being (i) 3, 1, 2, (ii) 1, 2, 3.

No explanations required.

13. (a) In the general case with n cards, why do the given probabilities of cutting 0, 1, . . . , n cards into

the left pile always actually add up to 1? That is, show that
(n
0)
2n +

(n
1)
2n + · · ·+ (n

n)
2n = 1.

(b) Take a standard deck of 52 cards and perform one GSR shuffle. Show that the probability of
cutting 0 cards into one of the piles is less than one in one trillion (10−12).

Now we’re ready to describe the GSR a-shuffle, which is exactly like the standard GSR shuffle except
with a piles. That is, take your deck of n cards, cut it into piles of size j1, . . . , ja with j1 + · · · + ja = n
so that the probability of getting precisely those sizes in that order is

(
n

j1,...,ja

)
1
an (we will refer to this as

the cutting stage), and drop cards from the piles, one at a time from the bottom, so that whenever you are
holding piles of size J1, . . . , Ja respectively, the probability of dropping the next card from the kth pile is
Jk/(J1 + · · · + Ja) (this is the dropping stage). In the future, we will consistently assume the following: 1.
The cards start out numbered 1 to n from bottom to top. 2. The order of the cards after the dropping stage,
from bottom to top, will be considered as a permutation of 1, 2, . . . , n.

14. (a) Take a 4-card deck and perform one 3-shuffle. Compute the probability that after the cutting
stage, the pile sizes will be 1, 1, 2 in some order.

(b) Now suppose the same 4-card deck has already been cut into piles of size 1, 1, 2 from left to right
(so the leftmost pile has the card numbered 1, the middle pile has card 2, and the rightmost pile
has cards 3 and 4). Perform the dropping stage.
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(i) How many permutations of 1, 2, 3, 4 are possible results?

(ii) Compute the probability (given this initial cut) that the final permutation is 2, 3, 4, 1.

(iii) Compute the probability that it is 3, 2, 4, 1.

No explanations required.

15. (a) Prove that the probabilities we’ve given for every possible way to cut the cards during the cutting
stage really do add up to 1.

(b) Take an n-card deck which has already been cut into a piles of size j1, . . . , ja. After the dropping
stage, how many permutations of 1, . . . , n are possible? Justify.

(c) Prove that, given this initial cut, every permutation of 1, . . . , n which is possible after the dropping
stage occurs with equal probability. This shows that every possible path of operation, from deck to
cut piles to final permutation, occurs with probability exactly 1/an. Conclude that the transition
probability of the GSR a-shuffle from 1 to σ is the same as the number of paths leading to σ
divided by an. Refer to the definitions after problem 3.

We will now describe a few apparently different shuffles which turn out to be the GSR a-shuffle in disguise,
or related. The diversity of these descriptions shows just how mathematically rich the GSR shuffle is!

16. (a) A “maximum entropy a-shuffle” is any shuffle in which you cut an n-card deck into a (possibly
empty) piles and then drop cards from the piles one by one, with the stipulation that every
possible path from deck to piles to final permutation should be equally likely. Prove that the only
way to satisfy this property is to use the same probabilities as in the GSR a-shuffle.

(b) A “sequential a-shuffle” works as follows. First you cut an n-card deck into a piles according
to the GSR probability distribution (i.e. getting piles of size j1, . . . , ja occurs with probability(

n
j1,...,ja

)
). Then you shuffle pile 1 and 2 together using the dropping stage of the standard GSR

2-shuffle. Having done this, you shuffle the combined pile with pile 3, take the result and shuffle
with pile 4, and so on until you have only one pile left. Prove that the probability of getting any
particular permutation at the end is the same as with the standard a-shuffle.

(c) An “inverse a-shuffle” works as follows. Take your n-card deck and, dealing from the bottom, place
each card on one of a piles uniformly at random (that is, choose each pile with probability 1/a).
Once you’re done, stack the piles together in order from left to right.

(i) Show that inverse a-shuffle is not equivalent to the standard a-shuffle in general by exhibiting
a permutation of 4 cards reachable by an inverse 2-shuffle which is not reachable by a
standard 2-shuffle. Justify.

(ii) Show that the transition probability from σ to τ of the inverse a-shuffle is the same as the
transition probability τ to σ of the standard a-shuffle. Refer to the definitions after problem
3.

17. (a) Prove that an inverse a-shuffle followed by an inverse b-shuffle gives rise to permutations with the
same probabilities as an inverse ab-shuffle. (This is called the product rule.)

(b) Explain why this property of an a-shuffle followed by a b-shuffle being the same as an ab-shuffle
must also hold when carrying out the standard (AKA maximal entropy) and sequential forms of
the GSR shuffle. Justify rigorously.

18. (a) Suppose σ is a permutation with r rising sequences. Prove that the transition probability from 1
to σ for the GSR a-shuffle of an n-card deck is(

a+n−r
n

)
an

.

(b) Use this to give another proof of Worpitzky’s identity.

(c) Use part a of this problem and Problem 17 to show that if we repeat an a-shuffle k times on the
same deck, the probability of any one permutation σ appearing after the last shuffle approaches
1/n! as k approaches infinity.
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Using the GSR model and some analysis too advanced to explain here, one can show that an n-card
deck must be shuffled at least 3

2 log2 n times before the probability distribution of the resulting permutations
begins to approach uniformly random. This number is 7 for a 52-card normal playing deck and 9 for an
81-card SET deck. We here at the Rice Math Tournament consider it very important that you take this
knowledge into account the next time you play a card game!

Perfect shuffles

So far, we’ve been discussing a method of shuffling which aims to make the resulting permutation random.
For certain sorts of people, such as magicians, it is more important to discuss forms of shuffling which are
perfectly predictable. Here we analyze the interesting mathematics behind one such shuffle.

In a slight departure from the notation of the previous section, we will work with a deck of 2n cards which
starts out numbered 0, 1, . . . , 2n− 1 from bottom to top. (This also means that we will refer to the location
of the bottom card as the 0th position in the deck, and so on.) There are two perfect riffle shuffles, the
out-shuffle O and the in-shuffle I. In both shuffles, you cut the deck exactly in half and alternate dropping a
card from each half. O leaves the original top card on the top, whereas I leaves it second from the top. For
example, applying O to 0, 1, . . . , 2n− 1 gives 0, n, 1, n+ 1, 2, n+ 2, . . . , n− 1, 2n− 1, whereas applying I to
0, 1, . . . , 2n− 1 gives n, 0, n+ 1, 1, n+ 2, 2, . . . , 2n− 1, n− 1. We will refer to the permutations obtained by
applying O and I to a0, a1, . . . , a2n−1 as O(a0, a1, . . . , a2n−1) and I(a0, a1, . . . , a2n−1) respectively; thus we
might say that O(0, 1, . . . , 2n− 1) = 0, n, 1, n+ 1, 2, n+ 2, . . . , n− 1, 2n− 1. We will refer to the permutation
obtained by applying O to a0, a1, . . . , a2n−1 k times as Ok(a0, a1, . . . , a2n−1), and similarly for I.

The order of a shuffle on 2n cards is the least positive number of times you must apply it to 0, 1, . . . , 2n−1
before getting 0, 1, . . . , 2n− 1 back.

19. Compute (no explanation needed)

(a) I(O(I(0, 1, 2, 3, 4, 5))),

(b) the order of O on 8 cards, and

(c) Ok(0, 1, 2, 3, 4, 5, 6, 7) for all k ≥ 1.

20. (a) Prove that after one out-shuffle of 2n cards, the card numbered j has moved to position 2j
(mod 2n− 1).

(b) Prove that the order of an in-shuffle on 2n cards is the same as the order (of the middle n cards)
of an out-shuffle on 2n+ 2 cards.

(c) Prove that the order of an out-shuffle on 2n cards is the least positive integer k such that 2k ≡ 1
(mod 2n− 1).

(d) Compute the order of an out-shuffle on 52 cards.

21. (a) Take a deck of 2m cards and number them as usual. Prove that if a card’s number has binary repre-
sentation am−1am−2 . . . a0, after one out-shuffle, that card has moved to position am−2 . . . a0am−1.

(b) What do m in-shuffles do to 2m cards? Justify.

22. Given a deck of 2n cards numbered as usual and k ∈ {0, 1, . . . , 2n− 1}, state and prove an algorithm
consisting only of in- and out- shuffles for bringing the card numbered 0 to the kth position in the
deck. (Hint: consider the binary expansion of k.)


