- 1. AB is a diameter of a circle with radius 1. C lies on this circle such that AC / BC = 4. Find the (positive) difference in area between $\overline{AC} \cup CA$, the segment of the circle cut off by \overline{AC} , and $\overline{BC} \cup CB$, the segment cut off by \overline{BC} .
- 2. In trapezoid ABCD, $BC \parallel AD$, AB = 13, BC = 15, CD = 14, and DA = 30. Find the area of ABCD.
- 3. Let ABC be equilateral triangle of side 1. Draw three circles O_a, O_b, O_c with diameters BC, CA, and AB, respectively. Let S_a denote the area of the region inside O_a and outside of O_b and O_c . Define S_b and S_c similarly, and let S be the area of the intersection between the three circles. Find $S_a + S_b + S_c S$.
- 4. Let ABCD be a rectangle with area 2012. There exist points E on AB and F on CD such that DE = EF = FB. Diagonal AC intersects DE at X and EF at Y. Compute the area of triangle EXY.
- 5. What is the radius of the largest sphere that fits inside an octahedron of side length 1?
- 6. A red unit cube *ABCDEFGH* (with *E* below *A*, *F* below *B*, etc.) is pushed into the corner of a room with vertex *E* not visible, so that faces *ABFE* and *ADHE* are adjacent to the wall and face *EFGH* is adjacent to the floor. A string of length 2 is dipped in black paint, and one of its endpoints is attached to vertex *A*. How much surface area on the three visible faces of the cube can be painted black by sweeping the string over them?
- 7. Let ABC be a triangle with side lengths 5, 8, and 9 and incircle O. Consider the other tangent line to O parallel to BC, which intersects AB at B_a and AC at C_a . Let r_a be the inradius of triangle AB_aC_a , and define r_b and r_c similarly. Find $r_a + r_b + r_c$.
- 8. In triangle ABC, we have a = 3, b = 5, and c = 6. For some radius r, draw the three circles with radius r such that the centers O_a and O_b are outside the triangle while the center O_c is inside the triangle. If circles O_a and O_b intersect at C, O_b and O_c intersect at A, O_c and O_a intersect at B, and all three circles intersect at a fourth distinct point, find r.
- 9. In quadrilateral ABCD, $\angle ABD \cong \angle BCD$ and $\angle ADB = \angle ABD + \angle BDC$. If AB = 8, and AD = 5, find BC.
- 10. A large flat plate of glass is suspended $\sqrt{2/3}$ units above a large flat plate of wood. (The glass is infinitely thin and causes no funny refractive effects.) A point source of light is suspended $\sqrt{6}$ units above the glass plate. An object rests on the glass plate of the following description. Its base is an isosceles trapezoid ABCD with AB||DC, AB = AD = BC = 1, and DC = 2. The point source of light is directly above the midpoint of CD. The object's upper face is a triangle EFG with EF = 2, $EG = FG = \sqrt{3}$. G and AB lie on opposite sides of the rectangle EFCD. The other sides of the object are EA = ED = 1, FB = FC = 1, and GD = GC = 2. Compute the area of the shadow that the object casts on the wood plate.