Note: Figures may not be drawn to scale.

- 1. Find the reflection of the point (11, 16, 22) across the plane 3x + 4y + 5z = 7.
- 2. Given the three points (1608, 2010, 2010), (2010, 2412, 2010), and (2010, 2010, 2412). Find the area of the circle defined by these three points.
- 3. What is the inradius of a triangle with side lengths 4, 5, and 6?
- 4. Find the volume of a regular cubeoctahedron, of sidelength 1, which is a solid of 8 equilateral triangles and 6 squares such that each edge is a square and a triangle together, as pictured.



- 5. Given triangle ABC. D lies on  $\overline{BC}$  such that  $\overline{AD}$  bisects  $\angle BAC$ . Given  $\overline{AB} = 3$ ,  $\overline{AC} = 9$ , and  $\overline{BC} = 8$ . Find  $\overline{AD}$ .
- 6. Given the information in the diagram, let  $\angle MBD = 90^{\circ}$ ,  $\overline{OT} = 25$  and  $\overline{AM} = \overline{MB} = 30$ . Find  $\overline{MD}$ .



- 7. Suppose we have a polyhedron consisting of triangles and quadrilaterals, and each vertex is shared by exactly 4 triangles and one quadrilateral. How many vertices are there?
- 8. Given the following circular section, write the height h, the height of the circle above the x-axis at a given x, as a function of x, with  $-R \le x \le R$ . (Note  $\theta$  and R are constants and  $\theta$  is the angle between the x-axis and the tangent line to the circle at x = -R.)



- 9. A sphere of radius 1 is internally tangent to all four faces of a regular tetrahedron. Find the tetrahedron's volume.
- 10. We are given a coin of diameter  $\frac{1}{2}$  and a checkerboard of  $1 \times 1$  squares of area  $2010 \times 2010$ . We must toss the coin such that it lands completely on the checkerboard. If the probability that the coin doesn't touch any of the lattice lines is  $\frac{a^2}{b^2}$  where  $\frac{a}{b}$  is a reduced fraction, find a + b.