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with thanks to Stephanie DeWet and Knots Knotes by Justin Roberts

Background and Definitions

What we usually think of as a knot is a 3-dimensional object. However, since we are unable to provide
3-dimensional paper, we will use a 2-dimensional definition. A knot is a single loop, possibly crossing over
itself, with gaps left whenever it crosses to indicate one arc “above” and one arc “below”. Only two arcs
may cross at a given point. (You can visualize this as a projection of a knot onto a sheet of paper.) Figure
1 shows two examples of knots.

(a) The unknot (b) The left trefoil knot (c) The right trefoil knot

Figure 1: Knots

Since our knots are two-dimensional, we must have rules for manipulating them. A convenient set of
such rules is called the Reidemeister moves, or the R-moves, which act on some small portion of the knot,
leaving the rest unchanged. (These should make sense if you again think of the knot as a projection. In
fact, Reidemeister’s Theorem states that the R-moves represent all possible manipulations of a 3D knot that
don’t involve cutting and rejoining it.) Figure 2 shows the four R-moves.

↔

(a) R0

↔

(b) RI

↔

(c) RII

↔

(d) RIII

Figure 2: Reidemeister moves

Note that the R0 move is one we would take for granted; it allows deforming knots as desired as long
as it doesn’t affect crossings. You also need not explicitly mention when you use R0, and you may combine
more than one move in a single step, but be careful not to create confusing transformations by manipulating
a knot with multiple moves without drawing intermediate steps. Note also that although these moves still
apply to rotated versions of the depicted disks, they only apply with the crossings configured as shown (see
problem 1).

We can without much extra trouble also consider links, which are like knots except composed of multiple
loops. We call each loop a component ; a knot is thus also a link (with one component). Link equivalence is
defined just as knot equivalence. Figure 3 shows a few examples of links.

(a) An unlink (b) The Hopf link (c) Borromean rings

Figure 3: Links
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Instructions

Write/draw all solutions neatly, with at most one question per page, clearly numbered. Turn in the solutions
in numerical order, with your team name at the upper right of every page. Be sure not to turn in two copies
of a question, and note that if we can’t decipher your drawings or handwriting, we can’t grade it. Partial
credit will be awarded where appropriate, and questions are weighted (though they are arranged in logical
order, not order of difficulty).

Finally, remember that for i < j you may use the results of problem i on problem j, even if you have not
solved problem i. For example, you may use the reverse R-moves of problem 1 in the rest of the problems.

Questions

1. Show that the R-moves imply the first two (RI2 and RIII2) reverse R-moves shown in Figure 4. You
may use the remainder of the reverse R-moves without proof for later problems.

↔

(a) RI2

↔

(b) RIII2

↔

(c) RIII3

↔

(d) RIII4

↔

(e) RIII5

↔

(f) RIII6

Figure 4: The reverse R-moves

2. Show that all knots with one or two crossings are equivalent to the unknot, a loop with no crossings,
and is denoted U .

3. Show that the following two knots are equivalent.

A knot invariant is a function which depends only on equivalence class of knots, not on which particular
representation is used. That is, if two knots are equivalent, the invariants of those knots are the same.
(Note that the invariant might also be the same for two non-equivalent knots!) Link invariants are defined
similarly.

4. (a) Let the crossing number c(K) be the minimal number of crossings of a knot K over all possible
manipulations. Show that crossing number is a knot invariant.

(b) Show that the number of components µ(L) of a link L is a link invariant.

An oriented knot is one with a chosen direction along the string, followed through the entire knot. An
oriented link is defined similarly (note that a direction is needed for each component). We define oriented knot
invariants and oriented link invariants as with unoriented knots and links. Note that it is sometimes helpful
to draw multiple arrows on a single component to keep track of the orientation, and also that properties of
unoriented knots generally apply to oriented versions as well. The R-moves and reverse R-moves work on
oriented knots and links as well, preserving the directions of arrows. See figure 5 for examples of oriented
knots and links. The R-moves apply to oriented knots and links as well, as long as you are careful to preserve
the orientation of the segments as you move them.

Let D be an oriented link. The linking number Lk(D) is the sum over all crossings of contributions given
by:
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(a) An oriented trefoil (b) An oriented knot (c) An oriented Hopf link (d) Oriented Borromean rings

Figure 5: Oriented knots and links

• 0 if the arcs of the crossing belong to the same component

• ±1 if the arcs of the crossing belong to different components (see figure 6). We call the ±1 the sign of
the crossings.

+1 −1

Figure 6: The signs of crossings

5. (a) Compute the linking number of the oriented Hopf link and Borromean rings shown in figures 5c
and 5d.

(b) Show that linking number is a knot invariant.

(c) Show that linking number is a link invariant.

Suppose we color a link D, using a single color for each connected arc, such that at every crossing the
three incident arcs (considering the arc on the bottom as two arcs instead of one) are either all the same
color or all different colors. For example, the three connected arcs of the left trefoil knot (figure 1b) cannot
be colored with two colors, since this would lead to two of one color and one of another at a crossing, but it
can be colored with a different color for each arc. This is called a 3-coloring, and τ(D) denotes the number
of possible 3-colorings of the link D.

6. Calculate τ for the trefoil knot (figure 1b).

7. Show that τ(D) is a link invariant.

The connect sum K1#K2 of two oriented knots K1 and K2 is formed by cutting each in a single place,
and joining them together so that the orientations of each knot match up, forming a single new oriented
knot. Figure 7 shows an example of a connect sum. If the knots are unoriented, we form the connect sum
without worrying about matching up orientations.

8. Find, with proof, a formula for τ(K1#K2) in terms of τ(K1) and τ(K2).

# =

Figure 7: A connect sum

9. Show that there are infinitely many distinct knots.
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−→ −→

Figure 8: Construction of a torus knot

A torus link Tp,q is created by placing p string segments from end to end of a cylinder, evenly spaced
around the circumference, twisting the cylinder through q/p full twists, and gluing the ends of the cylinder
together, forming a torus out of the cylinder which is then removed, leaving only the string. The example
in Figure 8 shows T3,3, with all three segments moved to the front of the torus to make them visible.

10. Determine with proof the number of components of the link Tp,q. In particular, when is it a knot?

Another useful concept is the Kauffman bracket of an unoriented link D, denoted 〈D〉. It is a polynomial
in integer powers of A defined by the following:

• It is invariant under R0 moves.

• It satisfies 〈D〉 = A 〈D+〉+A−1 〈D−〉, where D+ and D− are created by replacing a crossing as shown
below, while leaving the rest of the knot unchanged.

〈 〉
= A

〈 〉
+A−1

〈 〉

• It satisfies 〈D
∐
U〉 = (−A2 − A−2) 〈D〉, where

∐
represents a disjoint sum. (A disjoint sum of two

links is made by placing them together without entangling them and considering them one link. For
example, the unlink of figure 3a is the disjoint sum of two unknots.) That is, removing a disjoint
(unattached) unknot from the link results in a new link with Kauffman bracket (−A2 − A−2) times
that of the original link - see below for an example.〈 〉

=
(
−A2 −A−2

)〈 〉

• 〈U〉 = 1; the bracket of a crossingless unknot is 1.

11. Calculate the Kauffman bracket of the Hopf link and left trefoil knot, shown in figures 3b and 1b.

12. Determine which, if any, of the R-moves the Kauffman bracket is invariant under.

If D is an oriented link, then the writhe w(D) is the sum of the signs of all crossings of D. That is, it is
the same as the linking number with self-crossings included as ±1, instead of being counted as 0.

13. Determine which, if any, of the R-moves the writhe is invariant under.

14. Show that the Jones polynomial fD(A) = (−A3)−w(D) 〈D〉 is an invariant of oriented links.

15. Find a formula for fD1
‘

D2(A) in terms of fD1(A) and fD2(A), that is, for the Jones polynomial of a
disjoint union in terms of the Jones polynomials of the two parts of the union.

16. Find a formula for fD1#D2(A) in terms of fD1(A) and fD2(A), that is, for the Jones polynomial of a
connect sum in terms of the Jones polynomials of the two summands.

Reflecting a 3D knot across a plane in three dimensions causes all of the crossings in a corresponding
(2D) knot to flip (the arc that was on top goes to the bottom, and vice versa). A knot is called amphichiral
if it is equivalent to its mirror image, and chiral if it is not.

17. Find a method for determining whether a (2D) knot is amphichiral or chiral. Is the trefoil knot chiral?


