Power Solutions 2004 Rice Math Tournament February 28, 2004

The material for this test was based on a theorem by Larson and Dai discovered in 1997.

$$1. \ \left[-\frac{32\pi}{7}, -4\pi\right) + 6\pi \cup \left[-\pi, -\frac{4\pi}{7}\right) + 2\pi \cup \left[\frac{4\pi}{7}, \pi\right) \cup \left[4\pi, \frac{32\pi}{7}\right) - 4\pi = \left[\frac{10\pi}{7}, 2\pi\right) \cup \left[\pi, \frac{10\pi}{7}\right) \cup \left[\frac{4\pi}{7}, \pi\right) \cup \left[0, \frac{4\pi}{7}\right) = \left[0, 2\pi\right).$$

$$2. \ \left[-\frac{32\pi}{7}, -4\pi\right) * 2^{-2} \cup \left[-\pi, -\frac{4\pi}{7}\right) * 2 \cup \left[\frac{4\pi}{7}, \pi\right) * 2 \cup \left[4\pi, \frac{32\pi}{7}\right) * 2^{-2} = \left[-\frac{8\pi}{7}, -\pi\right) \cup \left[-2\pi, -\frac{8\pi}{7}\right) \cup \left[\frac{8\pi}{7}, 2\pi\right) \cup \left[\pi, \frac{8\pi}{7}\right) = I_2$$

- 3. $[-\pi, -\frac{\pi}{2}) * 2 \cup [\frac{3\pi}{2}, 2\pi) \cup [2\pi, 3\pi) * 2^{-1} = [-2\pi, -\pi) \cup [\pi, 2\pi).$ $[-\frac{\pi}{2}, -\frac{\pi}{4}) + 2\pi \cup [\frac{7\pi}{4}, 2\pi) \cup [2\pi, \frac{7\pi}{2}) - 2\pi = [0, 2\pi).$
- 4. Assume 0 is an element of E. Then because E_2I_2 , some subset of E containing 0 must be multiplied by a power of 2 to produce a subset of $[-2\pi, -\pi) \cup [\pi, 2\pi)$. Obviously zero cannot be multiplied by any power of 2 to get a value in this set. So E is not 2-dilation congruent to I_2 , and is thus not a wavelet set.
- 5. If $[a, b) \sim_{2\pi} [0, 2\pi)$, then we can split the interval [a, b) into 2 intervals: $[a, 2n\pi) \cup [2n\pi, b)$ (as long as $a \neq 2n\pi$ for some n, in which case, $b = 2(n+1)\pi$). Then $a 2(n-1)\pi = b 2n\pi$ when we shift $2n\pi$ to 2π and 0. Note these must meet exactly. If they do not, either there will be overlap or a gap in $[0, 2\pi)$. So $b a = 2\pi$.

If $b-a=2\pi$, one can use the exact procedure above to break the interval and show that $[a,b) \sim_{2\pi} I_1$.

- 6. The reasoning in this is similar to that in number 5. If $[a, b) \sim_2 [\pi, 2\pi)$, then we can write [a, b) as $[a, 2^j \pi) \cup [2^j \pi, b)$. Then dividing by 2^j and 2^{j-1} gives $a * 2^{-(j-1)} = b * 2^j$. So b = 2a. If b = 2a, follow the same process to break up the interval to show $[a, b) \sim_2 [\pi, 2\pi)$.
- 7. Because $E \sim_2 I_2$, E must have a subset that is positive for $[\pi, 2\pi)$ and a subset that is negative for $[-2\pi, -\pi)$. Since E has only 1 interval, it must contain 0. But from (4), 0 cannot be an element of a wavelet set. Thus there cannot be any 1 interval wavelet sets.
- 8. Because E is 2-dilation congruent to $[-2\pi, -\pi) \cup [\pi, 2\pi)$ and we can only multiply the subsets by powers of 2 (which will be positive), c has to be positive and b has to be negative. So [c, d) is a positive interval that must be 2-dilation congruent to $[\pi, 2\pi)$. Thus d = 2c. By the same token, [a, b) is a negative interval that must be 2-dilation congruent to $[-2\pi, -\pi)$. So a = 2b.
- 9. We start from $[2b, b) \cup [c, 2c)$. Now for this set to be 2π -translation congruent to $[0, 2\pi)$, $b + 2n\pi = c$, so that the sets meet in $[0, 2\pi)$. So, $E \sim_{2\pi} [2b + 2n\pi, c) \cup [c, 2c)$. Thus, we have one interval that from (5) above must have $2c c + b 2b = 2\pi$. Thus $c b = 2\pi$. So for this to be a wavelet set, we have $[2b, b) \cup [2b + 2\pi, b + 4\pi)$. Note that for this to make sense, $-2\pi < b < 0$.
- 10. We notice that one interval must be negative and the other two positive. So from above, make u = 2v. Then $[x, y) \cup [w, z) \sim_{2\pi} [2v + 2\pi, v + 4\pi)$ and it is 2-dilation congruent to $[\pi, 2\pi)$ and thus to $[2v + 2\pi, v + 4\pi)$. (also, if b = -v, we have $[-2b + 2\pi, -b + 4\pi)$)
- 11. This is the (only) negative interval. Suppose b is not less than π . Then $2b \ge 2\pi$. When we make $E \ 2\pi$ -translation congruent to $[0, 2\pi)$, we will get $[0, 2\pi 2b) \cup [4\pi b, 2\pi)$ as the contribution from [-2b, -b). Now we want to break the one interval $[2\pi 2b, 4\pi b)$ into 2 intervals. Because $[0, 2\pi 2b)$ is definitely covered by the negative interval, we must make the 2 positive intervals have values larger than $2\pi 2b$. To break this into 2 intervals, we can only move part of the interval by positive multiples of 2π . We must keep the length of this segment that we move constant, and we must keep its length positive, or else there are only 2 intervals. Unfortunately, when we shift to the right, we must have

 $[x, y) \cup [w, z)$ 2-dilation congruent to the original interval. Thus we must multiply [w, z) by powers of $\frac{1}{2}$ to get it back into the original interval. This makes [w, z) shorter by a factor of 2^{-j} and it no longer will line up with the original interval. Note that taking out 2 intervals and shifting them by $2n\pi$ only makes things worse when we have to multiply both intervals by 2^{-j} . So what this shows us is we need a little "space" around 0 to make sure we can shift one interval to the left and one to the right. Thus $2b < 2\pi$ and $b < \pi$.

- 12. In this step, we use 2π -translation. Our interval [-2b, -b) shifts to $[2\pi 2b, 2\pi b)$ and this interval is a subset of $(0, 2\pi)$ because $0 < b < \pi$. We note that our 2 intervals must have endpoints that line up with $2\pi - b$ and $4\pi - 2b$. We also want one positive interval to be shifted by a positive multiple of 2π to fit in $[2\pi - b, 4\pi - 2b)$. Our first 2 options to the left of $2\pi - b$ are $[x, 2\pi - 2b)$ and [-b, x). The second is already negative, so our only choice has to be $[x, 2\pi - 2b)$. Then for our other interval, it must be 2π -translation congruent to $[2\pi - b, 2\pi + x)$, and we want to shift it by negative multiples of 2π to obtain this interval. So we can write the third interval as $[2n\pi - b, 2n\pi + x)$, for some m > 1and some x > 0.
- 13. Now we want to use 2-dilation to fix our last interval. $[x, 2\pi 2b) * 2^j$ must line up with our other interval, $[2n\pi b, 2n\pi + x)$. So $2^j(2\pi 2b) = 2n\pi b$ and $2^{j+1}(x) = 2n\pi + x$ where $j \ge 2$. We get: $2^{j+1}\pi 2n\pi = 2^{j+1}b b$ and $2^{j+1}x x = 2n\pi$.

So,
$$b = \frac{(2^{j+1}-2n)\pi}{2^{j+1}-1}$$
 and $x = \frac{2n\pi}{2^{j+1}-1}$.

Thus we can write all 3 interval wavelet sets in the form of (12), and can say that any 3-interval wavelet set will be characterized only by a dilation factor $j \ge 2$ and a translation factor $n \ge 2$.

14. $y - 2^{j}\pi = x$ and $2^{j+1}x = y$. Thus re-write the wavelet set with only j as: $\left[-\frac{2^{2j+1}\pi}{2^{j+1}-1}, -2^{j}\pi\right] \cup \left[-\pi, -\frac{2^{j}\pi}{2^{j+1}-1}\right] \cup \left[\frac{2^{j}\pi}{2^{j+1}-1}, \pi\right] \cup \left[2^{j}\pi, \frac{2^{2j+1}\pi}{2^{j+1}-1}\right]$.