

Global Warming: The Problem and Potential Solutions

Charles Christopher BP Upstream Technology Group Houston

Ice Cores Capture Atmospheric History

Historical CO₂ Levels

The Greenhouse Effect

The natural Greenhouse Effect

Some of the sun's radiation is reflected back into space by the atmosphere, clouds and the earth. 51 % passes through the atmosphere and warms the earth's surface.

Some of this warmth escapes as infrared radiation. Gases in the atmosphere, like water vapour, Carbon Dioxide, Methane, Chlorofluorocarbons, Halons and Nitrous Oxide absorb and re-emit some of the infra-red, effectively warming the lower atmosphere and earth by about 35°.

The Enhanced Greenhouse Effect > An increase in the quantity of Greenhouse gases as a result of human activity, may increase temperatures.

The Greenhouse Gases

- Water vapor responsible for some 60% of the GH effect
- Global Warming Potential
 - Carbon Dioxide CO₂ 1
 - Methane CH_4 21
 - Nitrous Oxide N₂O 310
 - Freon 23 CHF₃ 11,700
 - Sulfur Hexafluoride SF₆ 23,900

Future BAU Emissions Trends

(IS92a "Business As Usual" Scenario of IPCC)

Increase in global energy use/capita, 1997-2100:

- For primary energy up 2.0X
- For electricity up 2.6X
- For "fuels used directly" up 1.4X

Annual global CO₂ emissions (not/capita):

- <u>Total</u>: 22.7 Gt CO₂, 1997(37% coal) → 73 Gt CO₂, 2100 (88% coal)
- From electricity: 7 Gt CO₂, 1997 \rightarrow 18 Gt CO₂, 2100
- From fuels used directly: 16 Gt CO₂, 1997 \rightarrow 55 Gt CO₂, 2100

 Cumulative emissions, 1990-2100: 5,500 Gt CO₂ (about the volume of Lake Michigan)
 Mt Pinatubo, 1991 eruption = 42 M tonnes CO₂

Business As Usual

- Sea Level Rise West Antarctic Ice Sheet, Greenland
- Thermohaline Circulation Belt
- Peats in Northern Latitudes
- Methane Hydrates
- Severe weather patterns

This ice is 90 percent of all Earth's ice and 70 percent of all its fresh water, amounting to about 6 million cubic miles. if it were returned to the oceans, it would raise global sea level about 200 feet.

Antarctica

- Sea Level Rise –
 West Antarctic Ice
- Sheet, Greenland
- Thermohaline Circulation Belt
- Peats in Northern Latitudes
- Methane Hydrates
- Severe weather patterns

- Sea Level Rise West Antarctic Ice Sheet, Greenland
- Thermohaline Circulation Belt - THC
- Peats in Northern Latitudes
- Methane Hydrates
- Severe weather patterns

Source: Breecker, 1991, in Climate charge 1995, Impacts, adaptations and mitigation of climate change: scientific-technical analyses, contribution of working group 2 to the second assessment report of the Intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.

In addition to large effects on weather, upwelling may be responsible for 70% of the oceans' biological productivity.

- Sea Level Rise West Antarctic Ice Sheet, Greenland
- Thermohaline Circulation Belt
- Peats in Northern Latitudes
- Methane Hydrates
- Severe weather patterns

Russia and Canada alone have more than 2.7 million $Km^2 = 67million$ acres of peat.

Business As Usual?

Emissions reductions required are the differences between the curves

Seven Slices of the Stabilization Wedge

After Pacala 2003

What Is Required to Achieve a Slice?

Category	Global Annual Increment	Total Capacity in 2050
Fuel shifting to replace coal	 Build 28 GW of gas-fueled plants 	1400 GW fueled by gas instead of coal (12% of current total)
Increased energy efficiency	2) Double efficiency of 40 million gas/diesel cars	2 billion gas/diesel cars at 60 mpg rather than 30 mpg
Displace Fossil Fuel in Electricity Gen	3) Wind 1.4x current	70x current
	4) Solar 20x current	1000x current; 12x10 ⁶ acres
	5) Nuclear 4% current capacity	700 1 GW plants; 2x current cap
Substitute Renewables	6) Biomass 10 million acres	500 x10 ⁶ acres = all US cropland
	7) Hydrogen from nuclear 201GW plants	1000 1GW plants
Forest and soil seq.	8) 35 million acres	1,500 million acres = total area of lower 48

2003 US Fleet Average = 20.8 mpg World average 15 cars/1000 pop => 50/1000 by 2020

What Is Required to Achieve a Slice?

Category	Global Annual Increment	Total Capacity in 2050
Carbon Capture and Storage	9) Equip 14 coal plants with CCS	700 1 GW coal plants
	10) 70 Sleipners or Weyburns	3,500 Sleipners at 1 Mt CO ₂ /yr
	11) Displace 20 million gas/diesel cars with H ₂ (CO ₂ free)	1 billion H ₂ cars (CO ₂ free) displace 1 billion 30 mpg gas/diesel cars

Bultatheseable with theagislycoptionsy

CO₂ – How to Get It, What to Do With It

Permian Basin CO₂ Purchased for EOR

Million Tonnes per Year

Dept of Energy Regional CO₂ Partnerships

The Business Case

- If public perceives this problem to be high priority, governments will act
- There will be a value for CO₂ at some point due to caps
- Current caps in Europe will affect multinationals in the US and elsewhere
- Those who plan for a carbon constrained future will benefit

Summary

- The scientific evidence is compelling that there is a link between CO_2 emissions and global warming.
- There are potentially very serious consequences if the BAU path is followed.
- There is no silver bullet In order to meaningfully reduce CO₂ emissions, every means available, including capture and storage will be required.
- Industry has long experience handling CO_2 .
- Regulatory caps will need to be in place to make it happen.

<u>www.co2captureproject.com</u> <u>www.princeton.edu/~cmi/</u> www.fe.doe.gov/programs/sequestration/