
Minimizing the worst slowdown: off-line and
on-line

Hervé Moulin
Rice University

April 2005

Abstract

Minimizing the slowdown (expected sojourn time divided by job
size) is a key concern of fairness in scheduling and queuing problems
where job sizes are very heterogeneous. We look for protocols (service
disciplines) capping the worst slowdown (called here liability) a job
may face no matter how large (or small) the other jobs are.
In the scheduling problem (all jobs released at the same time),

allowing the server to randomize the order of service cuts almost in
half the liability profiles feasible under deterministic protocols. The
same statement holds if cash transfers are feasible and users have linear
waiting costs.
In a queuing problem (release times of jobs are arbitrary), we can

construct a deterministic on-line (non anticipative) protocol guaran-
teeing the liability θr to job i, where r is the number of jobs in the
queue when i was released, if and only if

P∞
1

1
θr
≤ 1. When the

arrival of new jobs is Poisson with rate λ, the liability of a job of size
x is no smaller than its slowdown when all other jobs are of the same
size, namely 1

1−λ·x . We conjecture that this liability is feasible on-line,
and identify a probabilistic protocol achieving the liability 1.45

1−λ·x .
Key words : scheduling, queuing, slowdown, probabilistic protocols

Acknowledgement 1 Thanks to Eric Friedman,Jay Sethuraman and
seminar participants at Columbia University,the University of Guana-
juato, Mexico, and the Roy-Malinvaud seminar in Paris.

1

1 Individual Guarantees

Several agents share resources according to a mechanical rule of which the
input is the profile of individual characteristics. The guarantee of a particular
agent is the smallest welfare/utility level she will reach, under the worst pos-
sible configuration of other agents’ characteristics. This level only depends
upon this agent’s own characteristics, the resources to be shared, and the
number of other agents.
To a participant with no information about the other agents with whom

resources are shared, the guarantee is a simple measure of her downside
risk, influencing both her willingness to participate in the mechanism and
her perception of its fairness. Therefore an important design criteria is to
improve guarantees as much as permitted by the nature of the resources
being allocated. This criteria is as old as the fair division literature, and
inspires for instance the familiar "I-Divide-You-Choose" mechanism1. More
discussion in a variety of micro-economic allocation problems can be found
in [20], [22], [6], [13], [14], [15].].
Here we apply the idea of maximizing individual guarantees to general

scheduling and queuing problems. A single server is the shared resource. An
agent’s characteristics are the size (processing time) of the job he submits to
the server and its release date (in the case of queuing). The expected sojourn
time, from release of the job until completion by the server, is the agent’s
disutility.
A central debate on the management of queues bears on congestion con-

trol in the presence of "ill-behaved sources" ([5]), namely queues where the
service time may vary wildly across different users. Two conflicting norma-
tive goals inspire the discussion: to minimize the sum of individual sojourn
times, or to equalize the slowdown (sojourn time divided by service time)
of the different users. The former is the classic utilitarian minimization of
the sum of individual disutilities, the latter applies an egalitarian concern to
slowdowns, namely excess wait per unit of job, thus viewing as fair that a
job three times larger stays in the system three times longer. See [5] [3], [1],
[8], [23], [24] and references therein..
The benchmark protocols Shortest Job First (SJF) 2, and Shortest Re-

1If utilities are additive over the pieces of a cake, Divide and Choose guarantees to each
agent a piece worth at least half of the entire cake.

2in a scheduling problem, where all jobs are released at the same time.

2

maining Job First (SRJF)3 are utilitarian optimal, but it is often argued
that they are too harsh on long jobs: the resulting slowdowns favors lexi-
cographically the smaller jobs. See [1], [2], [8], [10]. An exciting stream of
recent research discusses service protocols achieving a reasonable compro-
mise between the two conflicting goals. In an M/G/1 queue the familiar
Processor Sharing protocol (PS) (serving all active jobs at the same rate)
equalizes (expected) slowdown across all users. Not only is PS very far from
utilitarian optimal, it also uses the server inefficiently because partially com-
pleted jobs are useless. It is not hard however, to design an efficient protocol
Pareto superior to PS: this is the Fair Sojourn Processing (FSP) introduced
in [9] (see also [5]). FSP achieves a nearly optimal total sojourn time, while
guaranteeing to every user a smaller slowdown than PS ([8], [9], [23]).4

In this paper we take a different route, and compare various service dis-
ciplines by the guarantees they offer to the users. That is, we focus on the
worst slowdown - we call it the liability- that a given user may experience,
where the minimum is taken over all possible distributions of job sizes and
release dates for other users. We submit that in many real-life queues in-
volving heterogenous users, such as the internet, ignorance of other users’
characteristics is the norm rather than the exception. Many human queues
are subject to unpredictable bursts and lapses, and the service time may
differ widely across users. Insisting that the service protocol minimizes indi-
vidual liabilities is the simplest way to protect individual users against the
unknown, potentially very large, heterogeneity of individual demands.
We are looking for protocols guaranteeing a bounded liability, under the

most parsimonious informational assumptions.
In a scheduling problem (sections 3,4) individual liability will only depend

upon the number of other users, or their name. We compute the minimal
feasible liability profiles under a deterministic protocol, then when random-
ization is allowed (and users care about the expected sojourn time), and
finally when cash transfers (but not randomization) are feasible and users
have linear waiting costs. We find that randomization (Theorem 1), or cash
transfers (Theorem 2), cut nearly in half the liability profiles feasible under
deterministic protocols.
In a queuing problem (sections 5,6,7), we consider on-line (non anticipa-

3in a queuing problem, where release dates vary.
4These features of FSP hold in any queue, no matter how the successive jobs are

released. Yet when the arrival of new jobs is not Poisson, FSP may not result in an
egalitarian, or nearly egalitarian, profile of slowdowns.

3

tive) protocols of two different types. If nothing at all (number, sizes and
release dates) is known about future jobs, we can still offer to any job a
finite liability that only depends upon the number of live (unfinished) jobs
at release time. We construct in Theorem 3 a deterministic protocol to that
effect. An alternative, very common assumption throughout the entire queu-
ing literature, is that the arrival of future jobs follows a Poisson process with
known rate. In the steady-state of the arrival process, the liability only de-
pends upon own job size and the arrival rate of jobs. We compute a natural
lower bound for any feasible liability, conjecture that this lower bound is
feasible, and offer a protocol of which the liability is at most 45% larger:
Theorem 4.

2 Overview of the results

We start with a scheduling problem involving a set N of users, and illustrate
the concept of liability for two benchmark protocols. Consider the Random
Order (RO) protocol, selecting all service orderings with equal probability. If
the service time of job i,i ∈ N , is xi, its expected sojourn is xi+ 1

2

P
j 6=i xj. As

xj can be arbitrarily larger than xi, the slowdown of job i is unbounded (its
liability is infinite) . By contrast Shortest Job First (SJF) offers the liability
n = |N | to every user: the worst case is when all jobs j, j 6= i, are barely
shorter than xi, implying that i is served last and her slowdown is n. If it
is desirable to treat users unequally, we implement similarly the profile of
liabilities (θi, i ∈ N) by the Shortest Deadline First (SDF) protocol, serving
the jobs in the order of their respective "deadlines" θixi. This is feasible if and
only if

P
N

1
θi
≤ 1 : Proposition 1. These bounds cannot be improved by any

deterministic protocol, but they can be cut nearly in half for a probabilistic
protocol, where the server randomizes the service ordering.
To see why randomization is useful here, consider n jobs of size 1. If

one of these jobs is deterministically scheduled last, its slowdown is n. But
if all orderings are equally probable, the common slowdown is n+1

2
. More

generally, the profile of liabilities (θi, i ∈ N) is probabilistically feasible if
and only if

P
N

1
2θi−1 ≤ 1 : Theorem 1. We offer a couple of simple protocols

to implement these liabilities: their key property is that the expected delay
imposed by job j on job i (i.e., the probability that j is scheduled before i,
multiplied by xj) never exceeds 12

2θi−1
2θj−1xi. See Proposition 2.

Randomization is the easiest way to restore fairness when jobs must be

4

processed whole. An alternative device is cash transfers, of which the imple-
mentation is more difficult. It is clearly impractical in very large problems
such as the Internet; an additional hurdle is to elicit individual tradeoffs be-
tween delay and cash compensation. Here we make the familiar simplifying
assumption that each users’ waiting cost per unit of time is constant and
known to the server5. The net cost of a user is the sum of the cost of his
service time and a cash transfer, and his slowdown is the ratio of net cost
to the "stand alone" cost of service (when he has the server all to himself).
The model with cash transfers and linear waiting costs is profoundly different
from the probabilistic one. In the latter all probability distributions on the
service ordering yield efficient (Pareto optimal) profiles of expected service
time, whereas in the former efficiency of the profile of net costs essentially
determines the service ordering. Thus it comes as a surprise that the fea-
sible liability profiles (θi, i ∈ N) in the two models are precisely the same:
Theorem 2.
We turn to the queuing problem. The case of an off-line service protocol,

where the server knows at time 0 the size and release date of all present
and future jobs, is a simple variant of the scheduling model, to which our
Theorems 1 and 2 extend word for word. But in most real-life queues, the
users and the server have very little information about future jobs, and a
feasible protocol must be on-line, i.e.,non-anticipative. We have something
to say about the smallest feasible liability in two important special cases.
Assume first that the server - and the users- know absolutely nothing

(number, size or release date) about future jobs. In particular the flow and
size of future jobs may create unlimited congestion that we are unable to
predict today. The challenge is to construct a protocol based on the state of
the queue at release time, and guaranteeing a bounded expected slowdown.
We note first that none of the familiar on-line protocols discussed in the

literature achieves does the job, i.e., they all yield an infinite liability. Start
with SRJF, that offers no protection against the release of an arbitrarily large
number of jobs shorter than my own; this is the argument, mentioned above,
that while helping small jobs, SRJF unfairly penalizes large jobs 6. The same
observation applies to PS (and to its FSP improvement). For instance in the
M/G/1 queue, the common slowdown under PS is unbounded if the queue

5See [7], [21], [11], [4], for a discussion of fair and incentive-compatible cash compensa-
tions in that context

6See [1], [3], [24], and the recent work estimating the resulting slowdowns under several
assumptions on the sizes and release dates of new jobs.

5

is unstable7. Under First Come First Serve (FCFS), a newly-released job
must wait until all live jobs are completed, no matter how large these could
be. Finally under Last Come First Serve(LCFS), a very long job released
just after me, or a burst of relatively small jobs, will increase my service time
without bounds, just like under SRJF.
Using a weighted version of the FSP protocol ([8],[9]), we can nevertheless

cap the liability of any user as a function only of the size r of the queue (the
number of live jobs) when his job is released. If {θ1, θ2, ...} is a sequence of
positive numbers such that

P∞
1

1
θr
≤ 1, our protocol guarantees the liability

θr to any user who is released in a queue of size r. Conversely, this is only
possible when the above inequality holds: Theorem 3. Taking r as a proxy
for the congestion in the queue, we conclude that the liability must increase
more than linearly in r, in sharp constrast with the scheduling context.
Finally we consider the much discussed context (often called the M/G/1

queue; see [25]), where the release of new jobs follows a Poisson process with
rate λ known to the server (and users). We look for a finite liability that
only depends upon the arrival rate λ and own job size x (we normalize the
service rate to 1). As jobs can be arbitrarily large, the queue may well be
unstable. If all jobs in the queue are of identical size x, the queue is stable if
and only if λx < 1, and in this case the expected slowdown of each job under
a fair protocol 8 is 1

1−λx .

Two observations follow. To a job larger than 1
λ
, we cannot offer a finite

liability (depending only upon λ and x). For a job smaller than 1
λ
, the liability

cannot be less than 1
1−λx . I conjecture that there exists a probabilistic on-

line protocol providing precisely this liability to every job x, 0 ≤ x < 1
λ
.

Theorem 4 describes one such protocol achieving the liability 1·45
1−λx for all

x, 0 ≤ x < 1
λ
.It decides randomly where a given job must be inserted in

the existing queue, and the larger the job, the further back it is likely to be
pushed.

7With an arrival rate λ and mean job size x, stability requires λx < 1, and in this case
the common slowdown is 1

1−λx (e.g., [25]).
8Such as FCFS, LCFS, RO, or any strong and work conserving discipline treating two

jobs equally if they face the same queue, see [25].

6

3 Probabilistic scheduling

There is a single server, with service rate normalized to 1, and the processing
time of a job is deterministic9. A scheduling problem is a pair (N, x), where
N is a finite set of users, and x = (xi, i ∈ N) is a profile of (strictly) positive
job sizes. Users care only about their sojourn time, namely the date of
completion of their own job (a partially completed job is useless). Therefore
preemption is inefficient, jobs must be served whole.
A probabilistic (resp. deterministic) protocol π associates to every prob-

lem (N,x) a random ordering σ = π(N,x) of N, namely a probability dis-
tribution on the set of orderings of N (resp. an ordering of N). Denoting
P (i, σ) the (random) set of agents preceding i in σ (including i itself), the
expected sojourn time of job i is thus yi = Eσ[

P
P (i,σ) xj].

Given a protocol, and a problem (N, x), the expected slowdown of job i is
si(N,x) = yi

xi
. Given N , a profile θ = (θi, i ∈ N) is a feasible liability profile

if there exists a protocol π such that

si(N,x) ≤ θi for all xÀ 0, and all i ∈ N (1)

A feasible liability profile is minimal if for any different feasible liability
profile θ0, θ0i > θi for some i ∈ N .
Our first result characterizes the feasible liability profiles when the server

is restricted to deterministic protocols.
Proposition 1

Given the set N of users, the vector θ is a minimal feasible liability profile
for a deterministic protocol, if and only if

P
N

1
θi
= 1. In this case it is

implemented by the Earliest Deadline First protocol, serving job i before job
j only if θixi ≤ θjxj.
Proof

If θ is a feasible liability profile, choose xi = 1
θi
for all i and apply (1) to the

agent i ranked last: this gives
P

N
1
θi
≤ 1. Conversely, assume

P
N

1
θi
= 1,

and apply the earliest deadline first protocol, breaking ties arbitrarily. For
the problem (N,x), this protocol will select an ordering {1, .., n} of N such
that θ1x1 ≤ θ2x2 ≤ ... ≤ θnxn. For any k, we have then

9All our results are preserved if the processing time of a job is random, provided the
time it takes to process different jobs are stochastically independent.

7

kX
1

xj ≤
kX
1

θkxk
θj
≤ θkxk

thus our protocol implements θ. ¥
Allowing probabilistic protocols reduces by nearly 100% the minimal lia-

bility profiles.
Theorem 1

Given the set N of users, the vector θ is a minimal feasible liability profile
for a probabilistic protocol, if and only if

P
N

1
2θi−1 = 1.

Proof
Step 1: a preliminary result. Given a problem (N,x), write F (N,x) for the
set of feasible profiles of expected sojourn times, namely

y ∈ F (N, x)⇔for some random ordering σ, yi = Eσ[
P

P (i,σ) xj] for all i

Define for all x ∈ RN
+ and all S ⊆ N, the function v(S, x) =

P
S x

2
i +P

S(2) xi ·xj, where S(2) is the set (with cardinality
|S|·(|S|−1)

2
) of non ordered

pairs from S. Note that v is supermodular with respect to S. The following
result is proven in [17] and [16].

y ∈ F (N,x)⇔ {
X
N

xi · yi = v(N, x) and
X
S

xi · yi ≥ v(S, x) for all S ⊆ N}

Step 2: only if statement. Let θ be feasible at N . For any x there exists
y ∈ F (N,x) such that yi ≤ θixi, therefore by step 1X

N

θi · x2i ≥ v(N, x)⇔
X
N

(2θi − 1) · x2i ≥ (
X
N

xi)
2 (2)

For xi = 1
2θi−1 , this inequality reduces to

P
N

1
2θi−1 ≤ 1.

Step 3: if statement. Fix θ such that
P

N
1

2θi−1 ≤ 1, and a problem (N,x).
Because the function v is supermodular, the core of the game (N, v(·, x)) is
"large" (see [18]). That is, for any fixed z ∈ RN

+ there exists y ∈ F (N, x)
such that yi ≤ zi for all i if and only if

P
S zi · xi ≥ v(S, x) for all S ⊆ N .

Choosing zi = θi · xi, we find that the slowdown (θi · xi) is feasible at (N, x)
if (2) holds for all subsets S of N , including N itself. Choose S , define
ui =

√
2θi − 1 ·xi, wi =

1√
2θi−1

, for all i ∈ S, and apply Schwartz’s inequality
to u and w:

8

(u · w)2 = (
X
S

xi)
2 ≤ ||u||2 · ||w||2 = (

X
S

(2θi − 1) · x2i) · (
X
S

1

2θi − 1
)

Thus our choice of θ guarantees the desired inequality (2). ¥
An important special case of the two results above is that of an anonymous

liability, θi = θ for all i. For deterministic protocols, the minimal feasible
liability is θ = n, and is implemented by SJF. For probabilistic protocols, it
is θ = n+1

2
, and is implemented by the anonymous version of the parametric

protocols to which we now turn.
Fix the set N of users and choose for each i and job size xi > 0 a cu-

mulative distribution function Fi,xi(z) on [0,+∞[. That is, Fi,xi is any non
negative, non decreasing and right-continuous function on [0,+∞[such that
lim∞ Fi,xi(z) = 1. Given a problem (N,x), the corresponding parametric
protocol draws for each user i a random variable Zi according to Fi,xi, and
these draws are stochastically independent. It then serves the jobs in the
order of the realizations Zi(ω): job j is served before job i if Zj(ω) < Zi(ω),
ties being broken by a fair coin. This rich family of protocols, which includes
in particular SJF and RO, was introduced in [16], and studied there from the
point of view of the strategic maneuvers of splitting and merging jobs.
Proposition 2

Given N , a feasible liability profile θ as in Theorem 1 is implemented by the
following two parametric protocols:

weighted quadratic: Fi,xi(z) = min{z(2θi−1)
2x2i , 1} for 0 ≤ z <∞,

weighted serial : Fi,xi(z) = min{
z

(2θi − 1)xi
, 1} for 0 ≤ z <∞.

Proof
Fix (N,x) and θ such that

P
1

2θi−1 = 1, and consider the weighted quadratic
protocol. For any distinct agents i, j, write pij for the probability of the event
Zj < Zi, which is easily computed as

pij =
(2θi − 1)2x2i

(2θi − 1)2x2i + (2θj − 1)2x2j
(3)

Because the distributions Fi,xi are atomless, pij is the probability that job j
precedes job i. Note that it does not depend on the realizations of Zk for
k 6= i, j, and compute

9

max
xj

pij · xj =
2θi − 1
2θj − 1

· xi
2

(4)

from which we get

yi = xi +
X
NÂi

pij · xj ≤ (1 +
2θi − 1
2

· (
X
NÂi

1

2θj − 1
)) · xi = θi · xi

A similar computation shows that equation (4) holds for the weighted serial
protocol as well. ¥
We stress that the there are many more parametric protocols implement-

ing a given liability profile θ. The key property is (4), namely the delay i
expects to incur from j is at most the RHS term in (4). Besides the quadratic
and serial c.d.f.s many other choices of Fi,xi achieve this.
Equation (3) justifies our quadratic terminology: the probability that j

precedes i is proportional to the square of the weighted job size. For an
explanation of the serial terminology, see [16].
Remark 1

Proposition 1 generalizes easily to the case whereN is countable, provided we
assume that job sizes are integers xi = 1, 2, ... Given a profile θ = (θi, i ∈ N)
such that

P
N

1
θi
≤ 1 and a problem (N,x), we can always enumerate N =

{i1, i2, ...} in such a way that θi1xi1 ≤ θi2xi2 ≤ Indeed the convergence
of the series 1

θi
, and xi ≥ 1 imply that for all a, the set of agents such that

θixi ≤ a is finite. Then the Earliest Deadline First protocol implements θ as
above.
As for Theorem 1, it is preserved word for word if N is countable, and so is
its proof.

4 Scheduling with cash transfers

The scheduling model in this section is very different, technically and in
spirit, than the probabilistic model above. Randomization is not feasible,
instead the server can perform cash transfers, provided they balance to zero.
Each user has a linear disutility δi ·yi−ti over sojourn time and money, where
δi is user i’s waiting cost per unit of time and ti her cash transfer. Efficiency
(Pareto optimality) in this context amounts to select an ordering of service

10

minimizing the sum of individual disutilities. Such orderings always serve
job i before job j if xi

δi
<

xj
δj
, and this property alone guarantees efficiency

([17]).
A scheduling problem is now a triple (N,x, δ), where xi, δi > 0 for all i,

and an efficient protocol associates to each problem (N,x, δ) a pair (σ, t),
where σ is an efficient ordering and

P
N ti = 0. The resulting net waiting

cost wi, and slowdown si of user i are

wi = δi ·
X
P (i,σ)

xj − ti, and si(N,x, δ) =
wi

δixi

As in the previous model, θ = (θi, i ∈ N) is a feasible liability profile if
there exists a protocol such that si(N,x, δ) ≤ θi for all x and i.
Theorem 2

Given the set N of users, θ is a minimal feasible liability profile for a protocol
with cash transfers, if and only if

P
N

1
2θi−1 = 1.

Proof
Given a problem (N,x, δ), the minimal total waiting cost (achieved by any
efficient ordering) is easily computed as

W (x, δ) = min
σ

X
N

wi =
X
N

δi · xi +
X
N(2)

min{δjxi, δixj}

(recall that N(2) is the set of non ordered pairs from N). Therefore θ is a
feasible liability profile at N if and only ifX

N

θi · δixi ≥W (x, δ) for all x, δ À 0 (5)

Suppose (5) holds and pick x = δ. As W (x, x) = v(N,x) (defined in Step 1
of the proof of Theorem 1), we get

P
N θi · x2i ≥ v(N, x). Like in Step 2 of

that proof, this implies
P

N
1

2θi−1 ≤ 1.
Conversely, we pick θ such that

P
N

1
2θi−1 ≤ 1 and prove (5). Change the

variables δi to εi = δi
xi
, so that we need to prove, for all x, εÀ 0:X

N

θi · εi · x2i ≥
X
N

εi · x2i +
X
N(2)

min{εi, εj} · xixj (6)

When ε stays inside the cone {0 ≤ ε1 ≤ ε2 ≤ ... ≤ εn} of RN , inequality (6)
is linear in ε, thus it is enough to prove it for the extreme directions of this

11

cone, namely ε1, ε2, .., εn, where εki = 0 if i = 1, .., k, ε
k
i = 1 if i = k + 1, .., n.

Fix k and set S = {k + 1, .., n}. For εk, inequality (6) reduces toX
S

θi · x2i ≥ v(S, x)

which follows from
P

N
1

2θi−1 ≤ 1, as in Step 3 of the proof of Theorem 1.
The argument is then repeated for the cones of RN corresponding to other
orderings of the coordinates of ε. ¥
If the interpretation of theorems 1 and 2 differ, their proofs are very

similar.
We conclude this Section with a protocol implementing the liability profile

just described. As in Proposition 2 this protocol is not the only one to do
the job.
Proposition 3

Given N , a feasible liability profile θ as in Theorem 2 is implemented by the
following protocol. For all x, δ À 0:

wi = δi ·
X
P (i,σ)

xj − ti

= {1 + (2θi − 1)2
X

j∈NÂi

min{δjxi, δixj}
(2θi − 1)2δixi + (2θj − 1)2δjxj

} · δixi

Proof
Fix i, j, xi, δi, and two positive numbers αi, αj, then compute

max
xj ,δj

min{δjxi, δixj}
αiδixi + αjδjxj

= max
xj

xixj
αix2i + αjx2j

=
1

2
√
αiαj

where the first equality is because the ratio increases in δj (resp. δi) if
δjxi ≤ δixj (resp. δjxi ≥ δixj). Applying this to the net cost wi(x, δ)
resulting from the protocol in the Proposition gives

max
x−i,δ−i

wi(x, δ) = (1 +
(2θi − 1)

2

X
NÂi

1

2θj − 1
) · δixi = θi · δixi

as claimed. ¥

12

5 Queuing: off-line protocols

We return to the probabilistic server of Section 3. A queuing problem is a
triple (N,x, τ), where the set N of users is at most countable, and user i’s
job of (positive) size xi is released at time τ i, τ i ≥ 0. When N is infinite,
we assume that the number of jobs released in any bounded interval [0, a] is
finite, so that the queue is finite at any point in time. In this Section and
the next, the profile τ of release dates is entirely arbitrary, and our results
are correspondingly fully general10.
Unlike in the scheduling problem, efficiency is now compatible with pre-

emption. The only constraint is this: if job j preempts job i, namely the
server starts processing job j while job i is either untouched or partially
completed, then it must wait until job j is completed before returning to (or
starting service on) job i. This is equivalent to selecting a certain priority
ordering of N , and serving the highest priority among the jobs alive at any
point in time (e.g., [9]).
As before the slowdown of job i in problem (N,x, τ) is si(N,x, τ) = yi

xi
,

where yi is the expected sojourn time of job i. Given N , a profile θ = (θi, i ∈
N) is a feasible liability profile if there exists a protocol such that

si(N, x, τ) ≤ θi for all xÀ 0, τ ≥ 0 and all i ∈ N (7)

The key to this concept is the definition of a protocol, i.e., of the infor-
mation that the server can use to prioritize the jobs. We shall look below
at three very different informational assumptions, of which the first one is
the subject of this brief Section. The server has full information at date 0
about the size and release dates of all jobs present and future. This is often
called the off-line context , in which a protocol can be any mapping from a
problem (N, x, τ) to a (deterministic or random) priority ordering of N .
In this context the feasible liability profiles θ are precisely the same as in

the scheduling context, namely Proposition 1 and Theorem 1 are preserved
word for word. Indeed fix any θ and assume there exists an off-line proba-
bilistic (resp. deterministic) protocol guaranteeing property (7). The latter
holds in particular for τ = 0, thus

P
N

1
2θi−1 ≤ 1 follows by Theorem 1 (resp.P

N
1
θi
≤ 1 by Proposition 1). Conversely, if

P
N

1
2θi−1 ≤ 1, we implement the

liability θ by adapting the weighted quadratic (or serial) protocol of Proposi-
tion 2 as follows. The realizations of the variables Zi determine the priority

10In Section 7 the release of new jobs follows a Poisson random process.

13

ordering of jobs and a job i is preempted by any job j that draws a higher
priority. Clearly under this protocol for (N,x, τ) the sojourn time of any job
is not larger than in (N,x, 0) under the weighted quadratic (or serial) proto-
col of Proposition 2, hence the claim. In the case of deterministic protocols,
we adapt similarly the Earliest Deadline First protocol of Proposition 1.
By the same argument, Theorem 2 extends to off-line protocols in queuing

problems with cash transfers. In that context a queuing problem is a 4-uple
(N,x, δ, τ), where δ is the profile of waiting costs. To any such queuing
problem we associate the scheduling problem (N,x, δ, 0), and write w0i for
the net waiting cost in this latter problem under a protocol such as the one in
Proposition 3. Keep the efficient ordering σ used in (N,x, δ, 0) as the priority
ordering dictating preemption in (N,x, δ, τ). Note that σ is not necessarily
efficient (may not minimize total waiting cost) in (N, x, δ, τ)11. Clearly the
resulting net waiting cost wi is not larger than w0i , implying the claim.

6 Queuing: on-line protocols

We turn to the more interesting and more realistic on-line protocols, where
the server has no information whatsoever about future jobs, so the protocol
can only rely on the characteristics of live (released and not completed) jobs.
In particular the server does not know which or how many jobs will be re-
leased in the future, hence the liability of job i cannot depend on its "name"
within the unknown set N .
Check first that the on-line protocols commonly discussed in the literature

do not offer a bounded liability. Consider first SRJF: ifK jobs slightly shorter
than job i are released almost immediately after τ i, its slowdown reaches K,
and this number cannot be bounded when the future is entirely opaque. A
similar argument applies to LCFS and to PS, in which a burst of large jobs
released just after τ i increases the slowdown without bound. On the other
hand, FCFS guarantees to any job a finite sojourn time independently of
the future, yet the slowdown grows arbitrarily large with the size of the jobs
in the existing queue. A similar argument applies to the queuing variant
of RO, constructing the priority ordering on-line by giving to a new job an
equal chance to each possible priority level among live jobs.

11Writing exi for the remaining service time of job i, the protocol serving at any time a
job i such that xi

δi
is minimal among all live jobs, may still be inefficient, though less so

than the protocol just described.

14

Yet it is feasible to achieve a finite liability for all jobs, irrespective of the
size of live jobs and of the number, size and release dates of future jobs. This
cap only depends upon the number of live jobs at release time, which we
write as r(i) for job i. Note that job i itself is counted in r(i), and that r(i)
depends upon not only the problem (N, x, τ) but also the on-line protocol.
In particular, r(i) is random if the protocol is.
The protocol is inspired by the Fair Sojourn Processing ([8], [9]). At

any point in time where m jobs are alive, the inefficient Processor Sharing
protocol serves them all at the rate 1

m
. FSP runs the PS protocol virtually,

and prioritizes the jobs according to their virtual completion date under PS
(an earlier completion date means a higher priority). The result is an efficient
deterministic protocol in which no sojourn times is longer than under PS.
In the variant of FSP establishing our next result, the server chooses once

and for all a sequence θr, r = 1, 2, .. of positive numbers such that
P∞

1
1
θr
= 1.

At any point in time, the priority ordering of live jobs follows the ordering of
their completion dates under the weighted version of PS where the processing
rate of job i is proportional to θr(i). Thus one can think of weighted PS as
a virtual protocol, used only to set priorities in the real (weighted) FSP
protocol. We illustrate our protocol by an example with 4 jobs:

(x1, τ 1) = (10, 0); (x2, τ 2) = (6, 1); (x3, τ 3) = (4, 10); (x4, τ 4) = (1, 13)

To fix ideas we set θr = 2r, for all r. Starting at date 1, the virtual weighted
PS processes jobs 1 and 2 at rates 2/3 and 1/3 respectively, because θ1

θ2
= 2,

thus, as long as these processing rates are maintained, job 1 is virtually
completed at τ = 14.5, before job 2 at τ = 19. So in the real process job 1
has priority over job 2 and is completed at date 10.
At τ = 10 job 3 is released, and r(3) = r(2) = 2. Note that we do not

update r(2) when job 1 exits. To determine the priority between jobs 2 and
3, check that under weighted PS, job 2 would have only 3 units left at date
10, and would be processed at the same rate as job 3 henceforth. Thus job
2 is virtually completed before job 3, hence it takes precedence over job 3
in the real process. The server processes only job 2 until τ = 13. At that
date three jobs are alive, and in the virtual weighted PS, only 1.5 units of
job 2 are left (in reality, 3 units are left), because its rate of service was 1/3
between τ = 1 and τ = 10, then 1/2 between τ = 10 and τ = 13. Similarly
only 2.5 units of job 3 are virtually left at date 13 (in fact, it is still intact).

15

The virtual rates of service starting at τ = 13 are 2/5, for jobs 1, 2 and 1/5
for job 4. Thus job 2 has priority over job 4 and the latter over job 3. The
real completion times are τ = 16 for job 2, τ = 17 for job 4, and τ = 21 for
job 3.
Theorem 3

Fix a non-decreasing sequence θr, r = 1, 2, .. of positive numbers such thatP∞
1

1
θr
= 1. Then there exists an efficient on-line protocol implementing the

liability θr(i) for job i:

si(N, x, τ) ≤ θr(i) for all xÀ 0, τ ≥ 0 and all i ∈ N (8)

Conversely such a protocol exists only if
P∞

1
1
θr
≤ 1.

Proof
Step 1. Suppose the liability θr(i) is implemented by some deterministic
protocol (on-line or otherwise). Fix an integer n, a small positive number ε
and consider the problem

N = {1, 2, .., n}; xi =
1

θi
, τ i = (i− 1)ε for all i

Choose ε so that nε < minj xj. Thus all jobs are released before any job is
completed, and r(i) = i for all i, irrespective of the protocol. Suppose k is
the job completed last, with sojourn time yk. We have

yk =
X
N

1

θi
− (k − 1)ε ≤ yk ≤ θk · xk = 1

from which the inequality
P∞

1
1
θr
≤ 1 follows in the limit.

Step 2. We fix the sequence θr such that
P∞

1
1
θr
= 1. To implement (8), we

construct formally the protocol described before the Theorem. LetM be the
set of live jobs at a given time, and consider a user i in M . Recall that r(i)
is the number of jobs that were alive when job i was released, and bears no
relation to m = |M |. However we claimX

M

1

θr(i)
≤ 1 (9)

To see this, label the jobs in M in the order of their release dates, say
τ 1 ≤ τ 2 ≤ .. ≤ τm. Note that jobs 1, .., i − 1 are alive when i is released,
therefore r(i) ≥ i for i = 1, ..,m. So (9) follows by our assumptions on the
sequence θr.

16

Let PS[θ] be the (inefficient) protocol dividing its time among the jobs in
M in proportion to 1

θr(i)
. Inequality (9) implies that the actual rate is no

less than 1
θr(i)
, therefore the sojourn time of i is at most θr(i) · xi, and PS[θ]

implements the liability (8) as announced.
Then FSP[θ] prioritizes the jobs according to their virtual completion

times in PS[θ]. This definition makes sense only if the relative ordering of
any two jobs never changes when future jobs are released. Note that in
PS[θ], the ratio of processing times for any two jobs i, j remains θi

θj
as long as

they are both alive, so the ordering of their virtual completion times never
changes either. Finally FSP[θ] implements the liability (8) because it is a
Pareto improvement over PS[θ]. ¥
Step 1 in the proof of Theorem 3, shows its close relation with Proposition

1. The next question is whether or not an on-line probabilistic protocol can
achieve a better liability function r −→ θr than a deterministic one. I do not
know the answer to this question. From Theorem 1 such a function has to
meet

P∞
1

1
2θr−1 ≤ 1 (to see this use the same construction as in Step 1 of the

above proof).
Remark 2

In the context with cash transfers and linear waiting costs, there is no hope
to implement on-line a feasible liability of the type r −→ θr. Notice first
that an on-line protocol cannot implement the fully efficient service ordering
minimizing total waiting costs, because the computation of this ordering
requires perfect forecast. The second best on-line protocol, from the point
of view of efficiency, sets priorities at any time in the order of the ratios xi

δi
,

where exi is the remaining service time of job i. Suppose we can define on-line
transfers so as to implement the liability r −→ θr, and consider the following
problem

(x1, δ1, τ 1) = (a+ ε, (1− ε)a, 0), (x2, δ2, τ 2) = (1, 1, ε),
(xi, δi, τ i) = (1, 1, i− 2 + ε) for i = 3, .., n+ 1

The server processes job 2 at τ = ε, job i at τ = i − 2 + ε, i = 3, .., n + 1,
and finally job 1. Thus r(i) = 2 for i = 2, .., n+1, and the total waiting cost

w1 +
n+1X
2

wi = (1− ε)a(a+ ε+ n) + n

17

should not exceed

θ1 · δ1x1 +
n+1X
i=2

θ2 · δixi = (1− ε)a(a+ ε)θ1 + nθ2

Letting ε go to zero we get

a(a+ n) + n ≤ a2θ1 + nθ2 for all a > 0, all n = 1, 2, ..

This is only possible if θ2 = ∞. A similar argument, omitted for brevity,
shows θi =∞ for any i ≥ 3 as well. This the trivial liability of FCFS.

7 On-line protocols with Poisson arrivals

We now assume that the release of new jobs follow a Poisson process with
parameter λ, known to the server and the users. The size of all jobs, in-
cluding future jobs remains unknown. The protocol is non anticipative, and
only depends on λ and the characteristics of jobs currently alive. It is also
anonymous, namely the only relevant characteristics of a job are its size and
release date.
The arrival rate λ measures the degree of congestion of the queuing prob-

lem, and we seek a bound on the slowdown of a given job that depends only
upon the size x of this job and λ. This is analogous to the anomymous liabil-
ity n+1

2
in the scheduling problem (Theorem 1). The new feature, explained

below, is that the liability depends also on own job size.
We consider a job of size x requested by user i, and released at a time

where the arrival process has reached its steady state. In this Section we
do not index the job size by the name of the user, because we only discuss
anonymous protocols. Contrary to the previous Sections, x is now a positive
number, not a vector in RN .
Given a protocol and an arbitrary sequence ex = (.., x−k, .., x−1, x1, .., xk, ..)

of job sizes for the predecessors (x−k) and successors (xk) of i’s job, we write
y(λ, x, ex) for the expected sojourn time of job i, and s(λ, x, ex) = y(λ,x,x)

x
for

its expected slowdown. Note that the expectation only bears on the arrival
process, in its steady state.
As we allow for jobs of arbitrary size, the queue may well be unstable (

infinitely long in the steady state). This happens in particular if job sizes are
drawn independently from a common distribution with mean no smaller than

18

1
λ
. Therefore if all jobs have the same size x, x ≥ 1

λ
, we cannot guarantee a

bounded slowdown to all of them, and as a result the liability is infinite for
this choice of λ and x.
In order to avoid topological difficulties arising when the sequence of

job sizes contains subsequences converging to 1
λ
from below, we will restrict

attention to sequences ex for which there exists a (small) positive number ε
such that no job size xk is in [1λ − ε, 1

λ
[. We call regular a sequence with this

property. The proof of Theorem 4 and Proposition 7 explains the role of this
assumption.
We say that θ : R2++ −→ [1,∞] is a feasible liability function if there

exists an on-line anonymous protocol such that

s(λ, x, ex) ≤ θ(λ, x) for all λ, x > 0, and all regular sequences ex (10)

We obtain first a simple lower bound on the feasible liability.
Proposition 4

If θ is a feasible liability function, we have

θ(λ, x) ≥ 1

1− λx
, if x <

1

λ
, θ(λ, x) =∞ if x ≥ 1

λ

Proof.
It is enough to consider the case where all jobs are of identical size x. If
x ≥ 1

λ
, the queue is unstable, namely infinitely long in the steady state,

therefore the sojourn time of some jobs is infinite, implying θ(λ, x) =∞. If
x < 1

λ
, the mean sojourn time in any efficient protocol is x

1−λx (e.g., [25])
and it can only be longer in an inefficient protocol, thus the first inequality
follows. ¥
The function θ∗(λ, x) = 1

1−λx , on [0,
1
λ
[, = ∞ on [1

λ
,∞[is the fair slow-

down, namely the slowdown a job can expect when all other jobs are of the
same size. If I am not responsible for the size of the other jobs, this is a fair
benchmark for the worst slowdown I could incur. The same idea has been
used successfully in a variety of fair division problems (see [13], [14],[15]).
Compute the utility I would receive when all other users have the same char-
acteristics as me, and use it as a lower bound for my utility when they don’t.
I conjecture that the idea applies to the M/G/1 queue as well, namely

θ∗ is a feasible liability function. In support of this conjecture, Theorem 4
offers a probabilistic protocol implementing the liability (1.45)θ∗.

19

On the way to this result, we compute the liability functions of several
familiar on-line protoocols, and compare them to the fair slowdown.
Consider the protocols FCFS and LCFS. If we do not pay attention to

the critical job size 1
λ
, the liability of any job is clearly infinite12. Now fix

a number a, a < 1
λ
, call "long" any job larger than a, "short" any other

job, and consider the protocols FCFS[a], LCFS[a], in which all long jobs are
systematically pushed back behind short jobs. So in FCFS[a] a new short job
must only wait until all short jobs released before him are completed, and in
LCFS[a] a short job is preempted only by short jobs released after him.
Proposition 5

Fix the arrival rate λ, and a, 0 < a < 1
λ
. The liability of LCFS[a] is

θLC(λ, x) =
1

1− λa
if x ≤ a, θLC(λ, x) =∞ if x > a

The liability of FCFS[a] is

θFC(λ, x) = (1 + λa(
a

x
− 1)) · θLC(λ, x) if x ≤ a, θFC(λ, x) =∞ if x > a

In particular θFC(λ, x) ≥ θLC(λ, x), with equality only if x ≥ a. Moreover
limx→0

θFC(λ,x)

θLC(λ,x)
= +∞.

Proof
Under FCFS[a], the worst case for a job released at time t is that all jobs
released earlier be of size a, in which case the expected length of the queue
upon arrival of the new job is λa2

1−λa (namely
a

1−λa − a) hence

y = x+
λa2

1− λa
=⇒ s = 1 +

λa

1− λa

a

x
= (1 + λa(

a

x
− 1)) · 1

1− λa

as claimed.
Consider next LCFS[a]. We write W (q) for the worst expected time a queue
made of short jobs and of total size q, takes to clear, where the maximization
bears upon the size of future jobs, who will delay the completion of the

12If all previous jobs are longer than 1
λ , the steady state queue is infinitely long and

contains infinitely many jobs, therefore my sojourn under FCFS is unbounded. To prove
the claim for LCFS: the probability that the next job released after mine shows up before
my own job is completed is 1− e−λx > 0; if the size of that job grows arbitrarily large, so
does my expected sojourn.

20

last job in the queue q. Clearly W (q) obtains when all future jobs are of
size a, and in this case W (q) = q

1−λa . Indeed apart from the jobs in q, the
server is idle (i.e., has no short job to process) on average during the fraction
(1 − λa).of the time, and the initial job q will be processed only when the
server is idle. ¥
The truncated versions of LCFS and FCFS give their fair slowdown only

to jobs of size exactly a. For job sizes between a and 1
λ
, the liability is infinite.

To jobs no larger than a, LCFS[a] guarantees a multiple of the fair slowdown,
but FCFS[a] does not:

sup
x∈[0,a]

θLC(λ, x)

θ∗(λ, x)
=

1

1− λa
; lim

x→0

θFC(λ, x)

θ∗(λ, x)
= +∞

Note the following tradeoff on a: if λa is small, θLC is close to θ∗ for short
jobs (e.g., for λa = 0.25, θLC ≤ (1.34)θ∗) but the set of such short jobs is
small; if λa is close to 1, θLC becomes much larger than θ∗ for very short jobs
(e.g., for λa = 0.9, θLC ≤ 10θ∗).
We turn to the SRJF protocol, important because it minimizes total

sojourn time.
Proposition 6

Fix the arrival rate λ. The liability of the SRJF protocol is bounded as follows

1 +
λx

(1− λx)2
≤ θSR(λ, x) ≤ 1

(1− λx)2
if x <

1

λ
, θSR(λ, x) =∞ if x ≥ 1

λ

The longer and related proofs of Proposition 6 and Theorem 4 are in the
Appendix.
Note that the bounds for θSR are fairly tight: they coincide for x = 0,

their ratio never exceeds 4
3
and goes to 1 as x approaches 1

λ
.

Comparing the liabilities offered by SRJF and LCFS[a], we see first that
their worst performance on [0, a], relative to the fair slowdown, are essentially
identical:

sup
x∈[0,a]

θSR(λ, x)

θ∗(λ, x)
' 1

1− λa
for a→ 1

λ

However the supremum is reached for x = 0 in the case of LCFS[a], and for
x = a in the case of SRJF. The latter behaves much better than the former
for short jobs, as limx→0

θSR(λ,x)
θ∗(λ,x) = 1; the reverse is true for job sizes near a.

21

In the protocols discussed so far, the liability function does not approx-
imate the fair slowdown over the entire interval [0, 1

λ
[. Our next family of

probabilistic priority protocols achieves just that. Like the parametric pro-
tocols of Section 3, each such protocol is defined by a family of cumulative
distribution functions Fx(q) on [0,+∞[, one for each job size x, 0 < x < 1

λ
.

Given such a family F of c.d.f.s, we denote by P (F) the following protocol.
Any job x, x ≥ 1

λ
, is pushed at the back of the queue upon its release. For

each new job x, x < 1
λ
, draw a random variable Z according to Fx, and use

its realization to insert job x in the queue. More precisely suppose upon the
release of x the queue is {x1, x2, .., xK}, where xk is the remaining size of the
job ranked k. The new queue is

{x1, .., xk, x, xk+1, .., xK} if
kX
1

xj ≤ Z <
k+1X
1

xj, for k = 0, 1, ..,K

with the convention xK+1 = ∞. In particular the new job is first in the
queue if Z < x1, and last if

PK
1 xj ≤ Z. Note also that a "short" job

(x < 1
λ
) does not care about future "long" jobs, but long jobs released earlier

matter because they are part of the queue in which it is inserted.
Theorem 4

It is possible to choose the c.d.f.s {Fx, 0 < x < 1
λ
} in such a way that the

liability θ of the probabilistic priority protocol satisfies

θ(λ, x) ≤ (1.45) · θ∗(λ, x) for all x
One such choice is

Fx(q) = min{
1

x
· 2q

2λ · q + λ · x+ 1.25 , 1} for all q ≥ 0,

implementing the liability function

θ(λ, x) = f(λx), where f(u) = (
1

4
+

u

5
)(
3.25− u

1− u
− log(1− u)

2u
)

Figure 1 depicts the ratio θ
θ∗ as a function of u = λx, for the above

protocol.
In the proof of Theorem 4, we describe a rich family of probabilistic pri-

ority protocols for which the liability function can be estimated numerically:

22

Proposition 7 below. It is an open question to find out the optimal choice
of the c.d.f.s {Fx, 0 < x < 1

λ
}, namely that for which the upper bound on

the ratio θ
θ∗ is the smallest. Perhaps some choice of F implements the fair

slowdown θ = θ∗.
Another open question, of a more technical nature, is the role of our

regularity assumption on sequences ex. Does Theorem 4 hold if we request
inequality (10) to hold for all sequences ex ?
References

[1] Bansal, N. and Harchol-Balter, M. (2001). "Analysis of SRPT Schedul-
ing: Investigating Unfairness," in Proc. ACM Sigmetrics ’01.

[2] Bansal, N. and Wierman, A. (2002). "Competitive Analysis of M/GI/1
Queueing Policies," mimeo, Carnegie-Mellon University.

[3] Bender, M., Chakrabarti, S., and Muthukrishnan, S. (1998). "Flow and
Stretch Metrics for Scheduling Continuous Job Streams," in Proc. 9th
ACM-SIAM Symposium on Discrete Algorithms.

[4] Chun, Y. (2004). "Consistency and Monotonicity in Sequencing Prob-
lems, mimeo, Seoul National University.

[5] Demers A., S. Keshav and S. Shenker (1990) "Analysis and simulation
of a fair queuing algorithm", Internetworking: Research and Experience,
1, 3-26.

[6] Demko and T. Hill (1988). "Equitable distribution of indivisible ob-
jects", Mathematical Social sciences, 16,2, 145-58.

[7] Dubins, L.F. (1977). "Group Decision Devices," Amer. Math Monthly,
May, 350-356.

[8] Friedman, E.J. and Henderson, S.G. (2003). "Fairness and Efficiency in
Web Server Protocols," in Proceedings of the 2003 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, 229-237, ACM Press.

[9] Friedman, E.J., Henderson, S.G., and G. Hurley, (2004) Minimizing
Mean Response Time Subject to Fairness, mimeo, Cornell University

23

[10] Harchol-Balter, M., Bansal, N., Schroeder, B., and Agrawal, M.
(2001). "Size-based Scheduling to Improve Web Performance," mimeo,
Carnegie-Mellon University.

[11] Maniquet, F. (2003). "A Characterization of the Shapley Value in
Queueing Problems," Journal of Economic Theory, 109, 1, 90-103.

[12] Mitra, M. (2001). "Mechanism Design in Queueing Problems," Eco-
nomic Theory, 17, 277-305.

[13] Moulin, H. (1990). “Uniform Externalities: Two Axioms for Fair Allo-
cation,” Journal of Public Economics, 305—326.

[14] Moulin, H. (1991). “Welfare Bounds in the Fair Division Problem,” Jour-
nal of Economic Theory, 54, 2, 321—337.

[15] Moulin, H. (1992). “Welfare Bounds in the Cooperative Production
Problem,” Games and Economic Behavior, 4, 373—401.

[16] Moulin, H. (2004). “Split-proof probabilistic scheduling,” mimeo, Rice
University.

[17] Queyranne, M. (1993). "Structure of a Simple Scheduling Polyhedron,"
Mathematical Programming, 58, 263-285.

[18] Shapley, L. (1971). Core of Convex Games, International Journal of
game Theory, 1,11-26.

[19] Smith, W., (1956). "Various Optimizers for Single-Stage Production",
Naval Res. Logistics Quarterly 3, 59-66

[20] Steinhaus, H. (1948). "The Problem of Fair Division," Econometrica 16,
101-104.

[21] Suijs, J. (1996). "On Incentive Compatibility and Budget Balancedness
in Public Decision Making," Economic Design, 2, 193.209.

[22] Thomson, W., and Varian, H. (1985). "Theories of Justice Based on
Symmetry," in Social Goals and Social Organizations (Hurwicz et al.,
Eds.). Cambridge: Cambridge University Press

24

[23] Wierman, A. and Harchol-Balter, M. (2003). "Bounds on a Fair Policy
with Near Optimal Performance," submitted.

[24] Wierman, A. and Harchol-Balter, M. (2003). "Classifying Scheduling
Policies with Respect to Unfairness in an M/GI/1," in Proceedings of
ACM Sigmetrics Conference on Measurement and Modeling of Com-
puter Systems.

[25] Wolff, R. W. (1989). Stochastic modeling and the theory of queues,
Prentice-Hall series in Industrial and Systems Engineering, New Jersey

8 Appendix: Proposition 7; proofs of Propo-
sition 6, Theorem 4

8.1 Proof of Proposition 6

Step 1. We compute first the liability of the protocol Shortest Job First
(SJF), namely the modification of SRJFwhere at any time the server processes
(one of) the job that was shortest at release time.
Fix a job of size x, x < 1

λ
, at release time, and consider a queue of total

length q in which job x is last (q < x is possible if job x is partially completed
and is alone in the queue) and all jobs before x in the queue were shorter
than x at their release time. For such a queue, define W (q|x) as the worst
expected time it takes the queue to clear, where the maximization bears upon
the size of future jobs (as in the proof of Proposition 5). This is well defined
because subsequent jobs preempt job x if and only if they are shorter than x,
so we do not need to specify the initial length of jobs ahead of job x. Clearly
W (q|x) is achieved when all future jobs are of size barely below x, therefore
W satisfies the following functional equation, where for simplicity we omit x
in W (q|x):

W (q) = exp(−λq)q +
Z q

0

λ exp(−λt){t+W (q − t+ x)}dt

⇔W (q) =
1− exp(−λq)

λ
+λ exp(−λq)

Z q

0

exp(λt)W (t+x)dt for all q (11)

Routine computation shows that the function

25

W (q) =
q

1− λx
(12)

is a solution of (11). To see that it is the only one, observe that W grows no
more than linearly, because when all future jobs are of size x, the server is
idle a positive fraction of the time. Therefore for any positive number µ, the
integral

kWk =
Z ∞

0

|W (q)| exp(−µq)dq

is a well defined norm for W . In the space of continuous functions for which
the above integral converges, consider the linear mapping Φ

Φ(W)(q) = λ exp(−λq)
Z q

0

exp(λt)W (t+ x)dt

(note that Φ depends upon the job size x, that remains fixed throughout).
We claim that, for an appropriate choice of µ, Φ is contracting for the corre-
sponding norm kΦk = sup kΦ(W)k

kWk :

kΦ(W)k =
Z ∞

0

λ exp(−λq){|
Z q

0

exp(λt)W (t+ x)dt|} exp(−µq)dq

≤
Z Z

0≤t≤q<∞
λ exp(−(λ+ µ)q) exp(λt)|W (t+ x)|dqdt

=
λ

λ+ µ

Z ∞

0

|W (t+ x)| exp(−µt)dt = λ

λ+ µ
exp(µx)

Z ∞

x

|W (t)| exp(−µt)dt

≤ λ

λ+ µ
exp(µx) kWk

Now for µ small enough, λx < 1 implies λ
λ+µ

exp(µx) < 1, establishing that
Φ is contracting. As the above functional space is complete for this norm,
we conclude that the equation W = U0+Φ(W) has at most one solution for
any constant U0.
Having determinedW ((12)), we now compute the liability of job x under

SJF. Upon its release, it will be pushed behind all jobs still alive and originally
shorter than x. Thus the longest queue ahead of job x when it is released,

26

obtains when all past jobs were barely shorter than x. In that case the
expected length of this queue (including job x) is q = x

1−λx . Thus the worst
expected delay for job x is W (x

1−λx) =
x

(1−λx)2 , and the liability of SJF is
1

(1−λx)2 .
Step 2. In this step we show that the liability of SRJF is not worse than
that of SJF. In order to maximize the steady-state sojourn time of a given
job of size x, x < 1

λ
, it is enough to look at the case where all past and future

jobs are no larger than x. This is clear for future jobs, and for past jobs
the only qualification to this statement comes if there is a single other job,
of size x−1, alive when job x is released. Then the worst case is when what
is left of x−1 at the release of x is just below x. But this only occurs when
there is a single other job alive, and the adversary "Nature" can predict the
exact release date of job x, which is ruled out by our definition of the liability
function ((10).
Now fix a sequence ex = (.., x−k, .., x−1, x1, .., xk, ..) of sizes all below x for
the other jobs, and arbitrary release dates. Compare then the sojourn time
of job x under SRJF and under SJF: under the latter, all other jobs take
precedence over x, but this is not necessarily the case under the former; as
soon as job x is partially processed, it concedes priority to fewer jobs under
SRJF. In view of Step 1, this proves the upper bound on θSR(λ, x).
Step 3. Finally we prove the lower bound on θSR(λ, x) by computing the
expected slowdown when all past and future jobs are barely shorter than x.
Note that this is not the optimal choice of the sequence ex in (10): future jobs
expect to be compared to a partially completed job ”x”, hence the optimal
choice invloves somewhat shorter future jobs. Once again we compute the
function W defined as in Step 1, solving now a slightly different functional
equation, because as soon as the server starts processing job x it is not
interrupted by any subsequent job:

W (q) = exp(−λ(q − x))q +

Z q−x

0

λ exp(−λt){t+W (q − t+ x)}dt if q ≥ x

= q if 0 ≤ q ≤ x

Changing the unknown function to fW (eq) = W (eq + x) − x, we find that fW
satisfies the same equation (11), therefore

W (q) = x+
q − x

1− λx
if q ≥ x

27

Now, as in Step 1, the queue ahead of (and including) job x when it is released
has expected length q = x

1−λx , so the expected slowdown is

s =
W (x

1−λx)

x
= 1 +

λx

(1− λx)2

This concludes the proof.

8.2 Proposition 7

The arrival rate λ of new jobs is fixed throughout.
In the statement of Proposition 7, we are given a real valued functionW ,

differentiable on [0,+∞[with the following properties:

W (0) = 0;W 0(0) = 1; and for all x, 0 < x < 1
λ
,

R(q, x) =
W 0(q)− 1

W (q + x)−W (q)
increases strictly in q; lim

q→∞
R(q, x) =

1

x
(13)

Given such a functionW , the equation in q, R(q, x) = λ has a unique solution
q(x) for all x, 0 < x < 1

λ
, and we further assume

lim
x→ 1

λ

q(x) =∞ (14)

Proposition 7
For any function W satisfying (13) and (14), consider the probabilistic pri-
ority protocol P (F) where

Fx(q) = min{
R(q, x)

λ
, 1} for x > 0, q ≥ 0 (15)

Then W (q) is the worst expected time to clear a queue of size q under P (F),
and this protocol implements the liability function

θ(λ, x) =

Z q(x)

0

W (q + x)dFx(q)

=
1

x
{W (x) +

Z q(x)

0

(1− R(q, x)

λ
)W 0(q + x)dq} (16)

28

Proof
Our assumptions on W ensure that equation (15) defines for all λ and all x
a continuous c.d.f. Fx with support [0, q(x)].
We introduce first some notations . Let X = RZÂ0++ be the set of sequences ex
where R++ =]0,∞[. Let Xr be the subset of regular sequences, namely there
exists ε, ε > 0, such that xk /∈ [1

λ
− ε, 1

λ
[for all k. For all a ∈]0, 1

λ
[, let X(a)

be the suset of Xr such that xk /∈ [a, 1
λ
[for all k. The sets X(a) are nested

and their union is Xr. Let P (a, F) be the "a−truncation" of P (F) where all
jobs longer than a are systematically pushed at the end of the queue. Thus
in P (a, F) we treat a job x, x > a, exactly as we treat jobs x, x ≥ 1

λ
in P (F).

Step 1. We write V (q) (resp. V a(q)) for the worst expected time to clear
a queue of length q under P (F) (resp. P (a, F)), where the maximization
bears, as usual, on the size of future jobs. In Steps 2 and 3 below we show
that V a(q) is the following function

V a(q) = W (q) if 0 ≤ q ≤ q(a)

= W (q(a)) +
q − q(a)

1− λa
if q(a) ≤ q (17)

Here we check that (17) implies Proposition 7. Write V (q; ex) (resp. V a(q; ex))
for the expected time under P (F) (resp. under P (a, F)) to clear a queue of
size q given a sequence ex of (future) jobs sizes. Clearly V a(q; ex) = V (q; ex)
whenever ex ∈ X(a), therefore

V (q) = sup
Xr

V (q; ex) = sup
a∈]0, 1

λ
[

sup
X(a)

V (q; ex) = sup
a∈]0, 1

λ
[

V a(q) =W (q)

where the right hand equality follows from (17) and assumption (14).
We show next that P (F) implements the liability function (16). Fix any

x ∈ [0, 1
λ
[, and choose a∗ such that q(a∗) ≥ x + q(x), which is possible by

(14). In particular x ≤ a∗. We claim now

sup
X(a)

y(λ, x, ex|P (a, F)) ≤ θ(λ, x)x forall a, a∗ ≤ a <
1

λ
, (18)

(recall that y(λ, x, ex) is the expected sojourn of job x given ex). Assume for
a moment the claim holds. By construction x ≤ a∗ ≤ a, therefore y(λ, x, ex)
is the same under P (a, F) and under P (F) and (18) holds as well when we

29

replace P (a, F) by P (F). Moreover for any ex ∈ Xr we can choose a such
that a∗ ≤ a < 1

λ
and ex ∈ X(a), completing the proof that P (F) implements

θ.
It remains to prove property (18). Fix a as announced there, in particular

x ≤ a and x+q(x) ≤ q(a). Upon its release, job x draws Z with distribution
Fx and is placed at the back of a queue of length at most Z, resulting in a
worst expected sojourn no larger than V a(q+Z). In view of (17) this implies

sup
X(a)

y(λ, x, ex|P (a, F)) ≤ Z q(x)

0

V a(q + x)dFx(q) =

Z q(x)

0

W (q + x)dFx(q)

Finally we use (15) and an integration by parts to computeZ q(x)

0

W (q + x)dFx(q) = W (q + x)−
Z q(x)

0

Fx(q)W
0(q + x)dq

= W (x) +

Z q(x)

0

(1− R(q, x)

λ
)W 0(q + x)dq

Step 2.We call W a the function on the right hand side of (17), and in this
step we show V a ≥ W a by proving that, for all q, the expected time Ua(q)
to clear a queue of size q when all future jobs are of size a is Ua(q) =W a(q).
If a new job shows up when the queue size is q, the clearing time increases

to Ua(q+a) with probability Fa(q) and is otherwise unaffected, therefore Ua

satisfies the following equation

Ua(q) = exp(−λq)q +
Z q

0

λ exp(−λt){t+H(Ua)(q − t)}dt⇔

Ua(q) =
1− exp(−λq)

λ
+ λ exp(−λq)

Z q

0

exp(λt)H(Ua)(t)dt, all q ≥ 0 (19)

where H is the following (linear) operator for arbitrary U :

H(U)(q) = Fa(q)U(q + a) + (1− Fa(q))U(q), all q ≥ 0

We solve this equation in two steps.
Case 1: q ≥ q(a)

30

In this case H(U)(q) = U(q + a), so that equation (19) is identical to (11),
except for the restriction on the domain of q. We claim that its unique
solution is

Ua(q) = Ua(q(a)) +
q − q(a)

1− λa
for all q ≥ q(a) (20)

To prove the claim, we note that equation (19) implies

Z q(a)

0

exp(λt)Ua(t+ a)dt =
exp(λq(a))

λ
{Ua(q(a))− 1− exp(−λq(a))

λ
}

Then for q ≥ q(a), we replace the integral in the RHS of (19) by

Z q

0

exp(λt)Ua(t+ a)dt =

Z q(a)

0

exp(λt)Ua(t+ a)dt+

Z q

q(a)

exp(λt)Ua(t+ a)dt

Combining the two above equations with (19), a straightforward computation
gives:

Ua(q)− Ua(q(a)) =
1− exp{−λ(q − q(a))}

λ

+λ exp{−λ(q − q(a))}
Z q

q(a)

exp{λ(t− q(a)}(Ua(t+ a)− Ua(q(a))dt

which is precisely the same equation as (11) up to the change of unknown
function U∗(q) = Ua(q + q(a)) − Ua(q(a)). The same argument as in Step
1 of the proof of Proposition 6 shows that Ua given by (20) is the unique
solution of (19) on [q(a),∞[.
Case 2: 0 ≤ q ≤ q(a)

In equation (19) the integral involves values taken by Ua at q + a, yet by
Case 1 we can regard the unknown in equation (19) as a continuous function
defined on [0, q(a)], with the convention that it extends continuously beyond
this interval as the straight line with slope 1

1−λa . Now we check that the
operator Ψ, defined as follows for continuous functions U on [0, q(a)]:

Ψ(U)(q) = λ exp(−λq)
Z q

0

exp(λt)H(U)(t)dt

31

is contracting for the supremum norm kUk∞ = sup[0,q(a)] |U(q)|. Compute
first the norm of H. For all U1, U2

|H(U1)(q)−H(U2)(q)| ≤ sup
[0,q(a)]

{|(U1 − U2)(q + a)|, |(U1 − U2)(q)|}

= sup
[0,q(a)]

|(U1 − U2)(q)| =
°°U1 − U2

°°
∞

where the equality follows from the canonical extension of both functions
beyond q(a). Then

Ψ(U1 − U2)(q) ≤ {λ exp(−λq)
Z q

0

exp(λt)dt}
°°U1 − U2

°°
∞

= (1− exp(−λq))
°°U1 − U2

°°
∞ ≤ (1− exp(−λq(a)))

°°U1 − U2
°°
∞

concluding the proof that Ψ is contracting, and that equation (19) has a
unique solution on [0, q(a)]. It remains to check that W is this solution.
Compute for all q ∈ [0, q(a)]

H(W)(q) =W (q) + Fa(q)(W (q + a)−W (q)) =W (q) +
W 0(q)− 1

λ

A routine computation in (19) establishes the claim.
Step 3. We show V a ≤ W a. We compute the worst expected time T a(q) to
clear a queue of size q when the adversary "Nature" chooses the size of each
future job as a function of the remaining queue size. This is more than it is
allowed to do under our definition of y(λ, x, ex), therefore V a ≤ T a We prove
T a =W a.
The functional equation satisfied by T a is

T a(q) = exp(−λq)q +
Z q

0

λ exp(−λt){t+K(T a)(q − t)}dt⇔

T a(q) =
1− exp(−λq)

λ
+ λ exp(−λq)

Z q

0

exp(λt)K(T a)(t)dt, all q ≥ 0 (21)

where K is the following (non linear) operator for arbitrary T :

K(T)(q) = sup
x∈[0.a]

{Fx(q)T (q + x) + (1− Fx(q))T (q)} for all q ≥ 0

32

The proof parallels that of Step 2.
We consider first (21) for q ≥ q(a). Then K(T)(q) = T (q + a) provided

T is non decreasing, which is clearly true for T a, so we are back to Case 1 in
the previous Step. We conclude that T a satisfies (20).
Next we consider (21) on [0, q(a)], using the same convention as in Case 2

above: we view the unknown as a function on [0, q(a)] canonically extended
beyond this interval by (20). We define an operator Θ

Θ(T)(q) = λ exp(−λq)
Z q

0

exp(λt)K(T)(t)dt

and show as in case 2 that it is contracting for the supremum norm kTk∞.
We have

|K(T 1)(q)−K(T 2)(q)| ≤ sup
[0,q(a)+a]

|(T 1 − T 2)(q)| = sup
[0,q(a)]

|(T 1 − T 2)(q)|

where the last equality follows the extension property. The proof that Θ is
contracting, i.e., kΘk ≤ 1− exp(−λq(a)), follows as above.
Finally we check that the function W satisfies (21) on [0, q(a)]. Fix q in

this interval; the definition of F ((15)) implies

Fx(q)(W (q + x)−W (q)) =
W 0(q)− 1

λ
if q(x) ≥ q

≤ W 0(q)− 1
λ

if q(x) ≤ q

=⇒ K(W)(q) =W (q) +
W 0(q)− 1

λ
for all q ∈ [0, q(a)]

and the desired conclusion follows exactly as in Case 2.

8.3 Proof of Theorem 4

Fix a number b, b > 0, and define W (q) = q + bλq2.We let the reader check
that W meets properties (13) and (14):

W 0(q)− 1
W (q + x)−W (q)

=
2bλq

x(1 + bλx+ 2bλq)

q(x) =
λx

1− λx
· 1 + bλx

2bλ

33

Thus Proposition 7 applies and the protocol P (F) with

Fx(q) = min{
2bq

x(1 + bλx+ 2bλq)
, 1} (22)

implements the liability function

θ(λ, x) =

Z q(x)

0

W (q + x)dFx(q) =
2bλ(1 + bλx)

λx

Z q(x)

0

(x+ q)(1 + bλx+ bλq)

(1 + bλx+ 2bλq)2
dq

= (1 + bλx) · {1 + 2b− bλx

4b(1− λx)
+
| log(1− λx)|

2λx
}

Setting λx = u, the ratio θ
θ∗ of the above liability to the fair slowdown is:

θ

θ∗
(u) =

1

2
(1 + bu)(1 +

1

2b
− u

2
+
| log(1− u)|(1− u)

u
) for 0 ≤ u ≤ 1

One checks easily that this function is concave on [0, 1], increasing from 1+ 1
4b

at u = 0, decreasing to (b+1)2

4b
at u = 1. To minimize the maximal value of

the ratio θ
θ∗ on [0, 1], the optimal choice of b is near b = 0.8. Figure 1 depicts

the ratio in this case, with its maximal value of 1.449. The corresponding
family of c.d.f.s (22) is precisely the one in the statement of Theorem 4.
The rationale for choosing a quadratic function W is clear: it yields sim-

ple formulas for Fx, q(x) and θ(λ, x).Happily, it also delivers a fairly good
approximation of the fair slowdown. But there is no reason to suspect that
another choice of W would not improve upon this approximation, even per-
haps give an exact implementation of the fair slowdown. The difficulty is
that for most other choices of W , we cannot get a closed form for Fx or q(x),
and the optimization of W is a serious numerical challenge.

34

