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Abstract

This paper introduces an iterative method to estimate the cointegrating vec-
tors in the error correction models. The method provides the asymptotically
efficient estimators for the cointegrating vectors if iterated once or more. If it
is iterated until convergence, we may obtain the maximum likelihood estimator
by Johansen. For all values of 1 ≤ k ≤ ∞, the k-step iterative estimators are
asymptotically equivalent, and as efficient as the maximum likelihood estima-
tor. Their finite sample performances are, however, quite different for different
values of k, most notably for the two extreme cases k = 1 and k = ∞. The
finite-step iterative estimators generally perform better in small samples than
the infinite-step iterative estimator, i.e., the maximum likelihood estimator. In
particular, the former are much more robust than the latter, which is known
to occasionally yield some extreme outliers in samples of relatively small size.
Our iterative procedure indeed can be very useful in detecting the occurrences
of outliers for the maximum likelihood estimator, since its realized values tend
to deviate largely from those of the finite-step iterative estimators when the ex-
treme outliers are produced. The proposed method is very flexible and can be
easily implemented for the cointegrated models that are specified in an arbitrary
structural form.
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1. Introduction

The concept of cointegration has been very intensely explored in the past two decades by nu-
merous authors, since it was first introduced by Granger (1983) and more rigorously formu-
lated later by Engle and Granger (1987). Many economic longrun equilibrium relationships
are now routinely modelled as cointegation models, and such models are widely accepted
as useful and appropriate formulations. The statistical aspects of the cointegration models
have also been throughly investigated, which has resulted in producing various methods for
their effective inferences. There are several methods that are still used widely, including
the maximum likelihood approach based on the error correction model by Johansen (1988,
1991), the fully modified procedure by Phillips and Hansen (1990), the canonical cointe-
grating regression by Park (1992) and the dynamic leads and lags method by Saikkonnen
(1991) and Stock and Watson (1993). The reader is referred to Watson (1994) for a survey
and more related discussions on the subject.

We develop in the paper a new method of inference on cointegrating vectors, which
complements the Johansen’s maximum likelihood approach based on the Gaussian error
correction models. Instead of obtaining the maximum likelihood estimate directly by max-
imizing the likelihood as in the Johansen’s procedure, we suggest an alternative method
based on an iterative procedure. Our iterative procedure yields a class of asymptotically
efficient estimators for the cointegrating vectors, which are defined in terms of the max-
imum number k of iterations. If the iteration is done until convergence, or equivalently,
if we set k = ∞, then the resulting estimator becomes numerically identical to the maxi-
mum likelihood estimator obtained earlier by Johansen. For all the values of 1 ≤ k ≤ ∞,
the k-step iterative estimators for the cointegrating vectors are asymptotically equivalent:
They all have the identical asymptotic distribution. Their finite sample performances are,
however, quite different. In particular, the infinite-step iterative estimator, which is nothing
but the maximum likelihood estimator, behaves quite distinctively in finite samples from
the iterative estimators with some fixed numbers of maximum iterations, i.e., the finite-step
iterative estimators.

Our simulations clearly demonstrate that the behaviors of the finite-step iterative es-
timators and the maximum likelihood estimator are rather different in finite samples. In
general, the former perform much better than the latter in small samples, though most of
their differing behaviors disappear as the sample size increases. When the sample size is
small, the maximum likelihood estimator yields extreme outliers that we do not observe
for the finite-step iterative estimators. The outliers in the maximum likelihood estimator
occur more frequently when the sample size is smaller, and when the order of the fitted
error correction model is bigger. The finite sample performance of the maximum likelihood
estimator has been studied by numerous authors. See, e.g., Maddala and Kim (1998) for an
extensive survey on the relevant studies. In particular, it was noted earlier by Ogaki and
Park (1991) through simulation that the maximum likelihood estimator occasionally yields
extreme outliers and appears to have undefined sample moments in small samples. Phillips
(1994) later showed analytically that the finite sample distribution of the maximum likeli-
hood estimation has Cauchy-like tails and has no finite integral moments. The occurrence
of extreme outliers in the maximum likelihood procedure has recently been reconfirmed by
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Cappuccio and Lubian (2001).
Our iterative procedure not only provides a new class of asymptotically efficient estima-

tors that are much more robust in small samples than the maximum likelihood estimator,
but also makes it possible to detect whether or not the observed maximum likelihood esti-
mator is likely to be an outlier. Whenever an outlier is observed, the maximum likelihood
estimate tends to sharply diverge from the finite-step iterative estimates. Therefore, we
may just compare their estimates for the outlier detection. If they are far apart from each
other, it is likely that the observed maximum likelihood estimate is an outlier. Clearly, we
should not rely on the maximum likelihood estimate in this case. If, on the other hand, their
values are close to each other, it seems safer and may be better to use the maximum likeli-
hood estimate. It is also possible to use the hybrid estimators, which alternately assign the
finite-step iterative estimates and the maximum likelihood estimate depending upon how
far they fall apart. Such estimators can easily be defined and practically implemented using
the iterative maximum likelihood procedure developed in the paper.

The proposed method is very flexible, and can be readily implemented to estimate the
simultaneous cointegrated model specified in general structural form. In the presence of
multiple cointegrating relationships, we need to impose restrictions to individually identify
each relationship. See, e.g., Park (1990) and Hsiao (1997) for more issues on the identifi-
cation of cointegrated models. The triangular representation of the cointegrating relation-
ships used by Phillips (1991) and others can be regarded as the simultaneous cointegrated
model given in reduced form, which is necessarily just-identified. Of course, the simulta-
neous cointegrated model can be more generally specified in structural form, possibly with
over-identifying restrictions. Our procedure is developed for the simultaneous cointegrated
model with general linear identifying restrictions, and in particular allows for the presence of
over-identifying restrictions. It can therefore be used to estimate the general simultaneous
cointegrated model given in structural form with an arbitrary number of over-identifying
restrictions. The Johansen’s methodology may deal with such a system with an appropri-
ate reparametrization, but ours provides an alternative that is more comparable with the
traditional approach to the inference in the classical simultaneous equations model.

The rest of this paper is organized as follows. In Section 2, we introduce the models
and assumptions. Various specifications of cointegrating vectors are considered with re-
quired identification conditions. Some existing methods and their asymptotic theories are
introduced and compared in Section 3. This is to motivate the methodology proposed in
the paper, and to relate our asymptotic theories to those of the existing methods. The
new method of computing the maximum likelihood estimator is provided in Section 4. A
new class of the iterative estimators that are asymptotically equivalent to the maximum
likelihood estimator are then introduced. The maximum likelihood estimator is interpreted
as a member of this class. Section 5 reports a rather extensive set of simulation results,
which investigate the finite sample performances of the estimators for cointegrating vectors
considered in the paper. An example is also given to illustrate the empirical relevancy of
our methodology. Some conclusing remarks follow in Section 6, and all the mathematical
proofs are given in Appendix.
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2. The Models and Assumptions

Let
yt = Π′xt + ut (1)

and assume that (xt) is integrated and (ut) is stationary, where (xt) and (ut) are, respec-
tively, m- and `-dimensional, and Π is the m×` parameter matrix. Under this specification,
the time series (yt) and (xt) are cointegrated with the matrix of cointegrating vectors given
by Π and the cointegrating errors (ut). If we set

zt = (y′t, x
′
t)
′ (2)

then the time series (zt) becomes an s-dimensional time series, s = ` + m, which has `-
cointegrating relationships, or equivalently, m-common trends in the terminologies of Engle
and Granger (1987) and Stock and Watson (1988). We may also consider cointegration
model given in a more general form. For this purpose, we write

B′zt = ut (3)

where B is an s× ` matrix of cointegrating vectors. Of course, the model given in (1) can
be regarded as a particular specification of B with B = (I,−Π′)′ in (3). Moreover, (xt)
should not be cointegrated, if (zt) has `-cointegrating relationships and m-common trends
as we assume here.

We now introduce a set of explicit assumptions that are required to develop our asymp-
totic theories in the paper.

Assumption 2.1 The process (wt), which is defined by

wt = (u′t,4x′t)
′ (4)

satisfies the invariance principle

Assumption 2.2 Let (zt) be generated by the error correction model (ECM)

C(L)4zt = −AB′zt−1 + εt (5)

where C(z) = I − C1z − · · · − Cp−1z
p−1 and (εt) are white noise.

Assumption 2.1 is sufficient to develop our asymptotics in the paper. All the existing
literature on the statistical analysis of cointegrating relationships assume that the invariance
principle in Assumption 2.1 holds. Assumption 2.2 is introduced to more specifically deal
with the shortrun dynamics in the model. The ECM in Assumption 2.2 models the shortrun
error correcting mechanisms as well as the longrun equilibrium relationships. Throughout
the paper, we assume that both Assumptions 2.1 and 2.2 hold. The p-th order vector
autoregression (VAR) consisting of integrated time series that are cointegrated satisfy the
assumptions under some extra conditions. The reader is referrred to Johansen (1987, 1991)
for details.
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If (zt) is generated by the ECM in (5), then (wt) defined in (4) can be represented as
VAR(p), i.e., the VAR of order p. This was shown in, e.g., Park and Ogaki (1991). For the
explicit representation of (zt) as VAR(p), define an s× s matrix

H =
(

I −Π′

0 I

)
and let Ia be an s × s matrix with the ` × ` identity matrix in northwest block and zero
elsewhere. Also, define Aa to be an s × s matrix which is obtained by augmenting s ×m
zeros to the s× ` matrix A. Then we have

wt =
p∑

k=1

Tkwt−k + vt (6)

where T1 = Ia − HAa + HC1H
−1, Tk = HCkH

−1 − HCk−1H
−1Ia for 2 ≤ k ≤ p − 1,

Tp = −HCp−1H
−1Ia, and vt = Hεt. Consequently, the ECM representation of (zt) in (5)

amounts to assuming that (wt) in (4) follows VAR(p).
Now we introduce the identification conditions for the cointegrating vectors. As is well

known, the cointegrating vectors are identified only up to the space spanned by them, or
the so-called the cointegration space. Of course, it is possible to estimate the cointegration
space directly as in Johansen (1988, 1991) using a computationally convenient normaliza-
tion. In the paper, we use an alternative approach relying on a priori identification. We
assume that the parameters in the given cointegration model are identified through re-
strictions, exactly as in the classical simultaneous equations model (SEM). This is to fully
develop the asymptotics for both unidentified and identified cointegrating vectors, and also
to more explicitly compare the asymptotics for the cointegration model formulated as the
multivariate regression and as a longrun component in the error correction model. Both
types of cointegration models have been used widely for many theoretical and empirical
researchers. If we only need an estimate for the cointegration space, an arbitrary set of
identifying restrictions can be imposed. This will be explained in more detail later. In an
analogy to SEM, we will refer throughout the paper the system of multiple cointegrating
relations to as the simultaneous cointegrated model (SCM).

Just like the SEM, the SCM can be specified in the reduced form (RF) as in (1), or in
the structural form (SF) as in (3). The parameter Π for the RF representation in (1) is
clearly identified, as long as there is no cointegrating relationship in (xt). The identification
of the more general SF representation in (3), however, requires more discussions. For the
cointegrating vectors in B to be individually identified, we need some identifying restrictions.
Without restrictions, the matrix B is only identified up to the space spanned by its column
vectors, or up to BT−1 for any `×` nonsingular transformation matrix T . Note in particular
that the joint transformation A 7→ AT ′ and B 7→ BT−1 do not change the error correction
model in Assumption 2.2. The identification of the SCM is essentially identical to that of
the SEM, and naturally, all the standard theories for the identification of the SEM apply.
This will be seen more clearly as we develop our theory subsequently.

As in the identification of the standard SEM, we let R and r be the known matrix and
vector that are q × `m- and q-dimensional, respectively, and assume that the restrictions
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are given by
R vecB = r

Here, q is the number of restrictions, and ` and m are the numbers of cointegrating vectors
and common trends as specified earlier. The operator “vec” stacks column vectors of a
matrix and defines a long vector. For the identification of the cointegrated model in SF
introduced in (3), it is necessary and sufficient that

Assumption 2.3 rank R(I` ⊗B) = `2.

This is exactly the same as what is known as the rank condition for SEM. The condition
in Assumption 2.3 is sufficient, as well as necessary, for the identification of cointegrating
vectors and will be referred to as the rank condition. The weaker necessary condition is given
by q ≥ `2, i.e., the number of restrictions is at least as large as the number of cointegrating
relationships squared. This is the order condition for the identification of cointegrating
vectors. It can be said that the cointegrating vectors are just (under and over, respectively)
identified if q = `2 (q < `2 and q > `2, respectively).

Clearly, it is also possible to discuss the identifiability of the individual cointegrating
vector. For this, we let βi denote the i-th column of the matrix B of cointegrating vectors
introduced in (3), and denote by Ri and ri the pair of the restriction matrix and vector that
impose the qi-number of restrictions of the form Riβi = ri for the i-th cointegrating vector
βi for i = 1, . . . , `. Then the necessary and sufficient rank condition for the identification of
the i-th cointegrating vector βi is given by rank RiB = `. The necessary order condition in
this case becomes qi ≥ `, i.e., we require that the number of restrictions imposed on the i-th
cointegrating vector be at least as large as the number of cointegrating relationships. Natu-
rally, we may say that the i-th cointegration vector βi is just (under and over, respectively)
identified if qi = ` (qi < ` and qi > `, respectively), just as in the SEM.

Now we suppose the matrix B of cointegrating vectors is identified, and write the coin-
tegration model as

y1t = δ′1z1t + u1t

...
...

... (7)
y`t = δ′`z`t + u`t

which represents each of `-cointegrating relationships between (yt) and (xt) in the format
of seemingly unrelated regression (SUR). Note that we let yt = (y1t, . . . , y`t)′ and ut =
(u1t, . . . , u`t)′, and (zit) is a subset of (yt) and (xt) included in the right hand side of the i-
th equation. Here we assume that the i-th column βi of the matrix B of cointegrating vectors
can be represented, after an appropriate reparametrization if necessary, by the unknown
parameter δi for i = 1, . . . `. In what follows, we let

δ = (δ′1, . . . , δ
′
`)
′

which represents the unknown parameters in the matrix B of cointegrating vectors.
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In what follows, we will consider the methods of estimating the parameter Π in the RF
model (1) or δ in the SF model (7) of the SCM. We will look at several versions of their
estimators that are asymptotically equivalent to the maximum likelihood (ML) estimator
including the ML estimator itself. Due to the invariance property of the ML estimation,
the ML estimator is independent of any specific parametrization. Without over-identifying
restrictions, the ML estimator of the SF form parameter is numerically the same regardless
of whether it is based directly on any SF model or it is indirectly inferred from the RF model.
As a result, the ML estimation of any just identified SF model is essentially identical to
that of the RF model. Moreover, the ML estimation of the cointegration space can be done
on any just identified SF model, as well as on the RF model. The same arguments apply
also to other ML equivalent estimators considered in the paper, but only asymptotically.
In finite samples, their performances may well depend on particular specifications.

We will not explicitly consider in the paper the models which include deterministic, as
well as stochastic, trends. This is just to simplify our presentation and save the space.
All of our subsequent methods can be extended in a rather straightforward manner to such
models with only some obvious modifications. The reader is referred to, e.g., Park (1992) for
the detailed exposition on the required modifications. The theoretical results on the mixed
normality of the limiting distributions for the estimators and the validity of the standard
chi-square tests presented in the subsequent sections, in particular, continue to hold for the
SCM with deterministic trends, as long as the included deterministic trends satisfy some
mild regularity conditions.

3. Existing Methods and Their Asymptotic Theories

In this section, we review the existing methods for the estimation of cointegrating vectors
and discuss their asymptotics. This is to relate our methods and theories to those for
the other existing estimation procedures of cointegrating vectors. For this purpose, we
consider in particular the ML method by Johansen (1988) based on the Gaussian ECM,
and other nonparametric methods that are asymptotically equivalent to the Gaussian ECM
based ML estimator. For the latter, we only explicitly consider the CCR approach by Park
(1992), since in terms of motivation it is believed to be most closely related to our iterative
procedure introduced in the paper. As is well known, the CCR method is asymptotically
equivalent to the fully modified procedure by Phillips and Hansen (1990) and the method
relying on the dynamic regressions augmented with leads and lags by Saikonnen (1991)
and Stock and Watson (1993). The procedures by Phillips and Hansen (1990) and Park
(1992) are applicable only under Assumption 2.1, and the dynamic regressions proposed by
Saikonnen (1991) and Stock and Watson (1993) are also valid under Assumption 2.1 with
only very mild extra conditions.

For the processes (wt) and (εt) appeared in Assumptions 2.1 and 2.2, we define

Ω = lim
n→∞

1
n

E

(
n∑

t=1

wt

)(
n∑

t=1

wt

)′
(8)
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and
Σ = E (εtε

′
t) (9)

The longrun variance Ω of (wt) in (8) is further partitioned as

Ω =
(

Ω11 Ω12

Ω21 Ω22

)
conformably with wt = (u′t,4x′t)

′ in (4), and we define

Ω11·2 = Ω11 − Ω12Ω−1
22 Ω21 (10)

which is the longrun conditional variance of (ut) given (4xt). Note that Ω22 > 0, since we
assume that there is no cointegration relationship in (xt).

It can be shown that

Lemma 3.1 Under Assumptions 2.1 and 2.2, we have

Ω11·2 = (A′Σ−1A)−1

in the notation defined above.

In light of our result in Lemma 3.1, we will use the notation

V = Ω11·2 or (A′Σ−1A)−1 (11)

in all our subsequent discussions.
We now consider the estimation of the RF model in (1). To introduce the Johansen’s

estimator Π̂ for Π, we first let Sij for i, j = 0, 1 be the moment matrices of the residuals
from the regressions of (4zt) and (zt−1), respectively for i, j = 0 and i, j = 1, on the lagged
differences (4zt−k) for k = 1, . . . , p − 1. Then we define B̂ to satisfy the optimization
problem

B̂ = argmin
B

det
(
S00 − S01B(B′S11B)−1B′S10

)
subject to the normalization B̂′S11B̂ = Im and B̂′S10S

−1
00 S01B̂ = Λ̂m, where Λ̂m is the

diagonal matrix given by Λ̂m = diag (λ̂1, . . . , λ̂m) with the ordered m-largest generalized
eigenvalues of S10S

−1
00 S01 with respect to S11, i.e., the ordered m-largest roots of the deter-

minental equation det(λS11 − S10S
−1
00 S01) = 0. The ML estimate for Π may now be easily

obtained from
Π̂ = −B̂−1

1 B̂2

where B̂ = (B̂′
1, B̂

′
2)
′.

The CCR method transforms, nonparametrically, the integrated variables (yt) and (xt)
in (1) to generate a new system

y∗t = Π′x∗t + u∗t (12)
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where (y∗t ) and (x∗t ) are stationary deviations respectively from (yt) and (xt), which are
given by

y∗t = yt − Ω12Ω−1
22 4xt −Π′ΛΣ−1wt

x∗t = xt − ΛΣ−1wt

where

Λ = lim
n→∞

1
n

n∑
t=1

E (xtw
′
t) and Σ = lim

n→∞

1
n

n∑
t=1

E (wtw
′
t)

and other notations are defined earlier. Note that the transformed regression (12) has
the new error term (u∗t ), which is different from the error (ut) in the original model (1),
though it represents the same cointegrating relationships. The CCR estimator Π̃ of Π is
defined simply as the OLS estimator from the transformed regression (12). Of course, the
unknown parameters in the transformation in (12) must be estimated to implement the CCR
methodology in practice. The replacement of these unknown parameters by their consistent
estimates, however, do not affect the asymptotics of the CCR estimator, as shown in Park
(1992).

The ML estimator and the CCR and other nonparametric estimators are asymptotically
equivalent, i.e., they all have the same limiting distribution as we demonstrate below.

Theorem 3.2 Suppose that Assumptions 2.1 and 2.2 hold. Then we have

n (Π̂−Π), n (Π̃−Π) →d MN
(
0,M ⊗ V

)
where M is a random matrix given by

M = l.i.d.
(

1
n2

X ′X

)−1

and V is defined in (11).

In Theorem 3.2 and elsewhere in the paper, we use “MN” to denote the mixed normal
distribution and “l.i.d.” to signify limit in distribution. Also, X is the matrix contructed
from (xt) for t = 1, . . . , n in the usual way. This convention will be used throughout the
paper.

The Johansens’s approach may be used to estimate the cointegrating vectors given in the
SF (7), though he uses different formulations for the restrictions. Instead of representing the
cointegrated model in the SF as we do here, he recognizes any over-identifying restrictions
and imposes them directly on the cointegrating space, i.e., the range of B. The reader is
referred to Johansen and Juselius (1990, 1992) for some examples of such restrictions. For
instance, if we denote by R(T ) the range of any matrix T , they consider the estimation
of B under restrictions such as R(B) ⊂ R(R1) and R(R2) ⊂ R(B), and also under the
restriction on the dimensionality of R(B) ∩ R(R3), where R1, R2 and R3 are some known
matrices used to restrict the cointegrating relations. The first example imposes some linear
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restrictions on all the cointegrating relations, while the second examples assumes that some
of the cointegrating relations are known. The last example, on the other hand, puts some
restrictions on a subset of the cointegrating relations that are chosen in the range of R3.
For the just-identified SCM, the ML estimate of the SF parameter δ can simply be obtained
from that of the RF parameter Π, due to the invariance of the ML estimator with respect
to reparametrization. Note that we have one-to-one correspondence between δ and Π for
the just-identified SCM. In what follows, we will denote by δ̂ the Johansen’s ML estimator
of the SF parameter δ in the SCM.

The CCR method can also be used to estimate the cointegrating vectors specified in
the SF form, following the approach developed in Park and Ogaki (1990) to deal with SUR
systems. Their method can be used to estimate the cointegrating vectors specified in SF.
More precisely, we construct a new system of equations, instead of (7), given by

y∗it = δ′iz
∗
it + u∗it (13)

with

y∗it = yit − ωi2Ω−1
22 4xt − δ′iΛiΣ−1wt

z∗it = zit − ΛiΣ−1wt

where

Λi = lim
n→∞

1
n

n∑
t=1

E (zitw
′
t)

and ωi2 is the long run covariance of (uit) and (4xt). Other notations are defined earlier.
The CCR estimator δ̃ of δ is simply defined as the SUR estimator from (13). Just as in
the CCR estimator for the RF model, the replacement of the unknown parameters by their
consistent estimators do not change the limiting distribution of the CCR estimator for the
SF model.

For both the CCR’s applied to the RF and SF models, we have the error term given by

u∗t = ut − Ω12Ω−1
22 4xt (14)

which has the longrun variance Ω11·2, i.e., the longrun conditional covariance of (ut) given
(4xt) that we denote by V . Due to Lemma 3.1, we also write as before V = (A′Σ−1A)−1.

Define
Z = diag (Z1, . . . , Z`)

where diag denotes the block diagonal matrix, having a matrix Zi which is defined from
(zit) in the usual way, as the i-th block diagonal element. Then we have

Theorem 3.3 Suppose that Assumptions 2.1 – 2.3 hold. Then we have

n (δ̂ − δ), n (δ̃ − δ) →d MN
(
0, Q

)
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where Q is a random matrix given by

Q = l.i.d.
(

1
n2

Z′(V −1 ⊗ I)Z
)−1

and V is defined in (11).

As in the RF model, the ML estimator and the CCR and other nonparametric estimators for
the cointegrating vectors given in the SF are asymptotically equivalent. For the asymptotics
of the estimators of the SF parameter, the identification condition in Assumption 2.3 is
crucial. As can be easily seen from the proof of Theorem 3.3, Q is invertible a.s. if and only
if the rank condition holds.

4. Iterative ML Estimation

In this section, we introduce an iterative procedure for the ML estimation of the cointegrated
vectors based on the ECM in (5). Momentarily, we assume that all the shortrun parameters
A,C(z) and Σ are known and concentrate on the estimation of the longrun parameters in B.
As we will show below, this concentrated likelihood approach yields not only an alternative,
very flexible method of computing the ML estimate of B, but also a new class of estimators
for B that are asymptotically equivalent to the ML estimator. Define

J = Σ−1A(A′Σ−1A)−1 (15)

Then we have

Theorem 4.1 Suppose that Assumption 2.2 holds, and that the values of the shortrun
parameters in ECM (5) are known. Then the concentrated ML estimator for B is given by
GLS in the regression

B′zt + J ′C(L)4zt+1 = J ′εt+1 (16)

where J is the matrix defined in (15).

We may now readily derive an iterative method of computing the ML estimate for B from
Theorem 4.1, as we explain below.

Note that the ML estimation of the shortrun parameters A,C(z) and Σ in ECM (5) is
easy and straightforward, once the ML estimate of B is found. They can be obtained from
the OLS regression

4zt = −A(B′zt−1) + C14zt−1 + · · ·+ Cp−14zt−p+1 + εt (17)

i.e., the (p − 1)-th order VAR in differences augmented with the lagged disequilibrium
error term (B′zt−1). Quite clearly, our results here imply that the ML estimates of the
parameters in ECM (5) can be obtained by iterating alternatively two regressions (16) and
(17), the former by GLS and the latter by OLS, until convergence. An initial estimate for
the longrun parameter B can be obtained by OLS in regression (1) or (7). The iteration is
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to be proceeded as follows: We use the initial estimate for B to obtain estimates of A,C(z)
and Σ from the OLS estimation of the regression (17), which are in turn used to estimate
B by the GLS estimation of the regression (16). The new estimate for B is now plugged
into regression (17) to reestimate A,C(z) and Σ, and so on. More discussions will follow
on how to implement the iterative ML procedure respectively for the RF and SF models.

For the RF model with B = (I,−Π′)′, Theorem 4.1 implies that we may obtain the
concentrated ML estimate for Π in (1) from the multivariate regression

y∗t = Π′xt + u∗t (18)

where
y∗t = yt + J ′C(L)4zt+1

and
u∗t = J ′εt+1

Of course, we may estimate Π by OLS in this case, since GLS becomes identical to OLS.
The concentrated ML estimation of B is therefore particularly simple for the RF model.

For the SF model with more general specification of B in (7), we may similarly obtain
the concentrated ML estimate for δ from the seemingly unrelated regression

y∗1t = δ′1z1t + u∗1t

...
...

... (19)
y∗`t = δ′`z`t + u∗`t

where, with Ji denoting the i-th column vector of J , we have

y∗it = yt + J ′iC(L)4zt+1

and
u∗it = J ′iεt+1

for i = 1, . . . , `. For the cointegrating vectors specified in the SF, our procedure here
provides a very convenient method to compute the ML estimate.

As we mentioned above, our results here provide a new class of the estimators for the
cointegrating vectors, as well as a method of computing the ML estimate. The class consists
of the estimators that are asymptotically equivalent to the ML estimator. To introduce this
class, we just note that the estimator for B from any “feasible” version of regression (18) or
(19), i.e., the regression with transformation using any consistent estimates of A,C(z) and
Σ, becomes asymptotically equivalent to the ML estimator. To see this more precisely, let
Ā, C̄(z) and Σ̄ be estimates of A,C(z) and Σ, respectively, and consider

ȳ∗t = Π′xt + ū∗t (20)

where
ȳ∗t = yt + J̄ ′C̄(L)4zt+1
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for the RF model and

ȳ∗1t = δ′1z1t + ū∗1t

...
...

... (21)
ȳ∗`t = δ′`z`t + ū∗`t

where
ȳ∗it = yt + J̄ ′iC̄(L)4zt+1

for the SF model. The error (u∗t ) in (20) or (21) is defined accordingly.
It is straightforward to deduce that

Proposition 4.2 Let Ā, C̄(z) and Σ̄ be any consistent estimates of A,C(z) and Σ, respec-
tively. Then the OLS estimator of Π in regression (20) is asymptotically equivalent to that
in regression (18) with known values of A,C(z) and Σ. Similarly, the GLS estimator of δ
in regression (21) is asymptotically equivalent to that in regression (19) with known values
of A,C(z) and Σ.

Now it is obvious that the estimators for B from the OLS and GLS regressions respectively
in (20) and (21) with any consistent estimates of the shortrun parameters A,C(z) and Σ
are asymptotically equivalent to the ML estimators.

Our formulation of the concentrated ML estimation in Theorem 4.1 and the subsequent
development of our theory make it very clear how the ML method is related to the other
nonparametric procedures. In particular, the ML estimator can be regarded as a specially
designed form of the CCR estimator by Park (1992) or the fully modified estimator by
Phillips and Hansen (1990). The ML estimator is different from the CCR estimator or
the fully modified estimator only in the way how they treat the shortrun dynamics of
cointegration model. The former exploits the structure of ECM in (5), while the latter
does not presume any specific dynamics and relies on a nonparametric correction for the
asymptotic efficiency. It may now be seen very clearly why the ML estimator should have
the limiting distribution identical to the other existing nonparametric estimators, which we
show in Theorems 3.2 and 3.3.

For the asymptotically equivalent class of estimators for B that are generated by the
feasible OLS and GLS regressions in (20) and (21), it appears to be particularly interesting
to consider the k-step iterative estimators. They are the estimators given in the k-th step
of the iterations that are required to compute the ML estimate based on the alternating
regressions (16) and (17), starting from the OLS estimate of B. We set the zero step
iterative estimator to be the initial OLS estimator of B. The first step iterative estimator
for B is the estimator obtained from regression (20) or (21) using the shortrun parameters
estimated by OLS from regression (17) run with the zero step estimator for B. Likewise, the
k-step iterative estimator for B is obtained from regression (20) or (21) formulated with the
shortrun parameters estimated by regression (17) run with the (k− 1)-st step estimator for
B. Of course, the ML estimator can be defined to be the infinite-step iterative estimator,
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and in this context, the k-step iterative estimators may be viewed as the ones with the
maximum number of iterations restricted by k, for each k = 1, 2, . . ..

The iterative estimators that we propose here can be quite useful in practical applica-
tions. The ML estimator, though it performs quite well for reasonably large size samples,
tends to yield extreme outliers in small samples. As we show through extensive simulations
reported in the next section, outliers are often observed for the ML estimation when the
sample size is 100 and the order of the underlying ECM model is relatively large. The
occurrence of outliers becomes more frequent as the sample size gets small and the model
is fitted by higher orders of ECM. The inclusion of the constant or time trend terms makes
the problem much worse. The extreme outliers do occur occasionally in these cases. Even in
the aforementioned case, the outliers appear frequently enough to make the mean squared
errors of the ML estimator uncomparably larger than any other estimator considered in the
paper. Fortunately, the k-step iterative estimators can be used to avoid using nonsensi-
cal estimates given by the outliers. The k-step iterative estimators are pretty robust even
when the sample size is small and a higher order ECM is used to fit the model. Moreover,
virtually at all times when the outliers occur for the ML estimation, the k-step iterative
estimators yield values that are very distinctive of the ML estimate. We may thus simply
compare the ML estimate with the k-step iterative estimates to judge whether it is to be
seen as an outlier.

5. Simulations and Empirical Illustrations

In this section, Monte Carlo methods are used to examine the finite sample performances
of the estimators considered in the paper. For the simulations, we use the bivariate model

4zt = −αβ′zt−1 + C4zt−1 + et (22)

where zt = (yt, xt)′ and β = (1,−π)′. The errors (et) are generated by

et = εt + Dεt−1 (23)

where (εt) are standard normals with covariance matrix Σ. Here and elsewhere in this
section, we use the lower case letters to denote the parameters defined in the previous
sections, whenever they are vectors or scalars.

More explicitly, the models that we use for simulations are given by

α =
(

α1

α2

)
(24)

for α in (22), where we let α1 = 0.2 and α2 = 0,−0.2,−0.4 or −0.6. We denote the DGP’s
corresponding to each of these values of α2 by (i), (ii), (iii) and (iv). We set π = 1. Also,
the covariance matrix Σ of (εt) in (23) is specified as

Σ =
(

1 σ
σ 1

)
(25)
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where σ = −0.3, 0, 0.3. Similarly as before, we denote the models for each of these values
of σ by a, b and c. Taken (24) and (25) together, the DGP’s are signified as (kf) with k =
i, ii, iii and f = a, b, c.

We consider three different types of models: VAR(1), VAR(2) and VARMA(1,1). For
the VAR(1) model, we let C = D = 0 with other parameters given as above. The coefficient
matrix C in the VAR(2) model is set

C =
(
−0.4 0

0 0.2

)
with D = 0. The VARMA(1,1) model is specified by C = 0 and

D =
(

1 0.2
−0.4 1

)
The parameters C and D in the VAR(2) and VARMA(1,1) models are chosen in such ways
that the theoretical asymptotic variances of the estimators in these models are largely the
same as those in the VAR(1) model.

As shown in earlier sections, the CCR and ML estimators are asymptotically equivalent,
and have the same limiting distribution. Let (wt) be defined by wt = (ut,4xt)′, where
ut = yt−πxt, as in (4), and write the longrun variance Ω of (wt) as Ω = (ωij) for i, j = 1, 2.
If we denote by π̄ the CCR or ML estimator of the cointegrating coefficient π, then we may
readily deduce from Theorem 3.2 that

n (π̄ − π)→d MN

(
0, ω2

∗

(∫ 1

0
W (s)2ds

)−1
)

where

ω2
∗ =

1
ω22

(
ω11 −

ω2
12

ω22

)
=

ω11

ω22
− ω2

12

ω2
22

(26)

and W is the standard Brownian motion. The asymptotic variance of π̄ is therefore given
by

1
n2

ω2
∗ E
(∫ 1

0
W (s)2ds

)−1

(27)

with ω2
∗ defined in (26).

The longrun variance Ω of (wt) can be easily obtained from (6) for our models given by
(22) and (23). Using the notations Ia, Aa and H introduced in (6), we may write

wt = T1wt−1 + T2wt−2 + vt

where T1 = Ia−HAa +HCH−1, T2 = −HCH−1Ia and vt = H(εt +Dεt−1). Therefore, we
may easily deduce that

Ω = (I − T1 − T2)−1H(I + D)Σ(I + D)′H ′(I − T1 − T2)−1′
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Moreover, we found through simulation that

E
(∫ 1

0
W (s)2ds

)−1

≈ 5.58

The asymptotic variance of π̄ can now be computed from (27) for each of the DGP’s
considered in our simulations.

The design of our simulations and the choice of estimators are made to serve several
purposes. The main objective of our simulation study is to assess the finite sample perfor-
mance of the ML estimator with an emphasis on its tail behavior, when the sample size
is relatively small. Especially, we like to evaluate the finite sample behavior of the ML
estimator in comparisons with the finite-step iterative estimators and to the nonparametric
CCR estimator. This is done for the misspecified or overparametrized models, as well as
the correctly specified models, to investigate the effects of various types of misspecifica-
tion and overparametrization. The finite-step iterative estimators use the information on
the shortrun dynamics, while the nonparametric CCR estimator does not. Therefore, we
may also see how important it is to use the shortrun information for the estimation of the
longrun cointegrated model. However, since the relative finite sample performances of the
ML estimator and other nonparametric estimators are well known due to many previous
simulation studies, we will make very brief the discussions on these issues. The reader is
referred to Cappuccio and Lubian (2001) for a recent study and to Maddala and Kim (1998)
for a survey.

Our simulation results are summarized in Tables 1 and 2. Each of Tables 1 and 2 has
three panels, A,B and C, respectively for the results of the DGP’s given by the VAR(1),
VAR(2) and VARMA(1,1) models. All our simulations are based on the samples of size
100 for the 10,000 times of iterations. The iterative ML procedures are investigated for
various combinations of the maximum number k of iteration and the order p of the fitted
VAR model. In the tables, the k-step iterative estimator based on the VAR(p) model is
denoted by MLk

p. The CCR estimator is implemented with the longrun variance estimated
nonparametrically using the Parzen kernel and the automatic bandwidth selection rule given
by Andrews (1991). It is signified by CCR in the tables. In addition to those reported in
Tables 1 and 2, we also consider other sets of models, such as the models with fitted intercept
and time trend, with different parameter values and varying sizes of samples. Though we
do not report the details to save the space, we will make comments on them whenever they
are relevant in the discussions below.

Table 1 reports the bias and mean squared error (MSE) with asymptotic variance.
First, it is clearly seen in our simulation results that the use of the information on shortrun
dynamics, if available, is extremely important. The k-step iterative estimator with k = 1
or 2 outperforms the nonparametric CCR estimator in a majority of cases that we consider
in our simulations. In particular, the iterative estimators yield significantly smaller biases
in almost all cases. The comparison is also much favorable for the iterative estimators in
terms of MSE in predominantly many cases. This is largely so, even when the model is
misspecified or overparametrized. Across all the DGP’s given by VAR(1), VAR(2) and
VARMA(1,1) that we consider here, the finite-step iterative estimators generally do better,
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both in terms bias and MSE, than the nonparametric CCR estimator, regardless of the order
of the fitted VAR model on which the ML procedure is based. The relative superiority of the
finite-step iterative estimators, however, is somewhat smaller in magnitude, if it is based on
the misspecified or overparametrized VAR models. In general, misspecification has a more
significant adverse effect on the bias, while overparametrization is more detrimental to the
MSE.

The finite sample performance of the ML estimator, i.e., the infinite-step iterative es-
timator, is already well known, and our results here are consistent with many previous
studies. It usually performs well, but does yield the extreme outliers. See, e.g., the recent
simulation study by Cappuccio and Lubian (2001) and the references cited there for similar
results. The outlier occurs infrequently, but if it does it takes rather extreme values. The
extreme outliers do appear in many cases we consider, and because of this the ML estimator
is noticeably outperformed by the nonparametric CCR estimator, as well as the finite-step
iterative estimators, both in terms of bias and MSE. The occurrence of the extreme out-
liers is a finite sample phenominon. It disappears rapidly as the sample size increases. We
can hardly observe any extreme outlier in any of the DGP’s used in our simulations, if
the sample size gets as large as 300. Given the sample size, the occurrence of the outlier
becomes more frequent, if we include the constant or time trend term in the models, and if
the dimension of the model gets large.

To further investigate the tail behaviors of the estimators that we consider in the sim-
ulations, we look at the ranges of the estimates and the frequences of outlier occurrences.
They are reported in Table 2 for the same DGP’s used for the results in Table 1. In almost
every case we examine, the ML estimate has wider range than the finite-step iterative esti-
mates. In general, the range becomes wider as the order of the fitted VAR model increases.
In many cases, the ML estimator based on the fourth order VAR model has the ranges that
are unacceptably large. It seems clear that the ML estimate yields the extreme outliers
much more often than the finite-step iterative estimates. The same conclusion is reached
when we count the number of outlier occurrences. The reported results are the counted
numbers of observations out of 10,000 simulation iterations, which fall outside the confi-
dence bands defined by the twenty and thirty times of the asymptotic standard error. As
expected, the nonparametric CCR estimator seems most robust and does not yield any ex-
treme outliers. The finite-step iterative estimators also rarely generate the extreme outliers.
In sharp contrast, the ML estimator does yield the extreme outliers. Though generally not
frequent, the extreme outliers consistently appear in our simulations. The appearance of
the extreme outliers becomes more frequent as the order of the fitted VAR increases.

To show the empirical relevancy of our simulation results, we analyze the simple cointe-
grating relationship between the SP500 index and index futures. Of course, the presumed
value of the coefficient in the index/index futures cointegrating regression is unity. In Table
3, we present the estimated cointegrating coefficients in the regression of the SP500 index
against the index futures. Here the running estimates are obtained from the eleven sets of
samples for the 101 business days using the data set that spans the period from October
13, 1998 to March 23, 1999. It is clearly seen that an extreme outlier occurs for the ML
estimator based on the samples for the period 10/20/1998 - 03/16/1999. The estimated
coefficient in this case is unacceptably large, with the error that appears to be even larger
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than 10,000 times the standard error. In all the other cases, the estimated coefficients are
very close to unity. In particular, the finite-step iterative estimates seem to outperform the
ML and CCR estimates. In this illustrative example, the 1- or 2-step iterative estimator
yields the coefficients that are somewhat closer to the true value, compared with the other
two estimates. The 2-step iterative estimator does not appear to do any better than the
1-step iterative estimator.

6. Concluding Remarks

This paper introduces an iterative method to estimate the cointegrating vectors in error
correction models. The method provides a class of estimators for the cointegrating vectors
that are asymptotically equivalent to the ML estimator, which we call the k-step iterative
estimators. The ML estimator itself also belongs to this class and amounts to the infinite-
step iterative estimator. The k-step iterative estimator performs very well in finite samples.
It is as efficient as the ML estimator, yet it is quite robust and does not yield outliers. The
ML estimator, on the other hand, often yields extreme outliers, especially when the sample
size is small and a higher order ECM is used to fit the data. The k-step iterative estimator
can be used jointly with the ML estimator. Whenever the ML procedure produces outliers,
it diverges far away from the k-step estimate. Therefore, we may tell whether or not the
observed ML estimate is an outlier by comparing the ML estimate with the k-step iterative
estimator. We may also propose an estimator, which combines the ML estimate and the
k-step iterative estimate.

We also make it clear how the ML estimator is related to the existing nonparametric
methods. It is shown, in particular, that the ML estimator can be regarded as a para-
metric CCR estimator by Park (1992) or fully modified OLS estimator by Phillips and
Hansen (1990), which utilizes the information on shortrun dynamic structure of the model
in correcting for endogeneity. The asymptotic equivalence of the ML estimation and other
existing efficient nonparametric methods can be more clearly seen in our approach. The
k-step iterative estimator, like the ML estimator, uses the specific shortrun dynamics im-
plied by ECM. Our simulation shows that using the explicit shortrun dynamics is quite
important in small samples, if the true data generating mechanism is given by ECM. In
this case, the k-step iterative estimators perform better, unambiguously and ubiquitously,
in finite samples than the nonparametric estimators. This is true for many different data
generating processes.

Appendix: Mathematical Proofs

Proof of Lemma 3.1 . Partition the matrix lag polynomial C(z) in (5) as

C(z) = (Ca(z), Cb(z))

conformably with the partition of (zt) in (2), and define

F (z) = Ca(z)Π′ + Cb(z)
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where Π is the RF parameter in (1). We have, after some trivial algebra,

εt = (A,F (L))wt + (Ca(L)−A)4ut (A1)

where (εt) is the ECM error in (5) and (wt) is defined in (4).
Comparing the longrun variances of the two sides of (A1), we may easily deduce that

Σ = GΩG′

where Ω and Σ are given respectively in (8) and (9), and

G = (A,F (1)) (A2)

Therefore, we have
A′Σ−1A = A′G′−1Ω−1G−1A (A3)

It is, however, obvious from (A2) that

G−1A = I1

where I1 = (I`×`, 0). The result stated in Lemma 1 follows directly from (A3). Notice that

Ω11·2 = (I ′1Ω
−1I1)−1

as is well known.

Proof of Theorem 3.2 The result for Π̃ is given in Park (1992). The limiting distribution
of Π̂ may be easily found following Johansen (1987). Since, however, his result is not directly
comparable to ours, we will briefly sketch the proof for our result. In what follows, the
consistency of the ML estimate is assumed. We let B̂ = (I,−Π̂′)′ and B = (I,−Π′)′.

Let Saa, Sab and Sbb be defined similarly as in Johansen (1987), with the convention that
our subscripts a and b correspond to his 0 and k, respectively. The ML estimate B̂ satisfies
the equation

SbbB̂T̂ = SbaS
−1
aa SabB̂ (A4)

where T̂ is an `× ` invertible matrix. It follows directly from ECM (5) that

Sab = −AB′Sbb +
1
n

n∑
t=1

εtz
′
t−1 + op(1) (A5)

Also, if we define Σaa,ΣabB and B′ΣbbB to be the probability limits of Saa, SabB and
B′SbbB, respectively, we have

Σaa = A(B′ΣbbB)A′ + Σ (A6)
ΣabB = −A(B′ΣbbB) (A7)

where Σ is defined in (9).
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Let T be the probability limit of T̂ , which is given by

T = −A′Σ−1
aa ΣabB (A8)

as can be easily deduced from (A4) and (A7). We now have from (A4) – (A8) that

Sbb(B̂ −B) = SbaS
−1
aa SabB̂T̂−1 − SbbB

=

(
−SbbBA′ +

1
n

n∑
t=1

zt−1ε
′
t

)
Σ−1

aa ΣabBT−1 − SbbB + op(1)

=

(
1
n

n∑
t=1

zt−1ε
′
t

)
Σ−1

aa ΣabBT−1 + op(1)

=

(
1
n

n∑
t=1

zt−1ε
′
t

)
Σ−1A(A′Σ−1A)−1 + op(1)

Notice from (A7) and (A8) that

ΣabBT−1 = ΣabB(A′Σ−1
aa ΣabB)−1

= A(A′Σ−1
aa A)−1

Also,
(A′Σ−1

aa A)−1A′Σ−1
aa = (A′Σ−1A)−1A′Σ−1

since, from (A6),
R(ΣaaR(A)⊥) = R(ΣR(A)⊥)

i.e., the equivalence of the subspaces that are Σ - and Σaa - conjugate to R(A). The stated
result directly follows from premultiplying the above equation by I2 = (0, Im×m).

Proof of Theorem 3.3 For the CCR estimator δ̃, we first observe that:

1. (z∗it) and (u∗t ) are asymptotically uncorrelated, i.e.,

lim
n→∞

1
n

n∑
t=1

E (z∗itu
∗′
t ) = 0

for all i = 1, . . . , `, and

2. (4z∗it) and (u∗t ) have zero longrun convariance.

The above two conditions are clearly satisfied by construction. Now it suffices to show that
Q is invertible a.s., due to the result in Park and Phillips (1988) for the regression with
strictly exogenous regressors and that for the CCR in Park (1992).
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Proof of Theorem 4.1 . Define Jc to be a s×m matrix such that J ′cA = 0. Note that
Jc is Σ-conjugate to J , i.e.,

J ′cΣJ = 0 (A9)

where J is the matrix introduced in (15). We write ECM (5) as two subsystems as

J ′C(L)4zt = −B′zt−1 + J ′εt

J ′cC(L)4zt = J ′cεt

Due to the Σ-conjugacy of J and Jc in (A9), J ′εt and J ′cεt are uncorrelated. Therefore,
under normality, the errors in the two subsystems are independent. Moreover, the second
subsystem does not include B. It is therefore clear that maximizing likelihood of the entire
system with respect to B is identical to that of the first subsystem. When A,C(z) and Σ
are known, however, the maximization of the likelihood of the first subsystem with respect
to B is given by GLS on the regression presented in the theorem. The proof is therefore
complete.

Proof of Proposition 4.2 Note that

ū∗t = J̄ ′εt+1 +
(
J̄ ′C̄(L)− J ′C(L)

)
4zt+1 −

(
J̄ ′ − J ′

)
εt+1

where we have
J̄ ′ − J ′, J̄ ′C̄(L)− J ′C(L) = op(1)

However,
1
n

n∑
t=1

zt4z′t+1,
1
n

n∑
t=1

ztε
′
t+1 = Op(1)

as shown in, e.g., Park and Phillips (1988), and we therefore have

1
n

n∑
t=1

ztū
∗
t =

1
n

n∑
t=1

ztu
∗
t + op(1)

The rest of the proof is trivial and omitted.
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Table 1A: Finite Sample Bias, MSE and Asymptotic Variance

DGP: VAR(1)

Bias

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) .0493 .0086 .0028 –.0001 .0133 .0047 –.0002 .0223 .0096 –.0011
(iia) .0543 .0122 .0009 –.0074 .0188 .0042 –.0044 .0306 .0113 –.0083
(iiia) .0273 .0056 .0006 –.0016 .0104 .0023 –.0018 .0189 .0065 –.0021
(iva) .0184 .0034 .0004 –.0007 .0075 .0018 –.0006 .0154 .0055 –.0009

(ib) .0382 .0093 .0039 –.0041 .0125 .0052 –.0034 .0190 .0090 –.0080
(iib) .0277 .0064 .0000 –.0036 .0100 .0016 –.0043 .0161 .0050 –.0073
(iiib) .0159 .0036 .0002 –.0010 .0064 .0012 –.0011 .0114 .0036 –.0015
(ivb) .0117 .0023 .0002 –.0004 .0049 .0010 –.0004 .0095 .0030 –.0006

(ic) .0272 .0074 .0026 –.0036 .0096 .0036 .0019 .0139 .0062 –.0057
(iic) .0140 .0035 .0000 –.0016 .0053 .0008 –.0015 .0083 .0022 –.0021
(iiic) .0088 .0021 .0000 –.0006 .0037 .0006 –.0006 .0064 .0018 –.0011
(ivc) .0070 .0015 .0001 –.0002 .0030 .0006 –.0001 .0055 .0016 –.0003

MSE

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4 Avar

(ia) .0146 .0080 .0078 .0085 .0090 .0087 .0097 .0107 .0099 .0193 .0127
(iia) .0232 .0155 .0149 .0205 .0170 .0159 .1343 .0207 .0187 .0355 .0259
(iiia) .0076 .0043 .0041 .0043 .0051 .0044 .0047 .0071 .0054 .0059 .0079
(iva) .0034 .0017 .0016 .0016 .0022 .0017 .0017 .0038 .0025 .0021 .0030

(ib) .0119 .0086 .0089 .1707 .0094 .0097 .0827 .0109 .0112 .2982 .0140
(iib) .0101 .0080 .0079 .0091 .0086 .0084 .0110 .0100 .0097 .1224 .0140
(iiib) .0038 .0027 .0026 .0027 .0031 .0028 .0029 .0039 .0033 .0038 .0050
(ivb) .0018 .0012 .0011 .0012 .0014 .0012 .0012 .0021 .0015 .0015 .0022

(ic) .0086 .0076 .0081 .0939 .0081 .0088 .1253 .0089 .0097 .2211 .0127
(iic) .0045 .0041 .0042 .0046 .0044 .0045 .0053 .0048 .0050 .0083 .0075
(iiic) .0019 .0015 .0015 .0016 .0017 .0016 .0017 .0020 .0019 .0023 .0030
(ivc) .0010 .0008 .0007 .0008 .0008 .0008 .0008 .0011 .0009 .0009 .0015

Note: CCR denotes the CCR estimator, and MLk
p and MLp signify respectively the k-step iterative

estimator and the ML estimator based on VAR(p). Asymptotic variance is abbreviated by Avar.



24

Table 1B: Finite Sample Bias, MSE and Asymptotic Variance

DGP: VAR(2)

Bias

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) .0645 .0481 .0451 .0442 .0129 .0054 –.0003 .0246 .0117 –.0297
(iia) .0885 .0759 .0671 .0633 .0255 .0077 –.0137 .0424 .0182 .0327
(iiia) .0527 .0436 .0380 .0361 .0139 .0038 –.0034 .0279 .0107 –.0041
(iva) .0407 .0282 .0242 .0229 .0093 .0026 –.0013 .0236 .0092 –.0018

(ib) .0554 .0472 .0446 .0437 .0135 .0061 .0074 .0228 .0113 –.0037
(iib) .0535 .0539 .0487 .0469 .0150 .0035 –.0076 .0252 .0095 –.0079
(iiib) .0355 .0346 .0308 .0298 .0097 .0023 –.0022 .0189 .0068 –.0029
(ivb) .0300 .0239 .0209 .0202 .0070 .0016 –.0009 .0162 .0057 –.0012

(ic) .0472 .0465 .0443 .0424 .0123 .0051 –.0096 .0195 .0090 –.0041
(iic) .0342 .0415 .0386 .0377 .0093 .0020 –.0018 .0157 .0052 –.0047
(iiic) .0246 .0285 .0261 .0255 .0065 .0013 –.0014 .0126 .0042 –.0021
(ivc) .0228 .0208 .0188 .0183 .0050 .0011 –.0005 .0109 .0036 –.0007

MSE

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4 Avar

(ia) .0157 .0104 .0095 .0093 .0066 .0059 .0067 .0088 .0073 7.1417 .0081
(iia) .0341 .0282 .0248 .0236 .0212 .0189 .0424 .0269 .0227 25.2069 .0313
(iiia) .0146 .0112 .0095 .0089 .0075 .0062 .0069 .0114 .0080 .0086 .0114
(iva) .0081 .0050 .0041 .0038 .0034 .0026 .0026 .0070 .0042 .0036 .0047

(ib) .0128 .0104 .0099 .0099 .0069 .0067 .6713 .0087 .0080 .0745 .0089
(iib) .0159 .0151 .0137 .0132 .0108 .0100 .0188 .0133 .0118 .1817 .0169
(iiib) .0077 .0069 .0060 .0057 .0045 .0039 .0042 .0065 .0049 .0054 .0072
(ivb) .0047 .0034 .0029 .0027 .0023 .0019 .0019 .0040 .0026 .0024 .0035

(ic) .0099 .0095 .0092 .0165 .0060 .0060 .6663 .0070 .0066 .0199 .0081
(iic) .0075 .0083 .0077 .0075 .0054 .0053 .0220 .0064 .0059 .0148 .0091
(iiic) .0040 .0042 .0037 .0036 .0025 .0023 .0025 .0034 .0028 .0038 .0043
(ivc) .0027 .0023 .0020 .0019 .0014 .0012 .0012 .0021 .0015 .0015 .0023

Note: CCR denotes the CCR estimator, and MLk
p and MLp signify respectively the k-step iterative

estimator and the ML estimator based on VAR(p). Asymptotic variance is abbreviated by Avar.
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Table 1C: Finite Sample Bias, MSE and Asymptotic Variance

DGP: VARMA(1,1)

Bias

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) .0536 .0027 –.0024 –.0054 .0198 .0102 .0054 .0247 .0123 .0558
(iia) .0626 .0028 –.0100 –.0061 .0239 .0093 –.0051 .0348 .0162 .0541
(iiia) .0290 .0089 .0032 –.0005 .0103 .0028 –.0022 .0187 .0077 –.0005
(iva) .0157 .0063 .0035 .0024 .0063 .0015 –.0004 .0122 .0049 .0004

(ib) .0433 .0005 –.0045 –.0079 .0192 .0109 .0097 .0224 .0122 .0205
(iib) .0322 .0013 –.0062 –.0280 .0143 .0059 .0007 .0209 .0106 –.0026
(iiib) .0147 .0053 .0021 .0008 .0064 .0021 .0002 .0111 .0049 .0008
(ivb) .0086 .0042 .0024 .0019 .0041 .0012 .0002 .0077 .0034 .0009

(ic) .0318 –.0012 –.0054 –.0067 .0182 .0124 .0080 .0200 .0131 .0033
(iic) .0146 .0001 –.0036 –.0123 .0083 .0042 .0019 .0117 .0067 .0005
(iiic) .0073 .0030 .0013 .0037 .0042 .0019 .0010 .0068 .0036 .0017
(ivc) .0045 .0025 .0015 .0013 .0028 .0012 .0007 .0048 .0026 .0011

MSE

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4 Avar

(ia) .0143 .0066 .0067 .0085 .0081 .0077 .0303 .0096 .0088 31.0410 .0098
(iia) .0279 .0205 .0212 1.6220 .0187 .0183 .2054 .0220 .0212 42.7945 .0302
(iiia) .0100 .0064 .0064 .0094 .0066 .0061 .0141 .0081 .0070 .0091 .0104
(iva) .0037 .0023 .0023 .0025 .0026 .0023 .0023 .0034 .0027 .0028 .0039

(ib) .0131 .0088 .0090 .0103 .0101 .0103 .1618 .0110 .0113 3.0035 .0134
(iib) .0131 .0117 .0123 3.1828 .0106 .0108 .0162 .0122 .0124 .1385 .0170
(iiib) .0044 .0035 .0037 .0042 .0035 .0034 .0037 .0042 .0039 .0047 .0060
(ivb) .0019 .0015 .0015 .0016 .0016 .0015 .0015 .0019 .0017 .0019 .0026

(ic) .0111 .0099 .0110 .0836 .0109 .0119 .0308 .0120 .0135 .3783 .0156
(iic) .0061 .0062 .0067 .3597 .0057 .0058 .0068 .0064 .0069 .0210 .0093
(iiic) .0022 .0019 .0020 .0917 .0020 .0020 .0020 .0023 .0023 .0037 .0033
(ivc) .0010 .0009 .0009 .0009 .0009 .0009 .0009 .0010 .0010 .0013 .0015

Note: CCR denotes the CCR estimator, and MLk
p and MLp signify respectively the k-step iterative

estimator and the ML estimator based on VAR(p). Asymptotic variance is abbreviated by Avar.
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Table 2A: Range of Estimate and Frequency of Outlier Occurrence

DGP: VAR(1)

Range of Estimate

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) 1.7277 1.4814 1.4557 2.0295 1.6754 1.7889 2.4172 1.5831 1.8279 11.1170
(iia) 1.8565 1.9282 1.8618 6.1753 2.1994 2.4678 37.0216 2.5310 3.1106 11.8804
(iiia) 1.1879 0.9708 0.9787 1.2967 1.0695 1.0418 1.3556 1.3024 1.3811 2.5200
(iva) 0.9000 0.6837 0.6518 0.6905 0.7687 0.6400 0.8586 0.9507 0.9424 1.5629

(ib) 1.6350 1.7479 2.1922 42.0132 1.9364 2.2400 23.4079 2.3381 2.6375 53.3985
(iib) 1.5744 1.8565 2.0718 3.4341 1.5209 1.7120 4.0655 1.7082 1.9290 40.9779
(iiib) 0.8801 0.8281 0.8116 0.8448 0.9387 0.9566 1.0497 1.1491 1.2529 2.1574
(ivb) 0.6109 0.5426 0.5335 0.5435 0.5850 0.5181 0.7107 0.6870 0.7335 1.1426

(ic) 1.1457 1.5232 1.7828 30.3453 1.5395 1.9530 35.2815 1.5033 1.6506 49.4316
(iic) 1.0315 1.1679 1.2773 1.7933 1.1521 1.3587 2.7724 1.1339 1.3077 5.2906
(iiic) 0.6634 0.5804 0.6547 0.8071 0.6106 0.5876 0.8445 0.6356 0.7018 1.6314
(ivc) 0.4130 0.4172 0.4237 0.4270 0.4119 0.4471 0.4827 0.4982 0.5396 0.6326

Frequency of Outlier Occurrence

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 2, 2
(iia) 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 3, 1 0, 0 0, 0 2, 2
(iiia) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(iva) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0

(ib) 0, 0 0, 0 0, 0 4, 3 0, 0 0, 0 2, 2 0, 0 0, 0 9, 5
(iib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0 0, 0 0, 0 5, 3
(iiib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(ivb) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

(ic) 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 1, 1 0, 0 0, 0 10, 8
(iic) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 2, 1
(iiic) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(ivc) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Note: CCR denotes the CCR estimator, and MLk
p and MLp signify respectively the k-step iterative

estimator and the ML estimator based on VAR(p). In the first panel, the ranges of the estimates are
obtained simply by subtracting the minimum from the maximum estimates. In the second panel, the
pairs of numbers are the counts of the estimates that fall outside the confidence intervals given by twenty
and thirty times of the standard errors.
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Table 2B: Range of Estimate and Frequency of Outlier Occurrence

DGP: VAR(2)

Range of Estimate

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) 1.3594 1.2095 1.2036 1.2504 1.4315 1.4406 1.7101 1.6474 1.9283 270.9605
(iia) 1.8865 1.6788 1.6747 1.7912 2.5343 3.0937 12.8223 2.5296 3.1171 520.7314
(iiia) 1.1941 1.1553 1.1245 1.1288 1.2695 1.1793 1.7737 1.4140 1.5389 2.5670
(iva) 1.0010 0.9152 0.8561 0.8108 0.9689 0.7810 1.0311 1.2827 1.5239 2.5318

(ib) 1.3842 1.3309 1.5622 2.0529 1.5510 1.8141 89.1504 1.9513 2.3165 27.7724
(iib) 1.4911 1.5389 1.6137 1.7595 1.6808 1.6505 7.4601 1.7635 1.8627 50.6010
(iiib) 1.0402 0.9807 0.9503 0.9480 1.1691 1.0687 1.2259 1.3679 1.4291 2.1656
(ivb) 0.7428 0.7346 0.6797 0.6430 0.7512 0.6365 0.8713 0.8924 0.8890 1.5321

(ic) 1.1772 1.1035 1.3112 9.5302 1.4467 1.4754 81.7136 1.2957 1.4537 9.0034
(iic) 1.0083 1.0321 1.0829 1.2699 1.2051 1.2636 14.1876 1.2022 1.3847 7.7970
(iiic) 0.8046 0.8302 0.7952 0.7637 0.7764 0.7038 1.2543 0.9046 0.9788 3.0189
(ivc) 0.5185 0.5077 0.4791 0.4723 0.5308 0.5244 0.5952 0.6382 0.6529 0.8154

Frequency of Outlier Occurrence

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 3, 3
(iia) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 4, 2 0, 0 0, 0 7, 4
(iiia) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(iva) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 1

(ib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 5, 3 0, 0 0, 0 9, 7
(iib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 3, 1 0, 0 0, 0 8, 5
(iiib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(ivb) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0

(ic) 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 1, 1 0, 0 0, 0 6, 4
(iic) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 4, 3
(iiic) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0
(ivc) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Note: CCR denotes the CCR estimator, and MLk
p and MLp signify respectively the k-step iterative

estimator and the ML estimator based on VAR(p). In the first panel, the ranges of the estimates are
obtained simply by subtracting the minimum from the maximum estimates. In the second panel, the
pairs of numbers are the counts of the estimates that fall outside the confidence intervals given by twenty
and thirty times of the standard errors.
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Table 2C: Range of Estimate and Frequency of Outlier Occurrence

DGP: VARMA(1,1)

Range of Estimate

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) 1.3455 1.5978 2.1731 3.6093 1.2926 1.9707 17.3348 1.5432 1.6432 586.5321
(iia) 1.9387 2.2690 2.2648 119.9999 2.2476 2.4504 51.2471 2.6155 3.4402 712.2868
(iiia) 1.4547 1.4677 1.4192 5.4320 1.5041 1.5201 9.2573 1.5353 1.7292 3.7831
(iva) 0.9188 0.7523 0.7520 0.8055 0.8947 0.8653 0.9665 1.1351 1.2003 1.4154

(ib) 1.7109 1.8612 1.8655 2.2744 1.6469 1.7915 38.5454 1.5508 1.8209 180.1772
(iib) 1.4765 1.6751 1.7678 202.1409 1.6280 1.9100 7.8114 2.0613 2.4116 34.2359
(iiib) 0.9580 1.0215 1.1561 1.5916 1.0138 1.1137 1.5689 1.0345 1.0524 1.9694
(ivb) 0.7340 0.5528 0.5840 0.6970 0.6165 0.6093 0.6587 0.7824 0.8437 1.8622

(ic) 1.7545 1.7947 2.1650 29.8126 1.9168 2.1703 12.2952 1.9938 2.5088 71.8730
(iic) 1.2635 1.5388 1.6198 61.8021 1.3542 1.4390 2.4819 1.4819 1.7355 9.1092
(iiic) 0.8032 0.7075 0.7553 30.3574 0.7314 0.8426 0.9284 0.9627 1.0209 4.3405
(ivc) 0.4872 0.4351 0.4715 0.4991 0.4401 0.4856 0.6687 0.4821 0.5241 1.2119

Frequency of Outlier Occurrence

DGP CCR ML1
1 ML2

1 ML1 ML1
2 ML2

2 ML2 ML1
4 ML2

4 ML4

(ia) 0, 0 0, 0 0, 0 2, 1 0, 0 0, 0 2, 2 0, 0 0, 0 8, 5
(iia) 0, 0 0, 0 0, 0 10, 9 0, 0 0, 0 6, 5 0, 0 0, 0 11, 8
(iiia) 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 1, 1 0, 0 0, 0 0, 0
(iva) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

(ib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 4, 3 0, 0 0, 0 10, 6
(iib) 0, 0 0, 0 0, 0 4, 4 0, 0 0, 0 1, 1 0, 0 0, 0 7, 4
(iiib) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(ivb) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0

(ic) 0, 0 0, 0 0, 0 6, 3 0, 0 0, 0 7, 4 0, 0 0, 0 17, 12
(iic) 0, 0 0, 0 0, 0 4, 1 0, 0 0, 0 0, 0 0, 0 0, 0 7, 3
(iiic) 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 0, 0 0, 0 0, 0 1, 1
(ivc) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 3, 0 3, 0 2, 0

Note: CCR denotes the CCR estimator, and MLk
p and MLp signify respectively the k-step iterative

estimator and the ML estimator based on VAR(p). In the first panel, the ranges of the estimates are
obtained simply by subtracting the minimum from the maximum estimates. In the second panel, the
pairs of numbers are the counts of the estimates that fall outside the confidence intervals given by twenty
and thirty times of the standard errors.



29

Table 3: Running Estimates for SP500 Index/Index Futures Cointegrating Coefficient

Size: 101, Period: 10/13/1998 - 03/23/1999

From To CCR ML1
9 ML2

9 ML9

10/13/1998 03/09/1999 .9961 .9967 .9978 1.0014
(.0007) (.0020) (.0018) (.0023)

10/14/1998 03/10/1999 .9961 .9965 .9976 1.0025
(.0007) (.0020) (.0019) (.0027)

10/15/1998 03/11/1999 .9960 .9961 .9966 1.0058
(.0007) (.0020) (.0019) (.0039)

10/16/1998 03/12/1999 .9961 .9960 .9968 1.0134
(.0007) (.0024) (.0024) (.0069)

10/19/1998 03/15/1999 .9962 .9957 .9954 1.0376
(.0007) (.0022) (.0021) (.0171)

10/20/1998 03/16/1999 .9963 .9958 .9954 37.6418
(.0007) (.0021) (.0020)(15.4529)

10/21/1998 03/17/1999 .9964 .9960 .9959 1.1477
(.0007) (.0021) (.0021) (.0644)

10/22/1998 03/18/1999 .9962 .9958 .9954 .9795
(.0007) (.0018) (.0018) (.0070)

10/23/1998 03/19/1999 .9962 .9957 .9953 .9850
(.0007) (.0018) (.0017) (.0050)

10/26/1998 03/22/1999 .9960 .9950 .9943 .9915
(.0008) (.0015) (.0014) (.0022)

10/27/1998 03/23/1999 .9957 .9950 .9945 .9933
(.0008) (.0014) (.0013) (.0017)

Note: CCR denotes the CCR estimator, and MLk
9 and ML9 signify respectively the k-step iterative

estimator and the ML estimator based on VAR(9). The presented estimates are obtained in the coin-
tegrating regression of the SP500 index against the index futures using eleven sets of samples, each of
which consists of the data for the 101 consecutive business days. The estimated standard errors are given
in parenthesis.


