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Abstract

In this paper, we consider nonlinear transformations of random walks driven
by thick-tailed innovations with infinite means or variances. In particular, we
show how nonlinearity, nonstationarity, and thick tails interact to generate per-
sistency in memory, and we clearly demonstrate that this triad may generate
a broad spectrum of persistency patterns. Time series generated by nonlinear
transformations of random walks with thick-tailed innovations have asymptotic
autocorrelations that decay very slowly as the number of lags increases or do not
even decay at all and remain constant at all lags. Depending upon the type of
transformation considered and how the model error is specified, they are given
by random constants, deterministic functions which decay slowly at polynomial
rates, or mixtures of the two. These autocorrelation patterns, along with other
sample characteristics of the transformed time series, suggest the possibility that
these three ingredients are involved in the data generating processes for many
actual economic and financial time series data. We also discuss nonlinear regres-
sion asymptotics when the regressor is observable and an alternative regression
technique when it is unobservable. We use our model to analyze two empiri-
cal applications: exchange rates governed by a target zone and electricity price
spikes driven by capacity shortfalls.
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1. Introduction

In this paper, we consider nonlinear transformations of random walks driven by thick-tailed
innovations with infinite variances and possibly infinite means. We show that this spec-
ification generates a wide spectrum of patterns of persistency in memory. The triad of
nonstationarity, nonlinearity, and thick tails generates time series with asymptotic autocor-
relations that decay very slowly as the number of lags increases or do not even decay at
all and remain constant at all lags. Depending upon the type of transformation considered
and how the model error is specified, they are given by random constants, deterministic
functions which decay slowly at polynomial rates, or mixtures of the two. This combination
therefore holds the potential to generate the persistent memory patterns that are present
in many economic and financial time series data. It may also generate several other promi-
nent properties of many observed time series, such as jumps in the sample paths, excessive
volatility and skewness, and leptokurtosis.

The theory underlying our model depends crucially on the type of transformation func-
tions involved. We therefore consider separately two types of functions for the underly-
ing transformations: integrable and asymptotically homogeneous functions. These are the
classes of functions introduced by Park and Phillips (1999, 2001) in their studies on nonlin-
ear transformations of integrated time series. Our models with integrable transformations
are referred to as ITS models, where ITS denotes “integrable transformation of a stable
process”. On the other hand, we refer to those belonging to the class of models employ-
ing asymptotically homogeneous transformations as AHTS models, where AHTS signifies
“asymptotically homogeneous transformation of a stable process”. These models yield very
different time series characteristics, in terms of the asymptotics of the sample moments and
differing rates of convergence of the parameters estimates from regression.

We establish various time series properties for ITS and AHTS models. ITS models yield
time series that have characteristics similar to those of stationary long-memory processes.
More precisely, the transformed processes have asymptotic autocorrelations decaying at a
polynomial rate with the exact rate depending upon the thickness of the tails of the inno-
vations driving the underlying random walks. We find that they generate autocorrelation
patterns consistent with fractionally integrated I(d) processes with memory parameter d
between 0 < d ≤ 1/4. When model error is present, it is also possible to get autocor-
relations that have these patterns with additional Gaussian noise or that are determined
by pure Gaussian noise at all lags. In contrast, AHTS models generate time series that
have asymptotic autocorrelation functions that are constant and do not decay at all. The
asymptotic autocorrelations of non-constant asymptotically homogeneous transformations
of random walks are unity at all lags, just like those of untransformed random walks.

We study other time series properties of these models, as well. In particular, we derive
asymptotics for the sample variance, skewness, and kurtosis. Calculating such statistics for a
time series implicitly assumes that the series is stationary, because these statistics are meant
to characterize the underlying distribution. These are spurious statistics when applied
to a nonstationary time series, but they still carry meaningful information that allows
one to distinguish between a stationary series and one that may have a data generating
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process described by our model. In terms of sample moments, an ITS process behaves
like a stationary time series if observed with error. If observed without error, however, it
has vanishing sample variance but diverging sample skewness and kurtosis. The sample
moments of an AHTS process do not depend upon whether or not it is observed with error.
In both cases, the sample variance diverges, and the sample skewness and kurtosis are
random in the limit.

The explanatory variable in our models may or may not be observed. If it is observable,
then the transformation function may be properly specified and can be consistently esti-
mated by the usual nonlinear least squares method. Here we extend the theories developed
by Park and Phillips (2001) for nonlinear regressions with integrated processes to our mod-
els driven by thick-tailed random walks. We find that all of the results in Park and Phillips
(2001) apply to our models, with different rates of convergence. If, on the other hand,
the explanatory variable is not observable, we suggest that it may be estimated together
with the transformation function using the extended Kalman filter. Although we do not
develop a rigorous theory to justify this approach, the method seems to work reasonably
well in extracting the unobserved explanatory variable and estimating the transformation
function. We evaluate the performance of the extended Kalman filter by simulations.

As illustrative examples of empirical applications of our models, we consider two models:
exchange rates governed by a target zone and electricity price spikes driven by capacity
shortfalls. The target zone exchange rate model is an example of an AHTS model with
an unobserved explanatory variable. For the actual application, we analyze DEM/FRF
exchange rates and extract what is believed to be the fundamental driving the exchange
rate. The model for electricity prices is an example of an ITS model with capacity utilization
as the observed explanatory variable. Price is specified as an integrable function of a measure
of excess capacity, and the model is estimated by standard nonlinear least squares. The
fitted model appears to be quite reasonable and it generates time series patterns similar to
those of the observed prices.

The remainder of the paper is structured as follows. Section 2 describes the general
model. We formalize the concept of thick tails by introducing the class of α-stable distribu-
tions, which may have undefined moments. Section 3 defines the transformations we employ
in our analysis and derives sample statistics for series generated by ITS and AHTS mod-
els. Section 4 discusses regression using ITS and AHTS models. Regression asymptotics
are presented for the case in which (xt) are observable, and we discuss using the extended
Kalman filter to estimate the model parameters when (xt) are not observable. Section 5
presents the two empirical applications, with results from Monte Carlo simulations for the
specific functional forms employed there, as well as empirical findings based on our model.
Section 6 concludes. Appendix A contains useful lemmas and their proofs, and Appendix
B contains proofs of the main results of our theoretical analysis.
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2. The Model and Preliminaries

Let (xt) be a time series generated as

xt = xt−1 + vt, (1)

where (vt) is a sequence of random variables, the densities of which have thick tails, as will
be specified in more detail below. We consider the time series (yt), the conditional mean of
which is defined as a nonlinear transformation of (xt) with the transformation function F
on R. More specifically, we let

yt = F (xt) + εt, (2)

where the series (εt) is assumed to be a martingale difference sequence (an MDS) with
respect to a filtration (Ft) to which (xt+1) are adapted, and E |εt|p < ∞ for some p ≥ 6.
We further assume that (vt) and (εt) are independent, or equivalently that (xt) are strictly
exogenous. This assumption may be relaxed for many of our results, but it is especially
convenient when dealing with regression asymptotics.

Let σ2
ε = Eε2

t . We consider two plausible alternative modeling assumptions in this
analysis:

σ2
ε > 0 (3)

and
σ2

ε = 0. (4)

The former amounts to including modeling error. In this case, (yt) are observable only with
noise. In the latter case, (yt) are directly observable, and model error is omitted. In both
cases, we have

E [yt|Ft−1] = F (xt)

if E [yt|Ft−1] is well-defined. As we explain below, this is not well-defined if the tails of the
distribution of the innovations are too thick. Otherwise, the time series (yt) specified by this
model has the conditional mean given as a function of a random walk driven by innovations
having thick tails. Our model thus has three ingredients that are commonly observed in
many economic and financial time series: nonlinearity, nonstationarity, and thick tails.

We require some technical assumptions about (vt). Throughout the paper, we assume
that (vt) are iid and have regularly varying tail probabilities, i.e.,

P{|vt| > x} = x−α`(x) (5)

with α > 0 and ` a slowly varying function at infinity. Moreover, we let the tail balancing
condition hold, i.e.,

P{vt > x}
P{|vt| > x} → p,

P{vt < −x}
P{|vt| > x} → q (6)

as x → ∞, 0 ≤ p, q ≤ 1, and p + q = 1. The conditions in (5) and (6) are essential for our
subsequent theoretical developments. However, the iid assumption of (vt) can be relaxed at
the cost of more involved exposition, as explained below.
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As we show in what follows, the standardized sum of (vt) satisfying the conditions
introduced in (5) and (6) converges to what is known as a stable distribution. Formally, a
random variable v is said to have a stable distribution Sα(σ, β, µ), for 0 < α ≤ 2, σ ≥ 0,
−1 ≤ β ≤ 1, and µ real, if it has the characteristic function ϕ(s) given by

log ϕ(s) = iµs − σα|s|α (1 − iβ$(s, α)) ,

where

$(s, α) =

{
sgn(s) tan(πα/2), α 6= 1
−(2/π)sgn(s) log |s|, α = 1

and sgn(s) is the usual sign function taking values −1, 0, and 1 respectively for s < 0, s = 0,
and s > 0. See Samorodnitsky and Taqqu (1994, pg. 5) for the characteristic function of
the stable distribution given above.2 The parameters µ, σ and β are called the shift, scale,
and skewness parameters, respectively. The densities of stable distributions are not known
in closed form with a few exceptions, notably Gaussian (α = 2) and Cauchy (α = 1 and
β = 0). For 0 < α < 2, (vt) have infinite variance, and for 0 < α ≤ 1, they have an infinite
mean, as well.

Central Limit Theory

We now introduce the central limit theory for the sum of iid sequences with thick tails.
In particular, the required normalization and centering that play important roles in our
subsequent theory will be discussed in detail. We first assume 0 < α < 2. The case of α = 2
will be considered later. Define numerical sequences (an) and (bn) by

nP{|vt| > anx} → x−α

as n → ∞, and
bn = Evt1{|vt| ≤ an}.

Then it follows that

a−1
n

n∑

i=1

(vt − bn) →d Sα(σ, β, 0), (7)

where

σα =

{
Γ(1 − α) cos(πα/2), α 6= 1
π/2, α = 1

and β = 2p−1. This is well-known. See, e.g., Feller (1971, Theorem 3, pg. 580). According
to our definition of (an), we have C(2 − α)/α = 1 in his formula.3

It is well-known that we may set

an = n1/α`(n), (8)

2The characteristic function of stable distribution given in Borodin and Ibragimov (1995) is in error, and
has the term 1 + iβ$(s, α) instead of 1 − iβ$(s, α) as we have here.

3The sign ∓ in the formula is in error and should be corrected to ±.
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where ` is slowly varying at infinity. Moreover, we may let

bn =





0, 0 < α < 1
E
(
sin
(
a−1

n vt

))
, α = 1

E (vt) , 1 < α < 2
.

Note that if α = 1 and vt has a symmetric distribution, then bn = 0 for all n. If condition
(5) holds for large x > 0 with `(x) = c for some constant c > 0, then we have

an = c1/αn1/α (9)

as one may easily check.

If (7) holds with (8), then we say that the law of (vt) belongs to the domain of attraction

of a stable law. If (7) holds with (9), then it is said to belong to the domain of normal

attraction of a stable law. Any stable law itself belongs to the domain of normal attraction
of a stable law. If (vt) are iid Sα(σ, β, µ), then (5) indeed holds with `(x) = c, where c > 0
is given by

c =

{
σα/(Γ(1 − α) cos(πα/2)), α 6= 1
2σα/π, α = 1

.

See Brockwell and Davis (1987, pg. 480). Therefore, the conditions we introduced earlier
in (5) and (6) are necessary and sufficient in order that the underlying distribution of (vt)
belongs to the domain of attraction of a stable law.

Now we let α = 2. In this case, the limit theorem in (7) holds under somewhat weaker
conditions than those we require previously, with bn = E(vt) for all n. It is indeed shown in
Ibragimov and Linnik (1971, Theorem 2.6.2, pg. 79), e.g., that the condition in (5) alone
is sufficient to have (7) with (an) specified in (8). Moreover, it is also well-known that (7)
holds with (an) in (9) and with α = 2, if and only if (vt) have finite variance. See, e.g.,
Ibragimov and Linnik (1971, Theorem 2.6.6, pg. 92). Similarly as above, we say that the
law of (vt) belongs to the domain of attraction of a normal law if (7) holds with (8). If we
have (7) with (9), then the law of (vt) is said to belong to the domain of normal attraction
of a normal law.

From now on, we assume that (vt) are properly centered. For 1 < α ≤ 2, centering
simply requires demeaning or assuming zero mean. For α = 1, the proper centering can be
difficult and more involved unless we assume that the underlying distribution is symmetric.
No centering is necessary for the case of 0 < α < 1. The limiting distribution has the zero
shift parameter, i.e., µ = 0 if (vt) are centered. Furthermore, we let the adjustment for scales
be done apriorily so that the normalized sum of (vt) converges in distribution to a stable
distribution with unit scale parameter, i.e., σ = 1. The scale of the limit distribution only
has a trivial effect on our subsequent results, since the rescaling of (vt) amounts to merely
redefining the transformation function F by a constant multiplication of its argument.
The skewness parameter β is not restricted to zero, so we allow for an asymmetric limit
distribution for (vt). Finally, the normalizing sequence (an) will be assumed to be given by
(8) or (9), depending upon whether the distribution of (vt) belongs the domain of attraction
or of normal attraction of a stable law.
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Invariance Principle and Local Time

The central limit theorem in (7) is not sufficient to establish the limit theory for our
model. To effectively deal with the nonstationarity in our models, we need a functional
central limit theorem. Therefore, we construct a stochastic process Vn on [0, 1] by

Vn(r) = a−1
n

[nr]∑

t=1

vt,

where [x] denotes the largest integer which does not exceed x, and invoke the functional
central limit theorem as in e.g., Borodin and Ibragimov (1995, pg. 12, hereafter referred to
as BI), which yields

Vn →d V, (10)

where V is a standard α-stable Lévy motion on [0, 1]. That is, V0 = 0 a.s., V has independent
increments, and Vt − Vs has a Sα

(
(t − s)1/α, β, 0

)
distribution for any 0 ≤ s < t and for

some 0 < α ≤ 2 and −1 ≤ β ≤ 1, as introduced in Samorodnitsky and Taqqu (1994, pg.
113). The processes Vn and V take values in D[0, 1], the space of cadlag functions defined
on [0, 1], and in (10) we have weak convergence probability measures in D[0, 1].

The nonlinearity in our models requires some additional tools. In particular, it is nec-
essary to introduce the local time L of V . To do so, we first let the sojourn time of V in
the subset A of R up to time t > 0 be given by

m(t, A) = λ{s ∈ [0, t]|V (s) ∈ A},

where λ is the usual Lebesgue measure on R. Then the local time of L of V is defined by
the Radon-Nikodym derivative of the sojourn time m with respect to λ, i.e.,

L(t, x) =
dm

dλ
(t, x).

Roughly, the local time L characterizes the portion of time the process V spends at x up
to time t. As shown in BI (Theorem 4.1, pg. 18), standard Lévy motions have local times
that are continuous with respect to both parameters, if α > 1. For 0 < α ≤ 1, the local
time does not exist.

Serial Correlation in the Innovations

It is possible to consider a more general process (xt) driven by innovations that are
correlated. In particular, we may set xt = xt−1 + ut, where

ut =
∞∑

k=0

ckvt−k (11)

and
∞∑

k=0

|ck|δ < ∞ (12)
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for some δ ∈ (0, α) ∩ [0, 1]. Under the summability condition in (12), the process (ut) in
(11) is well defined a.s., and if the underlying distribution of (vt) belongs to the domain of
normal attraction and (5) holds with `(x) = c, then

xαP{|ut| > x} → c

(
∞∑

k=0

|ck|α
)

as x → ∞. Therefore, condition (5) holds also for (ut). Clearly, condition (6) can easily be
satisfied with p = q = 1/2 if we assume that the underlying distribution of (vt) is symmetric
(and so is that of (ut)). See for instance Brockwell and Davis (1987, Remarks 1 and 2, pg.
481).

All of our subsequent results hold, at least qualitatively, for (xt) generated by the more
general linear process (ut) introduced in (11). Some are applicable without any modification.
Others just need somewhat obvious modifications and some additional theoretical develop-
ments using the Beveridge-Nelson decomposition studied in Phillips and Solo (1992). This,
however, will not be done in the present analysis, since it would simply add to expositional
complexity without yielding any new features.

3. Time Series Properties of ITS and AHTS Models

In this section, we first introduce the function classes for the transformation F . We subse-
quently derive the asymptotics for some key sample statistics based on the time series (yt)
generated by ITS and AHTS models. These include the sample autocorrelation function,
the sample variance, the sample skewness, and the sample kurtosis. We present asymptotics
for ITS and AHTS models separately.

3.1. Classes of Transformation Functions

For the transformation function F in (2), we consider two classes of functions: integrable

and asymptotically homogeneous.

Definition 3.1 (Integrable Functions). A transformation F in the class of integrable
functions, satisfies

|F (x)| < c/(1 + |x|p)
for some constants c > 0 and p > 1.

Definition 3.2 (Asymptotically Homogeneous Functions). A transformation F in the
class of asymptotically homogeneous functions satisfies F (λx) = ν (λ)H (x) + R (x, λ) for
large λ, where H is locally integrable and R is such that

(a) |R (x, λ)| ≤ a (λ)P (x), where lim sup
λ→∞

a(λ)/ν(λ) = 0 and P is locally integrable, or

(b) |R (x, λ)| ≤ b (λ)Q (λx), where lim sup
λ→∞

b(λ)/ν(λ) < ∞ and Q is locally integrable
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and Q (x) → 0 as x → ∞.

The asymptotic order (AO) of an asymptotically homogeneous transformation is ν (λ), and
H (x) is the limit homogeneous function (LHF). Intuitively, an asymptotically homogeneous
transformation exhibits an asymptotically dominant component that is homogeneous. For
any asymptotically homogeneous function, we assume throughout this analysis that the
LHF is in fact homogeneous.4

Asymptotically homogeneous transformations are closely related to functions that are
regular at infinity.

Definition 3.3 (Regular-at-Infinity Functions). A transformation F in the class of regular-
at-infinity functions satisfies

lim
x→∞

F (x)

xκ`(x)
= c1 and lim

x→−∞

F (x)

|x|κ`(x)
= c2

for some number κ > −1, where c1 and c2 are constants such that |c1| + |c2| > 0, and ` is
slowly varying at infinity, in the sense that lim

λ→∞
`(λx)/`(λ) = 1 for any x > 0.

The concept of regularity at infinity defines a very broad class of transformations, which
includes asymptotically homogeneous transformations, as we show in the proof of the fol-
lowing lemma.

Lemma 3.1 Asymptotically homogeneous functions are regular at infinity.

This useful lemma allows us to tie in general results derived in the mathematics literature for
regular-at-infinity functions with the more specific functions discussed in Park and Phillips
(1999, 2001) and elsewhere in the econometrics literature. Note that the reverse of this
lemma is not true, since regular-at-infinity functions are a broader class of functions than
asymptotically homogeneous functions.

An example of an integrable function is a function that is bounded and has compact
support. Also, most probability density functions (PDF’s) belong to this class, as long
as they are bounded and decay at faster rates than |x|−1 as |x| → ∞. Variants of such
PDF’s that are vertically scaled and horizontally shifted are integrable, as well. A possible
interpretation of such a transformation is that it returns a strong signal when the value
of the underlying random walk is near the mode (or modes) of some PDF-like function.
In the empirical section of our analysis, we use an integrable transformation to model
the relationship between wholesale electricity prices and the excess utilization. Under our
specification, we expect to observe a strong price spike whenever system generation nears
capacity.

Park and Phillips (1999) present some useful examples of asymptotically homogeneous
transformations. The most common types of asymptotically homogeneous transformations

4This is not absolutely necessary, but substantially simplifies our subsequent theory.
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in the literature are homogeneous (especially linear), polynomial, and logarithmic. A per-
haps more interesting sub-class of asymptotically homogeneous functions are, however, those
that resemble rescaled and shifted cumulative distribution functions (CDF’s). Any CDF
has ν (λ) = 1 and H (x) = 1 {x ≥ 0}, and rescaled and shifted CDF’s have the same AO
and an LHF given by some affine transformation of the function 1 {x ≥ 0}.

Any kind of threshold model is essentially a CDF. For example, if the exogenous signal
in a feedforward artificial neural network with one hidden layer follows a random walk,
then the model is an AHTS model. Consider a target zone exchange rate model, in which
policy actions force the observed exchange rate to stay within a fixed band around the
target rate. If the underlying fundamental follows a random walk, then the exchange rate is
generated by an AHTS model. We use a family of logistic functions that are parametrized
appropriately to model this relationship in the empirical section of our analysis.

In the next subsections, we investigate the time series properties of ITS and AHTS mod-
els. More specifically, we develop the asymptotics for the sample autocorrelation function,
the sample variance, the sample skewness, and the sample kurtosis. All of these sample
statistics are defined in terms of the deviations from the sample mean, and as a result, they
are invariant with respect to a shift by a constant. It is therefore obvious that the time
series properties of ITS and AHTS models can be characterized by their sample moments
only up to a constant term. Consequently, a transformation which is a constant plus an
integrable transformation is asymptotically homogeneous but has the same asymptotics as
an integrable transformation. For this reason, our subsequent results for ITS models ap-
ply also to integrable transformations shifted by arbitrary constants, and those for AHTS
models are valid only for asymptotically homogeneous transformations with nonconstant
LHF’s.

3.2. Asymptotics for ITS Models

We examine the asymptotic behaviors of the sample autocorrelation, variance, skewness, and
kurtosis of time series generated by ITS models. As mentioned previously, computing sample
statistics for a nonstationary process may be misleading, because they do not represent those
of any well-defined underlying distribution. When the process is nonstationary, these are
spurious sample statistics. Nevertheless, our results for these spurious statistics allow the
comparison of our model with alternative modeling assumptions about the data generating
process for the given time series of interest. In fact, the autocorrelation pattern of an ITS
process is directly comparable with that of a stationary I(d) process, as we show below.

Our subsequent asymptotic results rely on the following assumptions.

Assumption 3.1 Let the time series (yt) be generated by (1) and (2) with integrable F ,
and let (vt) belong to the domain of attraction of a stable law of order 1 < α ≤ 2 with
characteristic function ϕ satisfying the condition ϕ(s) 6= 1 for all s 6= 0.

We restrict the order of the limit stable law to 1 < α ≤ 2, because the asymptotics for ITS
models crucially rely on the local time of the limit stable process V , which exists only when
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the stable index of V exceeds unity. The additional condition imposed on the characteristic
function of (vt) merely excludes the possibility of a lattice distribution with support included
in the set of integral multiples of some real number. This is not overly restrictive.

We begin with the autocorrelation function, which is the key to determining whether or
not a time series exhibits long memory. We define the sample autocorrelation as

Rnk =
1

n−k

∑n
t=k+1 (yt − ȳn) (yt−k − ȳn)

1
n

∑n
t=1 (yt − ȳn)2

,

where k is any nonnegative integer and ȳn = 1
n

∑n
t=1 yt . We denote by D the PDF of the

underlying distribution of (vt) with respect to the measure µ on R. Moreover, we let Dk be
the PDF of a−1

k (v1 + · · ·+ vk) with respect to the same measure. Clearly, we have Dk = D,
if the process (vt) itself is α-stable.

Theorem 3.2 (Asymptotics for Rnk – ITS ). Let Assumption 3.1 hold. If σ2
ε = 0, then

Rnk →p Rk,

where

Rk =
Nk

M
=

∫∞
−∞

∫∞
−∞ F (x)F (x + aky)Dk(y) dxµ(dy)∫∞

−∞ F 2(x) dx
. (13)

Alternatively, let σ2
ε > 0. If 1 < α < 2, then

anRnk →d (1/σ2
ε )L(1, 0)Nk .

If on the other hand α = 2, then

n1/2`(n)Rnk →d

{
(1/σ2

ε )L(1, 0)Nk if `(n) → 0
(1/σ2

ε )L(1, 0)Nk + N(0, c2) if `(n) → c for some constant c

n1/2Rnk →d N(0, 1) if `(n) → ∞,

where N(0, 1) is a standard normal random variate independent of L(0, 1).

This theorem suggests that the autocorrelation pattern of an ITS process is essentially
determined by Nk defined in (13). Note that Rk is a constant multiple of Nk. Specifically,
the asymptotic autocorrelation function of an ITS process is either Rk when the transformed
series is observed directly, or Rk with some random scale and shift when the transformed
series is observed with an error. The only exception seems to be when α = 2 and `(n) → ∞.
However, even in this case, the second order term, which is of order smaller than the leading
term only by `(n), is given as a function of Nk. This is clear from the proof of the theorem.

If (vt) have an identical stable distribution and Dk = D for all k, then it follows directly
from dominated convergence that

Rk → 0
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as k → ∞, since ak → ∞ and F is bounded and integrable. The asymptotic autocorrelation
of an ITS process thus decreases to zero. The following corollary extends this result to (vt) in
the domain of attraction of a stable law and only asymptotically stable. It also obtains the
explicit rate of decay for Rk. We let (ϕk) be the characteristic function of a−1

k (v1 + · · ·+vk).
It is well-known that if (vt) belongs to the domain of attraction of a stable law, then
ϕk(s) → ϕ(s) pointwise for all s ∈ R, where ϕ is the characteristic function of the limiting
stable distribution.

Corollary 3.3 (Rate of Decay of Rnk – ITS ). Let Assumption 3.1 hold and assume that
(ϕk) are absolutely integrable, ϕk → ϕ in L1, and D is continuous at the origin. Then we
have

akRk →p D(0)

(∫ ∞

−∞
F (x) dx

)2

as k → ∞.

The rate of decay of the asymptotic sample autocorrelation function of an ITS process is
therefore a−1

k , which is approximately polynomial for large k. If (vt) belong to the domain
of normal attraction of a stable law, then the rate will be exactly polynomial. On the other
hand, if (vt) only belong to the domain of attraction of a stable law, then the rate will also
depend on the slowly varying function `(n).

It is well-known that the sample autocorrelations of stationary fractionally integrated
processes also decay at polynomial rates. In particular, such autocorrelations decay at the
rate of k2d−1 where d ∈ (0, 1/2) is defined as the degree of fractional integration or the
memory parameter. The rates of decay of the autocorrelation of our ITS models and that of
an I(d) process with d ∈ (0, 1/4] will clearly be very similar. On these grounds, it would be
easy to mistake a time series generated by an ITS model for a process generated the well-
known stationary I(d) model. If the underlying DGP of an observed time series is in fact
an ITS model, then such a misspecification would ignore valuable structural information
about the process.

We define the observed sample variance, skewness, and kurtosis of a time series (yt) as

S2
n =

1

n

n∑

t=1

(yt − ȳn)2 ,

Q3
n =

1
n

∑n
t=1 (yt − ȳn)3

(
1
n

∑n
t=1 (yt − ȳn)2

)3/2
,

and

K4
n =

1
n

∑n
t=1 (yt − ȳn)4

(
1
n

∑n
t=1 (yt − ȳn)2

)2 ,

respectively. We would expect that if (yt) were in fact stationary, with an underlying
symmetric distribution with existing fourth moment, then the skewness of that distribution
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would naturally converge to zero. The variance and kurtosis would converge to some finite
number, depending on the rate at which the tails decay, roughly speaking.

In order to compare an ITS process with a stationary process, we introduce the following
theorem, which provides limiting distributions of these statistics for (yt) generated by an
ITS model.

Theorem 3.4 (Asymptotics for S2
n, Q3

n, K4
n – ITS ). Let Assumption 3.1 hold, and define

τ3
ε = Eε3

t and κ4
ε = Eε4

t . Then the asymptotic distribution of the sample variance is

S2
n →p σ2

ε for σ2
ε > 0

and

anS2
n →d L (1, 0)

∫ ∞

−∞
F 2 (x) dx for σ2

ε = 0,

that of the sample skewness is

Q3
n →p τ3

ε /σ3
ε for σ2

ε > 0

and

a−1/2
n Q3

n →d

∫∞
−∞ F 3 (x) dx

√
L (1, 0)

(∫∞
−∞ F 2 (x) dx

)3/2
for σ2

ε = 0,

and that of the sample kurtosis is

K4
n →p κ4

ε/σ
4
ε for σ2

ε > 0

and

a−1
n K4

n →d

∫∞
−∞ F 4 (x) dx

L (1, 0)
(∫∞

−∞ F 2 (x) dx
)2 for σ2

ε = 0

as n → ∞.

We can see that ITS models with model error have observed sample statistics that are
observationally equivalent to those of stationary processes. This is natural, since the deter-
ministic term or terms of both ITS processes and stationary processes collapse to zero at a
faster rate than the error terms. Consequently, if the true DGP of a given process is an ITS
model with error, it would be quite easy to confuse it with a stationary process based on
these statistics. Again, such a mistake would omit valuable structural information about
the DGP that would otherwise enable more accurate inferences.

3.3. Asymptotics for AHTS Models

We derive the same sample statistics for AHTS models as we did for ITS models in the
preceding section. The asymptotically homogeneous model is perhaps more important than
its integrable counterpart, because the literature is replete with examples of asymptoti-
cally homogeneous transformations. If the underlying exogenous variable in such a model
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is nonstationary and the limiting distribution of the innovations are α-stable (including
Gaussian), then our results apply.

In this section, we make the following assumptions.

Assumption 3.2 Let the time series (yt) be generated by (1) and (2) with asymptotically
homogeneous F and (vt) belonging to the domain of attraction of a stable law.

Note that we do not impose the extra condition on the distribution of the innovation
sequence (vt) that was required for the asymptotics of ITS models. Any lattice distribution
is allowed for (vt) here. Furthermore, the stable parameter for the limit process is allowed
to be 0 < α ≤ 2.

Again, we start with an asymptotic result for the sample autocorrelation, which is given
by the following theorem.

Theorem 3.5 (Asymptotics for Rnk – AHTS ). Let Assumption 3.2 hold. Then we have

Rnk →p 1

regardless of whether σ2
ε = 0 or σ2

ε > 0.

This result implies that shocks in (yt) never die out at all, just as shocks in the underlying
random walk do not. Given that linear functions are a subset of asymptotically homogeneous
transformations, and a linear function of a random walk is itself either a random walk or
a random walk with drift, this is not surprising. What is surprising is that this result
holds for any asymptotically homogeneous transformation, even for those with logarithmic
or constant asymptotic orders. It would be impossible to conclude, based on this statistic,
that the series (yt) is stationary. Nevertheless, as we will see in the empirical section of
this paper, this asymptotic result does not hold strictly in small samples for the specific
functional form discussed there (a rescaled and shifted CDF). As a result of obvious small
sample bias, we interpret this result to imply that the rate of decay is very slow, and that
relatively large values of Rnk may be observed at large values of k.

The following theorem gives us limiting distributions for the remaining statistics.

Theorem 3.6 (Asymptotics for S2
n, Q3

n, K4
n – AHTS ). Let Assumption 3.2 hold. Then

the asymptotic distribution of the sample variance is

[
ν2 (an)

]−1
S2

n →d

∫ 1

0
H2 (V (r)) dr −

(∫ 1

0
H (V (r)) dr

)2

,

that of the sample skewness is

Q3
n →d

∫ 1
0

(
H(V (r)) −

∫ 1
0 H(V (r))dr

)3
dr

(∫ 1
0

(
H(V (r)) −

∫ 1
0 H(V (r))dr

)2
dr

)3/2
,
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and that of the sample kurtosis is

K4
n →d

∫ 1
0

(
H(V (r)) −

∫ 1
0 H(V (r))dr

)4
dr

(∫ 1
0

(
H(V (r)) −

∫ 1
0 H(V (r))dr

)2
dr

)2 ,

as n → ∞, for any σ2
ε ≥ 0.

The implications of the theorem are clear. The observed sample variance of a series gen-
erated by an AHTS model diverges at the rate of ν2 (an), which depends not only on the
stable parameter α but also on the asymptotic order ν of the transformation. Both the
skewness and kurtosis are random, neither converging to zero nor exploding in the limit.
In the empirical section of the paper, we simulate a rescaled and shifted CDF to give us a
better sense of what the variance, skewness, and kurtosis might look like in that case.

4. Regressions with ITS and AHTS Models

Having established some useful tools for distinguishing series driven by nonlinear transfor-
mations of stable random walks from alternative specifications, we now turn to the issue of
estimating the transformation function F in (2). Throughout this section, we assume that
σ2

ε > 0 and consider the model given by

yt = F (xt, θ) + εt (14)

in place of (2), where F is a known function and θ is an unknown parameter vector with true
value θ0. The transformation introduced in (2) is thus parameterized by θ. Here we assume
that (εt) and (vt) are independent of each other. We first look at the simpler case, in which
(xt) are observable. In this case, the parameter vector θ can be estimated by nonlinear least
squares estimation, as we show below. The asymptotic distributions of the estimators are
similar to those derived in Park and Phillips (2001), with rates of convergence consistent
with our more general innovations. Subsequently, we consider regression when (xt) are
unobservable. Naturally, this requires additional assumptions, but we suggest obtaining
parameter estimates by way of the extended Kalman filter. In the empirical section of the
paper, we consider an example of each of these cases.

4.1. Observable Explanatory Variable

Regressions in which (xt) are observable yield asymptotics results similar to those explored
in detail in Park and Phillips (2001). The difference between that analysis and this one is
simply that we allow for the regressors to be driven by innovations with thick tails having
undefined means or variances, whereas that analysis focused on regressors generated by
innovations with finite variances. We let the regression model be given by (14), and denote
by θ̂n the usual nonlinear least squares estimator of the parameter vector θ given by

θ̂n = argmin
θ∈Θ

n∑

t=1

[yt − F (xt, θ)]2,
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where Θ is the parameter set. Moreover, we let F̄ denote the vector of partial derivatives
of F with respect to θ, i.e.,

F̄ (x, θ) =
∂

∂θ
F (x, θ).

In this light, we present the following two theorems.

Theorem 4.1 (Asymptotics for θ̂n – ITS ). Let Assumption 3.1 hold, and let the condi-
tions of Theorem 5.1 in Park and Phillips (2001) be satisfied. Then the limiting distribution
of θ̂n is given by

a−1/2
n n1/2

(
θ̂n − θ0

)
→d σε

(
L (1, 0)

∫ ∞

−∞
F̄ (x, θ0) F̄ (x, θ0)

′ dx

)−1/2

W (1) ,

where W is standard Brownian motion independent of L.

Theorem 4.2 (Asymptotics for θ̂n – AHTS ). Let Assumption 3.2 hold, and let the condi-
tions of Theorem 5.2 in Park and Phillips (2001) be satisfied. Then the limiting distribution
of θ̂n is given by

n1/2ν̄ (an)′
(
θ̂n − θ0

)
→d σε

(∫ 1

0
H̄ (V (r) , θ0) H̄ (V (r) , θ0)

′ dr

)−1∫ 1

0
H̄ (V (r) , θ0) dW (r) ,

where ν̄ and H̄ denote respectively the asymptotic order and limit homogeneous function
of F̄ , and W is standard Brownian motion independent of V .

The asymptotics of θ̂n are mixed normal in both cases. In particular, this means that
standard errors, t-tests, etc. that are generated by a standard regression package will be
asymptotically valid. Thus, when (xt) are observable, inference from regression is straight-
forward. Recall that (xt) are assumed to be strictly exogenous. This is not crucial for
the mixed normality of the ITS asymptotics. The same asymptotics hold as long as (xt)
are (Ft−1)-measurable and a joint invariance principle for (εt) and (vt) holds. However,
the mixed normality for the AHTS asymptotics holds only when the two limit stochastic
processes V and W are independent, which in turn requires the strict exogeneity of (xt).
Note that the condition 1 < α ≤ 2 is crucial for the ITS asymptotics in Theorem 4.1. As we
mentioned earlier, the local time does not exist for 0 < α ≤ 1. The AHTS asymptotics in
Theorem 4.2 do not require the existence of local time, and therefore, hold for all 0 < α ≤ 2.

4.2. Unobservable Explanatory Variable

When (xt) are unobservable, we need additional assumptions and tools to get parameter
estimates. First, we consider the case in which (vt) and (εt) are Gaussian. The traditional
method for dealing with linear models in which an exogenous variable is unobservable but
assumed to follow an autoregressive process with such innovations is to use the Kalman filter
(KF) fed into an MLE routine. This technique assumes values for the model parameters,
then creates series of E [xt|Ft] and var [xt|Ft] for each t, based on some initial values at
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time t = 0 and iterating linear projections. Once these series are created, MLE is used to
optimize the model parameters. The series of conditional expectations of (xt) generated by
the optimal parameters are then smoothed in order to take into account information through
the end of the sample. It is well-known that the KF yields consistent and asymptotically
normal estimates even in the absence of Gaussianity, as long as the underlying models are
stationary and the innovations have finite second moments.

Since we are dealing with a nonlinear function F , the KF will not work. To find an alter-
native to the traditional KF, we turn to the engineering literature. The KF and its variants
are widely used in this literature for such applications as tracking satellites and spacecrafts
entering Earth’s orbit. A common work-around is the extended Kalman filter (EKF), as
described in Jazwinski (1970). The EKF is intuitively appealing, since it approximates
F (xt) by expanding around E [xt|Ft−1], which is “known” at time t − 1 (albeit unobserv-
able), using a first-order Taylor series expansion. The econometrics literature also contains
alternatives to the EKF. For example, Tanizaki (2000) surveys nonlinear, non-Gaussian
state-space modeling using Monte-Carlo techniques.

Implementation of the EKF

We use the EKF to estimate E [xt|Ft] and then smooth these estimates to obtain
E [xt|Fn]. We summarize the discrete-time EKF below. Our EKF has a measurement
equation given by (14) and a transition equation of (1). For convenience of exposition,
we use the conventional notation ·t|t−1 to denote E [·t|Ft−1]. We also let F̃ be the partial

derivative of F with respect to x, i.e., F̃ (x, θ) = (∂/∂x)F (x, θ). Using this notation, we
expand F (xt, θ) around xt|t−1 to get

F (xt, θ) ≈ F
(
xt|t−1, θ

)
+ F̃

(
xt|t−1, θ

) (
xt − xt|t−1

)
. (15)

This allows us to write
yt ≈ µF (θ) + F̃

(
xt|t−1, θ

)
xt + εt,

where µF (θ) is defined as

µF (θ) = F
(
xt|t−1, θ

)
− F̃

(
xt|t−1, θ

)
xt|t−1,

which is constant at time t. Once the linear approximation is implemented, the EKF works
exactly like the linear KF. Defining

ωt|· ≡ var
[(

xt − xt|t−1

)
| F ·

]

and
Σt|· ≡ var

[(
yt − yt|t−1

)
|F·

]

as conditional variances, we replace the usual linear prediction equations of the Kalman
filter with

xt|t−1 = xt−1|t−1,

yt|t−1 = F
(
xt|t−1, θ

)
,
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ωt|t−1 = ωt−1|t−1 + σ2
v ,

and
Σt|t−1 = ωt|t−1F̃

(
xt|t−1, θ

)2
+ σ2

ε ,

where σ2
v is the variance of (vt). The updating equations become

xt|t = xt|t−1 + ωt|t−1F̃
(
xt|t−1, θ

)
Σ−1

t|t−1

(
yt − yt|t−1

)

and
ωt|t = ωt|t−1 − ω2

t|t−1F̃
(
xt|t−1, θ

)2
Σ−1

t|t−1.

MLE is then performed in order to maximize the model parameters, and thus obtain optimal
series of (xt|t) and (ωt|t). The final step consists of smoothing (xt|t) by taking into account
information through the end of the sample. This starts at the end of the sample and
proceeds back to the beginning of the sample with

xt|n = xt|t + ωt|tω
−1
t+1|t

(
xt+1|n − xt+1|t

)
.

See Hamilton (1994) or Kim and Nelson (1999) for a more detailed description of the KF
and Jazwinski (1970) or Zarchan and Musoff (2000) for the EKF.

Nonstationarity and Thick Tails

The EKF provides a viable alternative in the presence of nonlinearity, but our models
have two other nonstandard features: nonstationarity and thick tails. The development of
the rigorous statistical theories of the EKF for models having these features is not simple
and certainly beyond the scope of this paper. Therefore, we can only provide intuition and
conjectures on why we believe the method should yield sensible (though not necessarily opti-
mal) results for such models. The nonstationarity seems to be easier to deal with. Although
theory for the KF for nonstationary models with unit roots is not fully developed yet, we
expect that the method would work for such models due to the recent results obtained by
Park and Phillips (1999, 2001). Moreover, the EKF based on the linear approximation
provides a reasonable method to analyze nonlinear and nonstationary models, as well as
nonlinear and stationary models. Note that the expansion in (15) yields a relatively better
linear approximation for nonstationary models, since in this case (xt − xt|t−1) is stationary
and of a stochastic order smaller than that of (xt). For stationary models, these series are
stochastically of the same order of magnitude.

Obviously, the presence of thick tails in the innovations may affect the validity of the
EKF used here in a more fundamental manner. If 0 < α ≤ 1 in our model, the mean of
(vt) does not exist and taking conditional expectations of (xt) becomes meaningless. We
must therefore assume α > 1, and as long as this condition is fulfilled, the estimates (xt|t)
and (xt|n) can be meaningfully defined. When 1 < α < 2, however, the variance of (vt) is
still undefined and the EKF cannot be interpreted as iterated projections. In this case, we
view the EKF merely as minimizing the sums of squared errors involved in estimating the
conditional expectations of (xt). Of course, both of σ2

v and ωt|· are not properly defined,
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so we interpret them as pseudo variance and conditional variance of (vt). We estimate the
stable, skewness, and scale parameters of the empirical distribution of the innovation after
the conditional expectations of the unobserved series are extracted using the EKF. This
two-step methodology might be improved by incorporating the stable distribution directly
into the log-likelihood function of the EKF procedure and estimating the parameters of
the distribution directly. However, such a one-step procedure would be very difficult to
implement, since the stable distribution does not have a closed form solution, except in
special cases (Gaussian and Cauchy).

Applying the EKF to our model yields an estimate of the parameter vector θ, as well as
extracting conditional expectations of the unobserved (xt). The standard errors computed
by the EKF are, however, incorrect for our nonstandard models. The limiting distributions
of the parameter estimates from the EKF are not known in this situation, but they are likely
to be non-Gaussian and involve nuisance parameters. Therefore, we perform simulations to
obtain the asymptotic distributions and confidence intervals for the parameter estimates in
our empirical analysis involving the EKF. For the simulations, we set the innovations (vt) to
be the stable random variates with the stability, skewness, and scale parameters estimated
from the data, which are generated independently of the measurement equation errors (εt)
drawn from the normal distribution with zero mean and the estimated variance. Note that
the bootstrap is not a reasonable alternative here, since it generally becomes inconsistent
in the presence of thick tails [see, e.g., Hall (1990)].5

5. Applications, Simulations, and Empirical Results

We examine two empirical applications of our theoretical models. The first application is a
target zone exchange rate model. Target zone models have been used and tested since the
1980’s, but the time series properties of such nonlinear transformations of nonstationary
processes were not well-known. With this in mind, we introduce an AHTS model in which
(xt) are unobservable. The second application is a model designed to capture observed price
“spikes” on wholesale electricity markets by using an integrable transformation of excess
capacity. As opposed to the target zone model, which is formulated in the literature and
already fits roughly within the framework of one of our econometric models, we propose an
electricity price ITS model as an alternative to other approaches.

5.1. Target Zone Exchange Rate Model

Under the European Monetary System (EMS) of the 1980’s and 1990’s, exchange rates
between participating EU countries were allowed to fluctuate within a fixed band around
a central parity, which for most participating currencies was ±2.25% until 1990. During
this period, the target rate was sometimes realigned by policymakers to reflect underlying
changes in the fundamentals of the EU economies.

5The difficulty in bootstrapping thick-tailed distributions can be overcome by using the subsample boot-
strap, where the size of a bootstrap resample is an order of magnitude smaller than that of the sample.
However, it was compared unfavorably by Hall and Jing (1998) to the simulation method used here.
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Fig. 5.1.1: Target zone transformation F (x) with our parameter estimates.

Despite the fact that the EMS was replaced by the Euro in the majority of EU countries,
There are still a number of countries that follow this type of targeting regime. The IMF
classifies exchange rate regimes in its annual report. As of 2004, there are 9 countries that
follow an explicit target zone regime. Among them are some of the European countries
that aspire to join the EU, such as Hungary and Cyprus, as well as Denmark, which is
already part of the EU but chose not to adopt the Euro. A few developing countries also
have explicit targeting regimes. An additional 41 (mostly developing) countries fall into
the category of having “other conventional fixed peg arrangements” (other than a currency
board). As defined by the IMF, this category includes regimes that allow fluctuations of up
to ±1% around a central rate. A target zone model with narrow bands may be appropriate
for some of these countries.6 Evidently, even though target zone regimes are not as prevalent
as they used to be, they are still important to a number of economies in the world.

Nonlinear Nonstationary Model

Much was written in the economics literature of the 1980’s and 1990’s about target zone
exchange rate models (TZM’s), a class of models that attempt to capture the behavior of
exchange rates under this type of regime. Perhaps the most widely known of the target
zone models was developed by Krugman (1991). The Krugman model postulates that yt,
the log of the exchange rate in such a model, is generated by a nonlinear function of the

6In addition, there are 49 countries that fall into the category of “managed floating with no pre-announced
path for the exchange rate.” While some of these countries explicitly target inflation or monetary aggregates,
many of them do not announce explicit targets. Central banks of these countries may be de facto anchoring
to an exchange rate (either implicitly or explicitly but unannounced) in such a way that a target zone model
would capture the behavior of exchange rates.
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Fig. 5.1.2: Sample simulated exchange rate and fundamental with our parameter estimates.

log of a fundamental xt. Krugman (1991) derives an “S”-shaped function that maps this
fundamental onto the realized exchange rate yt. Specifically,

yt = K (xt) = xt + B(e−λxt − eλxt),

where B and λ are model parameters. The transformation is a result of not only policy
intervention, but perhaps even more importantly of rational expectations about policy in-
tervention. These expectations bend the function at the edge of the band to create the “S”
shape. Stronger expectations of policy intervention correspond to a less steep function – i.e.,
more deviation from the 45-degree diagonal that maps the fundamental onto the exchange
rate under a free floating exchange rate system.

The literature differs on how to treat (xt). Svensson (1990) assumes that (xt) follow a
regulated Brownian motion. On the other hand, de Jong (1994) and Mark (2001) assume
that (xt) follow a random walk with a constant drift term, possibly included to reflect the
belief that money growth is (on average) constant. We assume that (xt) follow a random
walk. This is not unrealistic, as the literature generally agrees on the nonstationarity of
the fundamental. Discrete interventions that shift (xt) should be captured by thick-tailed
innovations. Moreover, Dufour and Kurz-Kim (2003) provide evidence that free floating
exchange rates follow thick-tailed random walks. In light of the fact such exchange rates
follow the fundamental without the nonlinear transformation, this supports our assumption
that the fundamental itself follows a thick-tailed random walk.

The function K derived in the Krugman model is not compatible with (xt) that follow a
random walk, for the very simple reason that such a series may take values on (−∞,∞) and
K loses the “S” shape abruptly outside of the band.7 We postulate an alternative function

7In fact, as the fundamental takes arbitrarily large (small) values, K (xt) takes arbitrarily small (large)
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Fig. 5.1.3: |Rnk| of actual exchange rate and average |Rnk| of simulated exchange rates.

for the model, which follows the intuition of the “S” shape, but allows for a nonstationary
fundamental. This function bends at the edge of the band as Krugman’s does, but does not
allow the exchange rate to deviate from the band when the fundamental becomes too large
or too small. In particular, we start with a generalized logistic CDF:

F (x) = ν + h

(
1 + exp

{
−1

γ
(x − µ)

})−1

,

and enforce the restriction ν = µ − h/2. This restriction serves two purposes. Technically,
it is crucial for the identification of µ and γ. Note that they are not identified unless the
scale parameter of (vt) is fixed a priori. Intuitively, it creates a fixed point at µ (the log
of the central parity), so that the function returns the same value as its argument at that
point. The heart of our TZM is thus given by

F (x) = µ − h/2 + h

(
1 + exp

{
−1

γ
(x − µ)

})−1

,

where µ is the shift parameter, γ is the scale parameter, and h is the bandwidth within
which the exchange rate is allowed to fluctuate.8 Multiplying the CDF by h merely squeezes
the function vertically to fit within the band. Figure 5.1.1 illustrates this function. Thus

values! So, K cannot be used for any fundamental thus specified. If K is to be employed, (xt) must be
limited as in Svensson (1990). This misspecification may account for some of the rejections of the Krugman
model in the literature.

8As in Krugman (1991), both exchange rate and underlying fundamental are expressed in logs. This
creates slightly asymmetric bands, but the derivation of our model does not rely on symmetry, as does that
of Krugman (1991).
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Fig. 5.1.4: Density estimates of the asymptotic distributions of the sample variance, skewness,

and kurtosis of (yt), calculated from an AHTS model generated by the LHF of our TZM with our

parameter estimates.

defined, our TZM is an AHTS model. The AO of the function F (x) is unity and the LHF
is (

µ +
h

2

)
× 1 {x ≥ 0} +

(
µ − h

2

)
× 1 {x < 0} ,

which is homogeneous of degree zero for any positive transformation.

Before examining empirical results from our model, it is useful to examine some results
from simulation. Figure 5.1.2 illustrates a single simulated series (yt) of exchange rates,
generated by a series (xt) of simulated fundamentals following a thick-tailed random walk.
This random walk is fed through our TZM with model parameters based on our estimates
below. In all of our relevant simulations, pseudo-random numbers drawn from a stable
non-Gaussian distribution are obtained using McCulloch’s simulation procedure, based on
Chambers, et al. (1976). As expected, the observed exchange rate is pushed up or down to
stay within the band as the fundamental moves down or up, respectively. In order to gener-
alize our results, we repeat this simulation 5, 000 times with samples of n = 1, 000. Figure
5.1.3 shows the average of the sample autocorrelation from such simulations. Obviously,
there is a small-sample bias, since our asymptotic result for series generated by an AHTS
model suggested that the autocorrelations would not die out at all. We can see from the
figure that simulated autocorrelations do in fact decay, albeit at a very slow rate.

Figure 5.1.4 shows the asymptotic distributions of the sample variance, skewness, and
kurtosis from simulation. The asymptotic distribution of the sample variance somewhat
resembles the arcsine distribution. It is well known that the integral of an indicator function
on the half real line with a Brownian motion as its argument follows the so-called arcsine
distribution [see, e.g., Revuz and Yor (1999, pg. 232)]. Since the asymptotic distribution of
the sample variance here is given essentially by the same functional of Levy motion, it is not
surprising that we have a similar distribution. A stable random walk has a symmetric spatial
distribution and our transformation is symmetric, so the simulated asymptotic distribution
of the sample skewness is quite natural. The asymptotic distribution of the sample kurtosis
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Fig. 5.1.5: DEM/FRF exchange rate (January 12, 1987 - December 31, 1989).

has a mode that appears to be close to 3. We might expect to observe mesokurtosis in such
a series, but observed platykurtosis or leptokurtosis of a large degree is also possible.

Data and Empirical Results

We use the log of daily interbank DEM/FRF exchange rates from January 12, 1987
through December 31, 1989 from OANDA (http://www.oanda.com) in this empirical exer-
cise. This is the longest period in which the band was ±2.25% without any realignments of
the central parity. The original series (before taking logs) is illustrated in Figure 5.1.5.

Revisiting Figure 5.1.3, it is clear that this series has an autocorrelation function that
dies out at a slow rate consistent with our simulations. Estimates of the memory parameter
range from 0.35 using the technique developed by Mandelbrot and Wallis (1969) based on
the Hurst coefficient to 0.50, 0.54, and 0.60 using the techniques of Geweke and Porter-
Hudak (1983) and two refinements of those techniques from Andrews and Guggenberger
(2003), respectively. While these reveal a significant small-sample bias compared to our
asymptotic prediction that autocorrelations generated by an AHTS model do not die out
at all, they suggest that the autocorrelations die out more slowly than those of a stationary
fractionally integrated process, which has d ∈ (0, 1/2).

We find an observed sample variance, skewness, and kurtosis of 0.00009, 0.1996, and
2.3927, respectively. These are consistent with our simulated distributions of the AHTS
model discussed above, further suggesting that an AHTS specification may be appropriate
for modeling these data. These statistics are not consistent with a stationary series with un-
derlying Gaussian distribution, suggesting that it would be difficult to conclude stationarity
and dismiss the richer model.
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Fig. 5.1.6: Original exchange rate and estimated fundamental.

In Section 4, we discussed limitations of using the EKF in the context of a nonlinear,
nonstationary model with thick-tailed innovations. For these reasons, the standard errors
generated by the EKF are meaningless, so we do not report them. Our estimates of the
model parameters are summarized in the following table. In order to ensure positive values
of h, γ, σ2

ε , and the pseudo-variance of (vt), we reparameterized the model to estimate the
log of these parameters. We allow the autoregressive parameter ρ on (xt) to vary, in order
to test the plausibility of the unit root assumption. The estimated value is in fact very close
to unity.

Table 5.1.2

Parameter Estimate

µ −1.2222

ln h −3.0021

ln γ −3.7089

ρ 1.0000

Recall that µ may be interpreted as the target for the transformed exchange rate. This
parameter gives us a de facto target of

exp (µ̂) = exp (−1.2222) = 0.2946 DEM/FRF,

where µ̂ is the parameter estimate of µ. Similarly, a de facto band of

±
{

exp

(
1

2
× exp (−3.0021)

)
− 1

}
= ±2.52%

is obtained from the bandwidth estimate l̂n h, which is clearly very close to the announced
bandwidth of ±2.25.
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Fig. 5.1.7: Distribution of estimates of ρ obtained through Monte Carlo simulation.

Figure 5.1.6 illustrates the log of the exchange rate (yt), the conditional expectations
of the fundamental (xt|t), the smoothed conditional expectations of the fundamental (xt|n),

the estimated target µ̂, and the estimated band µ̂± ĥ/2. The fundamental exhibits the ex-
pected properties. When the exchange rate approaches one of the edges, the unconstrained
fundamental strays from the band. This lends credence to the nonlinear TZM specification.
We estimate stable parameters of approximately 1.51 (using the unsmoothed series) and
1.60 (using the smoothed series) for the empirical distribution of the innovations, using the
estimation procedure of McCulloch (1986). This suggests that thick tails is an appropri-
ate assumption. Moreover, the 95% confidence interval (0.1953, 1.0005) around ρ̂ = 1.0000
that we obtain through Monte Carlo simulations suggest that the unit root hypothesis is
certainly tenable. The distribution obtained through these simulations and illustrated in
Figure 5.1.7 further suggests the plausibility of the unit root hypothesis with a parameter
estimate so close to unity.

When de Jong (1994) tested the Krugman model, he concluded that it was misspecified,
and the misspecification was specifically blamed on three assumptions: 1) the fundamental
follows a random walk, 2) the random walk has Gaussian innovations, and 3) the model
does not allow for interventions within the band. We relax the latter two assumptions,
but the first seems quite reasonable. Theory and the empirical evidence discussed above
support the AHTS model in this situation.

5.2. Electricity Price Spikes

Wholesale electricity markets in most regions of the U.S. and elsewhere are characterized
by price “spikes” that occur during peak periods of demand when suppliers are short of
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Fig. 5.2.1: Electricity prices vs. excess capacity (April 1, 2002 – December 31, 2002).

capacity. The demand curve is usually assumed to be completely or almost completely
inelastic. This is exacerbated by the fact that electricity is not storable in large amounts,
so the traditional price-smoothing role of inventories cannot come into play. Policymakers’
long-standing goals of equitable and reliable distribution of power necessitate allowing gen-
erating units to price above marginal cost, in order to induce marginal units to produce
during peak periods. The price may increase significantly in order for these marginal units
to cover their fixed costs over the short period of time in which they are necessary to main-
tain supply at the quantity demanded. This allows marginal units to exercise considerable
market power during peak demand periods, particularly when a negative supply shock oc-
curs. Hence we observe the sharp “spikes” that frequently occur in price series from these
markets. In light of the California electricity crisis and its aftermath, excessive prices and
the abuse of market power have become important issues, with many recent analyses in the
energy literature focusing on modeling and forecasting wholesale prices.9

Nonlinear Nonstationary Model

Because of the peculiarities of this market, we believe one of the best predictors of price
should be excess capacity. Let (ut) represent capacity utilization, measured as quantity
divided by total system capacity on any given day. We consider

xt = 1 − ut,

where xt represents a measure of excess capacity. Allowing (yt) to signify electricity prices,
we may write the measurement equation of our model in the form of (2). Our empiri-
cal analysis of electricity price employs maximum daily load divided by daily scheduled

9See, for example, McMenamin and Monforte (2000), Knittel and Roberts (2001), and Stevenson (2002)
for a wide variety of statistical and structural techniques applied to this end.
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Fig. 5.2.2: Excess capacity (April 1, 2002 – December 31, 2002).

capacity and maximum daily real-time locational marginal price over the period of April
1, 2002 through December 31, 2002 from the Pennsylvania-Jersey-Maryland power pool
(http://www.pjm.com). We perform a Nadaraya-Watson kernel regression of (yt) onto
(xt), which is illustrated in Figure 5.2.1. There is clearly a nonlinear relationship between
prices and excess capacity, as even casual observation suggests. We use a rescaled Gaussian
density to model price as a function of capacity on the interval 0 ≤ xt < 1. These endpoints
result from the fact that excess capacity must be between 0% and 100%.10 Our postulated
function is

F (x) =

{
$ exp

{
− 1

γ (x − µ)2
}

if 0 ≤ x < 1

0 otherwise

where $, γ, and µ are parameters to be estimated.

Data and Empirical Results

Parameter estimates using maximum likelihood estimation are summarized in the fol-
lowing table.

Table 5.2.1

Parameter Estimate Std. Error

$ 361.0024 32.9786

γ 0.1061 0.0076

µ −0.0001 0.0898

10Strictly speaking, (xt) takes values on [0, 1) and therefore cannot be directly specified as a random walk.
In particular, it appears to be more reasonable to model (xt) as a random walk nonlinearly transformed
into the unit interval. Such a specification, however, would not affect our subsequent analyses in any critical
manner.
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Fig. 5.2.3: Actual and sample simulated electricity prices.

Significant parameter estimates for the first two parameters support our specification. Since
the third parameter is just a shift parameter, lack of significance is not a problem. Fitted
estimates of (yt) using these parameters are shown in Figure 5.2.1. This fitted series seems to
follow the nonparametric fit quite well, except in the tails, where kernel estimates typically
suffer from “empty bin” deficiencies.

We estimate the stable parameter of the empirically observed innovations of (xt), and
then test this series for integratedness, with critical value based on that estimate. Specif-
ically, our estimate is approximately 1.6, using the estimation procedure of McCulloch
(1986). It is well-known that the asymptotic distributions of unit root tests in the presence
of α-stable innovations depend on that parameter. Chan and Tran (1989), Phillips (1990),
Rachev, Mittnik, and Kim (1998), and Rachev and Mittnik (2000) derive the asymptotic
distributions of the simple Dickey-Fuller test statistics in the presence of thick tails. Miller
(2004) derives the asymptotic distributions in the presence of serial correlation (using ADF
test statistics), and tabulates the results for different values of the stable parameter. Table
5.2.2 presents ADF test statistics for different lags, with the initial value subtracted from
the series.

Table 5.2.2

Lags ρ-test t-test

4 −44.380 −4.107

8 −31.116 −3.164

12 −9.365 −1.763

16 −14.606 −2.037

20 −5.174 −1.238
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Fig. 5.2.4: |Rnk| of actual prices and average |Rnk| of simulated prices.

Clearly the decision to reject is highly dependent upon the number of lags considered. As
more lags are included, the hypothesis becomes more difficult to reject. The explanation for
this seemingly contrary result is apparent from the data. As Figure 5.2.2 shows, capacity
utilization is extremely volatile in the short run, but has a clearly nonstationary path over
a longer period of time. Hence, stationarity cannot be assumed. The purely random walk
AR(1) assumption that we make is a necessary simplification for the purposes of technical
ease, but should not substantially alter the results in light of our remarks at the end of
Section 2.

Since we have postulated a functional form for F , we can compare observed sample
statistics with those calculated from simulation. Unlike the case of the target zone exchange
rate model, we have observable (xt). The only right-hand side series that must be simulated
is (εt). Figure 5.2.3 illustrates one such sample simulation using the parameters estimated
above compared to the actual price series (yt). Figure 5.2.4 illustrates |Rnk| of the actual
price series compared to that of simulation averages. The autocorrelation function of (yt)
clearly dies out at a slow rate that is similar to that of simulated averages. Its rate of decay
seems to be approximately k−1/1.6 as our theory and estimate of the stable parameter
predict. Furthermore, estimates of the memory parameter suggest that the rate of decay of
the process (yt) is equivalent to that of a fractionally integrated process with d ≈ 0.14.11

Note that this would suggest a rate of decay of k−0.72, which is very close to the rate k−0.63

suggested by our model. Consequently, if the true DGP were in fact an ITS model, but this
spurious parameter were estimated, one might mistakenly ignore the richer specification of
the ITS model in favor of a simpler stationary fractionally integrated process.

11Techniques based on Mandelbrot and Wallis (1969) obtain 0.15, Geweke and Porter-Hudak (1983) obtain
0.14, and Andrews and Guggenberger (2003) obtain 0.14 or 0.25.
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6. Conclusion

In the economics and financial literature, there has been an increasing interest in models
that explain observed phenomena such as nonstationarity, persistency in memory, jumps in
sample paths, leptokurtosis, and many others. Conventional models may deal with some of
these characteristics, but not many conventional models are flexible enough to capture more
than a few of these characteristics. We introduce two classes of models, ITS and AHTS
models, that embrace three of these attributes – nonlinearity, nonstationarity, and thick
tails – and demonstrate that this triad may generate many of these and other observed
phenomena. Specifically, our models are generated by nonlinear functions of thick-tailed
random walks. Our particular focus on persistency in memory leads us to conclude based
on our results that such models may generate a variety of patterns of decay of asymptotic
autocorrelations. Two empirical examples illustrate how such models may be applied in
practice. While the first utilizes an extension of the Kalman filter to extract an unobservable
explanatory variable, the second relies on our theoretical results on nonlinear least squares
regression in this context. We assert that due to the time series properties of data generated
by our models, it would be easy for a researcher to mistakenly use a more conventional
approach – a stationary fractionally integrated model, e.g. – to make inferences.

Our work along these lines suggests many possibilities for future research in this area. It
should be possible to generalize such a model to allow for serial correlation in the innovations
of explanatory variable, as we discussed in Section 2, and also for ARCH-type measurement
errors to be incorporated in the model. Furthermore, more work could be done in the area
of nonlinear, nonstationary Kalman filtering. In light of recent work by Park and Phillips
(2001), it may be possible to work out the asymptotic properties of ML estimators in such
a framework. Extending the theory of this technique to ITS and AHTS models, in which
the innovations have infinite variances, might prove to be quite difficult. We leave these
challenges to future research.
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Appendix A: Useful Lemmas and Their Proofs

Lemma A1 Consider integrable F and (vt) belonging to the domain of attraction of a
stable law. If we define

Mn = ann−1
n∑

t=1

F (xt),

then we have
sup
n≥1

E |Mn|2 < ∞,

and therefore, in particular, (Mn) is uniformly integrable.

Proof of Lemma A1 Let F̂ be the Fourier transform of F , i.e.,

F̂ (λ) =

∫ ∞

−∞
eiλxF (x)dx.

As in the proof of Theorem 2.1 of BI (pg. 143), we may assume without loss of generality
that F̂ has compact support. Moreover, since F is bounded, so is F̂ . Therefore, we may
write

F (xt) =
1

2π

∫ ∞

−∞
e−iλxtF̂ (λ)dλ

=
1

2π

∫ ∞

−∞
e−iλ(a−1

n xt)F̂ (a−1
n λ)d(a−1

n λ)

and consequently, we have

Mn = ann−1
n∑

t=1

F (xt)

= an

∫ 1

0
F (anVn (r)) dr

=
1

2π

∫ ∞

−∞
F̂ (a−1

n λ)

∫ 1

0
e−iλVn(r)drdλ

as one may easily see. The last line follows from Fubini’s Theory.
Now note that F̂ (a−1

n ·) vanishes outside the interval [−can, can] for some constant c > 0,
since we have assumed that F̂ has compact support. Moreover, if we let

I(F ) =

∫ ∞

−∞
F (x)dx,

then we may write

∫ ∞

−∞

∣∣∣F̂ (a−1
n λ) − I(F )

∣∣∣
2

1 + |λ|2 dλ =

∫ ∞

−∞

|
∫∞
−∞ ei(a−1

n λx)F (x) dx −
∫∞
−∞ F (x) dx|2

1 + |λ|2 dλ → 0



35

as n → ∞ by dominated convergence, since |F (x)| is bounded. Also, note that
∫ ∞

−∞

|I (F )|2
1 + |λ|2 dλ < ∞.

The conditions for Theorem 2.1 of BI (pg. 85) are thus satisfied. Following the proof of
Theorem 2.1 of BI (pp. 87-88), we may now readily deduce that

E |Mn|2 = E

∣∣∣∣
1

2π

∫ ∞

−∞
F̂ (a−1

n λ)

∫ 1

0
e−iλVn(r)drdλ

∣∣∣∣
2

≤ c

(∫ ∞

−∞

|I (F )|2
1 + |λ|α dλ

)1/2

for some constant c > 0. See Equation (2.14) of BI (pg. 88). This completes the proof.

Lemma A2 (Asymptotics for Some Sample Moments – ITS ). Let Assumption 3.1 hold,
and define σ2

ε = Eε2
t and τ3

ε = Eε3
t . The following sample moments have asymptotic

distributions and rates of convergence given as follows:

(a) ann−1
∑n

t=1 F 2 (xt) →d L (1, 0)
∫∞
−∞ F 2 (x) dx

(b) a
1/2
n n−1/2

∑n
t=1 F (xt) εt →d MN

(
0, σ2

εL (1, 0)
∫∞
−∞ F 2 (x) dx

)

(c) ann−1
∑n

t=k+1 F (xt) F (xt−k) →d L(1, 0)
∫∞
−∞

∫∞
−∞ F (x)F (x + aky)Dk(y) dxµ(dy)

(d) ann−1
∑n

t=1 F 3 (xt) →d L (1, 0)
∫∞
−∞ F 3 (x) dx

(e) ann−1
∑n

t=1 F 4 (xt) →d L (1, 0)
∫∞
−∞ F 4 (x) dx

(f) a
1/2
n n−1/2

∑n
t=1 F 2 (xt) εt →d MN

(
0, σ2

εL (1, 0)
∫∞
−∞ F 4 (x) dx

)

(g) a
1/2
n n−1/2

∑n
t=1 F 3 (xt) εt →d MN

(
0, σ2

εL (1, 0)
∫∞
−∞ F 6 (x) dx

)

(h) ann−1
∑n

t=1 F (xt) ε2
t →d σ2

εL (1, 0)
∫∞
−∞ F (x) dx

(i) ann−1
∑n

t=1 F 2 (xt) ε2
t →d σ2

εL (1, 0)
∫∞
−∞ F 2 (x) dx

(j) ann−1
∑n

t=1 F (xt) ε3
t →d τ3

ε L (1, 0)
∫∞
−∞ F (x) dx

Proof of Lemma A2 (Asymptotics for Some Sample Moments – ITS ).
For the proof of part (a), we only need to note that F 2 is integrable. The stated result

then follows directly from Theorem 2.1 in BI (pg. 143).
The result in part (b) follows essentially from the proof of Theorem 3.2 in Park and

Phillips (2001) with the appropriate substitution for the rate of convergence an of a stable
process. Here we just give a sketch of the proof. Define

Mn(r) = a1/2
n n−1/2

j−1∑

t=1

F

(
anVn

(
t − 1

n

))(
U
(τnt

n

)
− U

(τn,t−1

n

))

+ a1/2
n n−1/2F

(
anVn

(
j − 1

n

))(
U(r) − U

(τn,j−1

n

))
,
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where τn,j−1/n < r ≤ τnj/n, (τni) is a time change as specified in Park and Phillips (2001),
and U is the Brownian motion constructed from (εt). Then we may write

a1/2
n n−1

n∑

t=1

F (xt) εt = Mn

(τnn

n

)
, (16)

and it follows that

[Mn] (1) = ann−1
j−1∑

t=1

F

(
anVn

(
t − 1

n

))2 (τnt

n
− τn,t−1

n

)

+ ann−1F

(
anVn

(
j − 1

n

))2 (
r − τn,j−1

n

)

= σ2
εan

∫ r

0
F (anVn (s))2 ds (1 + op (1))

→d σ2
εL(r, 0)

∫ ∞

−∞
F 2(x) dx,

uniformly in r ∈ [0, 1]. Due to the independence of U and Vn, Mn becomes asymptotically
independent of V . The stated result thus follows exactly as in Park and Phillips (2001).

The proof for part (c) is much more involved. For the sake of clarity, we first consider
the case in which k = 1 and a1 = 1. We also use the notation D for D1 to simplify the
notation. Write

n∑

t=2

F (xt)F (xt−1) =

n∑

t=2

(GF )(xt−1) +

n∑

t=2

F (xt−1)ut, (17)

where

G(x) =

∫ ∞

−∞
F (x + y)D(y)µ(dy)

and
ut = F (xt) − G(xt−1)

for t ≥ 1. Obviously, G is well-defined for all x ∈ R, since F is bounded. Note that

E (F (xt)|Ft−1) = G(xt−1),

where (Ft) is a filtration such that Ft is defined by the σ-field generated by (xs)
t
s=1 for each

t ≥ 1. Consequently, (ut,Ft) is an MDS.
It is easy to see that G is bounded. Therefore, since F is integrable, so is GF . Further-

more, we have

∫ ∞

−∞
(GF )(x) dx =

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D(y)dxµ(dy)
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due to the Fubini’s theorem. It therefore follows from Theorem 2.1 in BI (pg. 143) that

ann−1
n∑

t=2

(GF )(xt−1) →d L(1, 0)

∫ ∞

−∞
(GF )(x)dx

= L(1, 0)

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D(y)dxµ(dy). (18)

Now, if we can show

ann−1
n∑

t=2

F (xt−1)ut = op(1), (19)

then the stated result would be immediate from (17) and (18).
To establish (19), we will prove that

E

(
ann−1

n∑

t=2

F (xt−1)ut

)2

→ 0. (20)

Using the fact that (F (xt−1)ut,Ft) is an MDS, and subsequently applying the law of iterated
expectations, we may deduce that

E

(
ann−1

n∑

t=2

F (xt−1)ut

)2

= ann−1E

(
ann−1

n∑

t=2

F 2(xt−1)u
2
t

)

= ann−1E

(
ann−1

n∑

t=2

F 2(xt−1)E
(
u2

t |Ft−1

)
)

. (21)

Moreover, we may write

E
(
u2

t |Ft−1

)
= H(xt−1) − G2(xt−1),

where

H(x) =

∫ ∞

−∞
F 2(x + y)D(y)µ(dy).

It is easy to see that H is well defined and bounded, just like G introduced above.
Now we define

Mn = ann−1
n∑

t=2

F 2(xt−1)E
(
u2

t |Ft−1

)

= ann−1
n∑

t=2

(HF 2 − G2F 2)(xt−1).

Then we have, again due to Theorem 2.1 in BI (pg. 143),

Mn →d L(1, 0)

∫ ∞

−∞
(HF 2 − G2F 2)(x)dx,
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since HF 2 − G2F 2 is integrable. We may therefore deduce that

EMn → E

[
L(1, 0)

∫ ∞

−∞
(HF 2 − G2F 2)(x)dx

]
,

since (Mn) is uniformly integrable as shown in Lemma A1. Consequently, (20) follows from
(21), as was to be shown. The proof for k = 1 is now complete. The proof for the general
case is obvious and omitted.

The proofs of parts (d) and (e) are identical to that of part (a), and the proofs of parts
(f) and (g) are the same as that of part (b).

To prove part (f), we rewrite the sample moment as

n∑

t=1

F (xt) ε2
t =

n∑

t=1

F (xt)Eε2
t +

n∑

t=1

F (xt)
(
ε2
t − Eε2

t

)
.

The distribution of the first term is obvious. To get the stated result, we just need to
show that the second term is op(a

−1
n n). If we define ε2t =

(
ε2
t − Eε2

t

)
, then (ε2t) is iid and

independent of (vt). Moreover, it is clear that Eε2
2t < ∞, since we assume that E |εt|p < ∞

for some p ≥ 6. Now we may easily see that the second term is Op(a
−1/2
n n1/2) due to part

(b) of this lemma, and is therefore, op(a
−1
n n) when α > 1. The second term is therefore

dominated and the asymptotics are determined by the first term.
The proofs of parts (i) and (j) are essentially the same as that of part (h). For part

(j), note that we assume E |εt|p < ∞ for some p ≥ 6, and therefore, Eε2
3t < ∞, where

ε3t = ε3
t −Eε3

t .

Lemma A3 (Asymptotics for Some Sample Moments – AHTS ). Let Assumption 3.2
hold, and define σ2

ε = Eε2
t and τ3

ε = Eε3
t . The following sample moments have asymptotic

distributions and rates of convergence given as follows:

(a)
[
nν2 (an)

]−1∑n
t=1 F 2 (xt) →d

∫ 1
0 H2 (V (r)) dr

(b)
[
n1/2ν (an)

]−1∑n
t=1 F (xt) εt →d

∫ 1
0 H (V (r)) dU (r)

(c)
[
nν2 (an)

]−1∑n
t=k+1 F (xt)F (xt−k) →d

∫ 1
0 H2 (V (r)) dr

(d)
[
nν3 (an)

]−1∑n
t=1 F 3 (xt) →d

∫ 1
0 H3 (V (r)) dr

(e)
[
nν4 (an)

]−1∑n
t=1 F 4 (xt) →d

∫ 1
0 H4 (V (r)) dr

(f)
[
n1/2ν2 (an)

]−1∑n
t=1 F 2 (xt) εt →d

∫ 1
0 H2 (V (r)) dU (r)

(g)
[
n1/2ν3 (an)

]−1∑n
t=1 F 3 (xt) εt →d

∫ 1
0 H3 (V (r)) dU (r)

(h) [nν (an)]−1∑n
t=1 F (xt) ε2

t →d σ2
ε

∫ 1
0 H (V (r)) dr

(i)
[
nν2 (an)

]−1∑n
t=1 F 2 (xt) ε2

t →d σ2
ε

∫ 1
0 H2 (V (r)) dr

(j) [nν (an)]−1∑n
t=1 F (xt) ε3

t →d τ3
ε

∫ 1
0 H (V (r)) dr
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Proof of Lemma A3 (Asymptotics for Some Sample Moments – AHTS ).
For the proof of part (a), we note that F 2 is asymptotically homogeneous with AO ν2

and LHF H2. This is shown in Park and Phillips (2001). In particular, F 2 is regular at
infinity due to Lemma 3.1, and therefore, the stated result follows directly from Theorem
1.6 of BI (pg. 138).

For part (b), we write

[
n1/2ν(an)

]−1
n∑

t=1

F (xt)εt =

∫ 1

0
H(Vn(r)) dUn + op(1),

where Un is the partial sum process defined from (εt), i.e., Un(r) = n−1/2
∑[nr]

t=1 εt. The
stated result now follows exactly as in Park and Phillips (1999).

To prove part (c), it suffices to show that

[
nν2(an)

]−1
n∑

t=k+1

F (xt)F (xt−k) =
1

n

n∑

t=k+1

H

(
xt

an

)
H

(
xt−k

an

)
+ op(1)

=
1

n

n∑

t=k+1

H2

(
xt

an

)
+ op(1)

=

∫ 1

0
H2(Vn(r)) dr + op(1),

from which the stated result follows immediately. We may easily deduce the first equality
from the asymptotic homogeneity of F . The second equality is somewhat harder to prove.
For a smooth asymptotically homogeneous function, it is well expected, since

H

(
xt

an

)
= H

(
xt−k

an
+

vt + · · · + vt−k+1

an

)
≈ H

(
xt−k

an

)

for any finite k. The approximation indeed holds without differentiability of the asymptoti-
cally homogeneous function. The rigorous proof for the second inequality, however, will not
be given, since it is too long, yet tedious and essentially identical to the proof of Lemma
3.2 in Chang and Park (2004) for their study of asymptotics for nonlinear regressions with
integrated time series under endogeneity.

The proofs of parts (h), (i) and (j) of the lemma are completely analogous to the proofs
of the corresponding parts of Lemma A2, and are therefore omitted. Noting that F 3 and
F 4 are asymptotically homogeneous with appropriate AO’s and LHF’s trivializes the proofs
of parts (d), (e), (f), and (g), so we omit those proofs, as well.

Appendix B: Proofs of the Main Results

Proof of Lemma 3.1 Let F be asymptotically homogeneous with LHF H satisfying

H(x) = |x|κH(1) (22)
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for some κ > −1. If we define
`κ(x) = |x|−κF (x),

then it follows immediately that

lim
|x|→∞

F (x)

|x|κ`κ(x)
= 1

Therefore, it suffices to show that `κ is slowly varying at infinity, i.e.,

lim
λ→∞

`κ(λx)

`κ(λ)
= 1 (23)

to finish the proof. However, (23) readily follows from the asymptotic homogeneity of F
and (22), since

F (λx) = ν(λ)[H(x) + o(1)],

F (λ) = ν(λ)[H(1) + o(1)]

for large λ > 0, and therefore

`κ(λx)

`κ(λ)
→ H(x)

|x|κH(1)
= 1

as λ → ∞.

Proof of Theorem 3.2 (Asymptotics for Rnk – ITS ). We let σ2
ε > 0. The result for

the model with σ2
ε = 0 may simply be derived as a special case for which (εt) ≡ 0 in what

follows. Note that

n∑

t=1

yt =

n∑

t=1

F (xt) +

n∑

t=1

εt = Op(a
−1
n n) + Op(n

1/2),

and therefore, for fixed k,

n∑

t=k+1

(yt − ȳn) (yt−k − ȳn) =
n∑

t=k+1

ytyt−k + o
(
a−1

n n
)
,

due in particular to Lemma A2. As a consequence, the mean adjustment in the definition
of the sample correlation becomes negligible and does not affect the asymptotics, as long
as ann−1 → 0. This will be seen clearly in the subsequent proof.

Write

n∑

t=k+1

ytyt−k =

n∑

t=k+1

F (xt)F (xt−k)+

n∑

t=k+1

F (xt)εt−k +

n∑

t=k+1

F (xt−k)εt +

n∑

t=k+1

εtεt−k. (24)
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Due to Lemma A2, we have

n∑

t=k+1

F (xt)F (xt−k) = Op(a
−1
n n) (25)

and
n∑

t=k+1

F (xt)εt−k,
n∑

t=k+1

F (xt−k)εt = Op(a
−1/2
n n1/2) (26)

for all k ≥ 0. Moreover, we have

1

n

n∑

t=k+1

ε2
t →p σ2

ε , (27)

and for all k ≥ 1
1√
n

n∑

t=k+1

εtεt−k →d N
(
0, σ4

ε

)
, (28)

by the standard law of large numbers and central limit theorem.
We first consider the case of k = 0 in (24), which also gives us asymptotics for the

denominator. It is obvious from (25)–(27) that

1

n

n∑

t=k+1

y2
t =

1

n

n∑

t=k+1

ε2
t + op(1) →p σ2

ε , (29)

since an → ∞, and hence,
a−1

n n, a−1/2
n n1/2 = o(n).

Next, to consider the case of k ≥ 1 in (24), we first note that

n−δ < `(n) < nδ (30)

for any δ > 0 and for all n sufficiently large. This is well-known [see for example Feller
(1971, Lemma 2, pg. 277)]. Since we assume α > 1, this implies that

a−1
n n → ∞,

and therefore,
a−1/2

n n1/2 = o(a−1
n n)

for all large n. Consequently, the terms in (26) are smaller than those in (25) and asymp-
totically negligible for all k ≥ 0.

Let 1 < α < 2. Then it follows from (30) that

n1/2 = o(a−1
n n),
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and therefore we have for all k ≥ 1

ann−1
n∑

t=k+1

ytyt−k = ann−1
n∑

t=k+1

F (xt)F (xt−k) + op(1)

= L(1, 0)

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + aky)Dk(y) dxµ(dy),

due to Lemma A2(c), which together with (28) immediately yields the stated result in this
case. Now we let α = 2. In this case, the dominant terms differ depending upon whether
`(n) → 0, c,∞. If, for instance, `(n) → c for some constant c, then we have both the first
term and the last term in (24) for our asymptotics. As a result, we have

n−1an

n∑

t=k+1

ytyt−k = n−1an

n∑

t=k+1

F (xt)F (xt−k) + n−1/2`(n)
n∑

t=k+1

εtεt−k + op(1),

and the stated result easily follows. The result for each of the cases `(n) → 0 and `(n) → ∞
can also be readily deduced upon noticing that the first or the last term dominates the
other in each case.

Proof of Corollary 3.3 (Rate of Decay of Rnk – ITS ). Since we assume that (ϕk) are
absolutely integrable, we may have

Dk(x) =
1

2π

∫ ∞

−∞
e−isxϕk(s) ds (31)

due to the Fourier inversion formula. By the same token, we may also have

D(x) =
1

2π

∫ ∞

−∞
e−isxϕ(s) ds, (32)

since the characteristic function ϕ of a stable distribution is absolutely integrable. Therefore,
it can be easily deduced from (31) and (32) that

sup
x∈R

|Dk(x) − D(x)| ≤ 1

2π

∫ ∞

−∞
|ϕk(s) − ϕ(s)| ds → 0

as k → ∞, since ϕk → ϕ in L1. The sequence of PDF’s (Dk) thus converge uniformly.
Now we have

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + aky)Dk(y) dx dy

= a−1
k

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)Dk(a

−1
k y) dx dy

= a−1
k

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D(a−1

k y) dx dy + o(a−1
k )

= a−1
k D(0)

(∫ ∞

−∞
F (x) dx

)2

+ o(a−1
k )
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for large k, by the change of variables, the uniform convergence of Dk to D and the continuity
of D at the origin. Note that the absolute integrability of (ϕk) implies that the distribution
of (vt) is absolutely continuous with respect to Lebesgue measure, and for this reason, we
use the notation dy in place of µ(dy). The stated result now follows immediately and the
proof is complete.

Proof of Theorem 3.4 (Asymptotics for S2
n, Q3

n, K4
n – ITS ). The distributions for S2

n

and the denominators of the other two sample statistics follow directly from the asymptotics
of the denominator in Theorem 3.2. Letting σ2

ε > 0, we now turn to the numerator of Q3
n.

It is easy to show that the mean adjustment is asymptotically negligible, as in the proof for
the autocorrelation. Expanding the dominant term yields

1

n

n∑

t=1

y3
t =

1

n

n∑

t=1

F 3 (xt) +
3

n

n∑

t=1

F 2 (xt) εt +
3

n

n∑

t=1

F (xt) ε2
t +

1

n

n∑

t=1

ε3
t ,

which with the fact that
1

n

n∑

t=1

ε3
t →p τ2

ε

and with Lemma A2 gives us the desired result. When σ2
ε = 0, only the first term re-

mains. The proof for the sample kurtosis is very similar to that of the sample skewness, by
expanding the numerator and noting that

1

n

n∑

t=1

ε4
t →p κ4

ε,

which determines the probability limit of the numerator when σ2
ε > 0. Again, the case of

σ2
ε = 0 is trivial.

Proof of Theorem 3.5 (Asymptotics for Rnk – AHTS ). The case in which σ2
ε = 0 is a

special case, so let σ2
ε > 0. Note that

n∑

t=k+1

(yt − ȳn) (yt−k − ȳn)

=

n∑

t=k+1

ytyt−k − 1

n

n∑

t=k+1

yt−k

n∑

t=1

yt −
1

n

n∑

t=k+1

yt

n∑

t=1

yt +

n∑

t=k+1

(
1

n

n∑

t=1

yt

)2

,

which means that the mean adjustment may not be dismissed, as it was in the ITS case.
First, consider the case in which k = 0. The above expression reduces to

n∑

t=1

y2
t −

1

n

(
n∑

t=1

yt

)2

. (33)



44

We may expand the first term of (33) to obtain

n∑

t=1

F 2 (xt) + 2

n∑

t=1

F (xt) εt +

n∑

t=1

ε2
t .

which by Lemma A3 has the distribution of its first term. We may similarly expand the
second term of (33), which also has the distribution of the first term of that expansion. The
result for k = 0 obviously follows. The result for k ≥ 1 follows directly from the appropriate
parts of Lemma A3, using the same logic.

Proof of Theorem 3.6 (Asymptotics for S2
n, Q3

n, K4
n – AHTS ). The proof for S2

n follows
directly from the asymptotics in Theorem 3.5 (by letting k = 0), and the other proofs are
essentially the same as that for the sample variance, using the appropriate parts of Lemma
A3.

Proofs of Theorems 4.1 and 4.2 (Asymptotics for θ̂n). Given the invariance principle
(10) and Lemma 3.1, the proofs follow that of Theorems 5.1 and 5.2 in Park and Phillips
(2001), with rates of convergence following from our Lemmas A2 and A3.


