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Abstract

Two agents jointly operate a decreasing marginal returns technology to produce a private

good. We characterize the class of output-sharing rules for which the labor-supply game has

a unique Nash equilibrium. It consists of two families: rules of the serial type which protect

a small user from the negative externality imposed by a large user, and rules of the reverse

serial type, where one agent e¤ectively employs the other agent�s labor. Exactly two rules

satisfy symmetry; a result in sharp contrast with Moulin and Shenker�s (Econometrica, 1992)

characterization of their serial mechanism as the unique cost -sharing rule satisfying the same

incentives property. We also show that the familiar stand alone test characterizes the class of

�xed-path methods (Friedman, Economic Theory, 2002) under our incentives criterion.
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1 Introduction

When several producers jointly operate a production process, total output (or pro�ts) must be

shared as a function of their individual contributions (see Israelsen 1980, Sen 1966, Weitzman 1974).

This question applies whether the production structure is one of common access to the production

function (as in the so-called "commons problem") or one where property rights to the technology

are clearly de�ned. An extreme example of the latter is that of a monopolist hiring workers.

The production possibilities are common knowledge and exhibit decreasing marginal returns,

but the individual leisure-consumption trade-o¤s are private information. We are concerned with

sharing rules with very strong incentives properties, so as to avoid undesirable phenomena like free-

riding or the familiar "tragedy of the commons". The incentives criterion we consider is that of

strategyproofness (SP), under which it is a dominant strategy for every agent to behave according

to her true preference. This requirement does not hinge on any informational assumption and is

therefore more robust than, say, Bayesian incentive compatibility.1

In the two-agent case, we characterize the class of sharing rules which are monotonic (each

agent�s share is increasing in her own input contribution), smooth (the sharing rule is continuously

di¤erentiable in inputs) and which satisfy an incentives requirement even stronger than SP (Theorem

1). This class of sharing rules is made up of two families which we call the "serial" family and the

"reverse serial" family. An essential feature of rules in the serial family is that the share of a relatively

small supplier of input is una¤ected by changes in the supply level of a large supplier (a feature called

the "serial principle" in Sprumont, 1998) while the converse is true for rules of the reverse serial

type: the share of a large supplier is una¤ected by changes in the input level of a small supplier.

In addition, the externality imposed by a small user on large users is negative under a serial rule.

Conversely, a large supplier of input imposes positive externalities on small suppliers under a reverse

serial rule. Thus, we argue that serial rules are more adapted to the commons problem, with the

negative externality re�ecting congestion, while reverse serial rules correspond to a more "corporate"

production structure where the owner of the facility extracts rents from the labor contribution of a

worker.

In Section 5 we consider a popular axiom in the commons literature. The stand alone test (SA)

captures the essence of the commons problem by demanding that no agent be made better o¤ by

the presence of others than if she were operating the technology by herself (see, e.g., Moulin and

Shenker 1992, Suh 1997, Sprumont 1998, Hougaard and Thorlund-Pertersen 2000). It turns out that

SA characterizes the output-sharing version of the class of �xed-path methods (FPMs) discussed in

Friedman (2002, 2004) (see Theorem 2). These sharing rules allocate marginal quantities of input,

and the corresponding amounts of output, along a prespeci�ed path in the agents� input space.

Among well-known FPMs are the Moulin and Shenker serial rule and priority rules, which follow

the diagonal of the positive orthant and an axis of the agents�input space, respectively.

After relating our work to the existing literature (Section 2) we de�ne the serial and reverse

serial families of sharing rules (Section 3) and state our main characterization theorem (Theorem 1)

in Section 4. In Section 5 we characterize the class of FPMs by SA.

1We refer the reader to a companion paper (Leroux, 2005) for a discussion of strategyproofness relative to Bayesian
incentive compatibility.
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2 Relation to the literature

This work contributes to the large literature on the trade-o¤ between e¢ ciency and incentive com-

patibility.

Because mechanisms in the serial and reverse serial family are strategy-proof, they fail to be

�rst-best e¢ cient (see Leroux, 2004). The bulk of the recent literature on strategyproofness in

the cooperative production of a private good was framed in the cost-sharing context, where agents

demand a quantity of output and split the cost of meeting total demand (see Moulin and Shenker

1992, Shenker 1992, de Frutos 1998, Sprumont 1998, Friedman 2002, 2004, Téjédo and Truchon

2002, and Alcalde and Angel-Silva 2004). By contrast, Suh (1997) is the only other contribution

that we know of which adopts the output-sharing framework. We provide a discussion of the subtle

di¤erence between the cost- and output-sharing frameworks in Section 6. We refer the reader to

Moulin (2002) for a survey on axiomatic cost and output sharing.

Regardless of the framework adopted, mapping out the class of strategy-proof mechanisms in

economies with production of private goods remains a large open question. So far, authors have

mainly approached the question by pairing SP with additional axioms: e.g. symmetry (Moulin and

Shenker 1992, Suh 1997), or individual rationality (Leroux, 2005). Our Theorem 1 is the �rst to be

free of such axioms.

The FPMs we characterize in Theorem 2 are the output-sharing versions of cost-sharing mech-

anisms introduced Friedman (2002) as non-anonymous generalizations of the Moulin and Shenker

serial rule retaining its strong incentives properties. We show in a companion paper (Leroux, 2005)

that Theorem 2 does not extend to the many-agent case and discuss the appeal of FPMs in part-

nership problems.

Recent related literature on the common production of private goods considers weaker interpreta-

tions of incentive compatibility (see, e.g., Corchón and Puy 2002, Shin and Suh 1997). For instance,

Corchón and Puy establish that any continuous sharing rule admits a Pareto-e¢ cient allocation

which can be Nash-implemented. Yet, any game implementing such an outcome must have several,

non-welfare-equivalent Nash equilibria at some pro�les. Here we insist on the uniqueness of the Nash

equilibrium, a much more demanding requirement than the above kind of Nash-implementability.

3 The two families

Two agents jointly operate an increasing, strictly concave and continuously di¤erentiable production

function F : R+ ! R+ such that F (0) = 0. When each agent i supplies xi � 0 units of input, the
input vector x = (x1; x2) yields F (x1 + x2) units of total output.

Agent i�s utility from supplying xi � 0 and receiving yi � 0 units of output is ui(xi; yi); the

utility function, ui, is decreasing in xi, increasing in yi and quasi-concave. A preference pro�le (or

a pro�le) is a pair (u1; u2) of utility functions, one per agent.

A sharing rule is a mapping � : R2+ ! R2+ such that �1(x) + �2(x) = F (x1 + x2) for all x, which
is smooth (� is continuously di¤erentiable) and monotonic ( @�i@xi

> 0 for i = 1; 2).

We denote by B the class of non-decreasing functions b : R+ ! R+[f+1g which are continuous
on R+ and increasing on ft � 0j0 < b(t) < +1g. I.e., b can only be constant on a range where it
returns zero; also, its graph can have a vertical asymptote. We denote by F the class of mappings
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from R+ to itself which are increasing, strictly concave and continuously di¤erentiable.

De�nition 1 A sharing rule � is of the serial type if there exists b 2 B and gs; hs 2 F s.t.

�(x) =

(
(gs(x1); F (x1 + x2)� gs(x1)) if x2 � b(x1)
(F (x1 + x2)� hs(x2); hs(x2)) if x2 � b(x1)

We denote by S the class of such rules.

The reader will notice that when x2 � b(x1) agent 1�s output share is una¤ected by changes in
x2 above b(x1); a symmetric statement holds if x2 � b(x1). Rules of the serial type protect low-level
users of the facility from the negative externalities imposed by high-level users above a certain level.

It is easily checked that S includes the output-sharing version of the Moulin and Shenker serial
rule (the serial rule, see Moulin and Shenker 1992) with b(x1) = x1, gs(t) = hs(t) = 1

2F (2t); and of

the �xed-path methods discussed in Friedman (2002, 2004): with gs(x1) =
R x1
0
F 0(t+ b(t))dt and

hs(x2) =

(
F (x2) if x2 � b(0),
F (b(0)) +

R x2
b(0)

F 0(b�1(t) + t)dt otherwise.

De�nition 2 A sharing rule � is of the reverse serial type if there exists b 2 B and gr; hr 2 F s.t.

�(x) =

(
(F (x1 + x2)� hr(x2); hr(x2)) if x2 � b(x1)
(gr(x1); F (x1 + x2)� gr(x1)) if x2 � b(x1)

We denote by R the class of such mechanisms.

Here, however, agent 2�s output level is una¤ected by changes in x1 below b�1(x2) if x2 � b(x1).2

If x2 � b(x1), a mechanism of the reverse serial type provides a compensation schedule, hr, for the

high-level supplier of input (agent 2, "the worker") whose labor bene�ts the low-level supplier (agent

1, "the employer").

Clearly, the decreasing serial rule (as in de Frutos [6]) belongs to R: b(x1) = x1, gr(t) = hr(t) =
1
2F (2t).

The intersection of R and S is nonempty. It is worth noting that the priority rules giving full
access to one agent belong to both families: for instance, both [b � 0; gs(x1) = F (x1)] and [b � +1;
gr(x1) = F (x1)] represent the rule giving priority to agent 1. More generally we denote by D1 (resp.
D2) the class of rules where b � 0 (resp. b � +1), such that agent 1 (resp. 2) is a dictator, and by
D � D1 [ D2 the class of dictatorships. The reader can easily check that R\ S = D.

4 Main result

Our main result is a full characterization of the class of sharing rules satisfying an incentives criterion

stronger than SP.

Theorem 1 Let � be a sharing rule. The following statements are equivalent:
2Note that from the de�nition of B, b�1(x2) exists for any positive x2 in the range of b.
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i) � 2 S [R,
ii) the supply game associated with � (strategy xi, payo¤ ui(xi; �i(x))) admits at most one Nash

equilibrium at all pro�les,

iii) the supply game associated with � admits exactly one Nash equilibrium at all pro�les.

A standard result in the implementation literature (See Dasgupta et al., 1979) implies that the

direct mechanism� where each agent�s strategy space is the space of utility functions� associated

with a sharing rule � 2 S [ R is SP. Moreover, the unique Nash equilibrium of the supply game

turns out to be strong (easily checked), therefore the associated direct mechanism is also group-

strategyproof (i.e. invulnerable to coordinated manipulations).

5 The stand alone test

Given that F exhibits decreasing marginal returns, the context is one of negative externalities where

the participation of each agent decreases the productivity of the others. In a commons problem

the mechanism designer may require that the sharing rule re�ects these negative externalities. We

propose the following interpretation of this requirement.

The stand alone test (SA) A sharing rule, �, satis�es SA if and only if

�i(x) � F (xi)

for all x 2 R2+ and i = 1; 2.

SA asks that no agent bene�ts from the presence of the other agent. We show that it characterizes

the output-sharing versions of the class of �xed-path methods (Friedman, 2002) among rules of the

serial and reverse serial family. Fixed-path methods allocate marginal increments of input� and

the corresponding amount of output� along a prespeci�ed continuous increasing path in the agents�

input space. With our notations, the class of �xed-path methods consists of the two priority rules

as well as all the non-dictatorial serial rules with gs(0) = hs(0) = 0:

FPM = f� 2 SnDjgs(0) = hs(0) = 0g [ fP 1; P 2g

where P ii (x) = F (xi) and P
i
j = F (xi + xj)� F (xi).

Theorem 2 Let � 2 S [R, the following statements are equivalent:
i) � 2 FPM ,
ii) � satis�es SA.

Proof. Notation: De�ne X1 = fx1 > 0j0 < b(x1) < +1g and write X1 =]x1; �x1[. Notice that
X1 6= ; if and only if � =2 D.
i) =) ii) Suppose � 2 FPM . Consider the following property:
Cross Monotonicity (CM) A sharing rule, �, satis�es CM if and only if

@�i
@xj

� 0

on R2+ for i 6= j.
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Because CM is more demanding than SA, it su¢ ces to show that � satis�es CM.3 If � = P 1, then

clearly @�1
@x2

� 0 and @�2
@x1
(x) = F 0(x1 + x2) � F 0(x1) � 0 for all x by the concavity of F . Similarly,

P 2 also satis�es CM.

If � 2 SnD, then smoothness implies:

F 0(x1 + b(x1)) = g
s0(x1) = h

s0(b(x1))

for all x1 2 X1. The reader can check that integrating between (0; 0) and (x1; x2) and taking into
account g(0) = h(0) = 0 yields gs(x1) =

R x1
0
F 0(t+ b(t))dt and

hs(x2) =

(
F (x2) if x2 � b(0),
F (b(0)) +

R x2
b(0)

F 0(b�1(t) + t)dt otherwise.

CM follows from the strict concavity of F and the strict monotonicity of b.

ii) =) i) Suppose � 2 D1, i.e. �(x) = (g(x1); F (x1 + x2) � g(x1)) for some g 2 F . By SA,
g(x1) � F (x1) and �2(x1; 0) = F (x1)� g(x1) � F (0) = 0 for all x1 � 0. Hence, g � F and � = P 1.
Similarly, if � 2 D2 then � = P 2.
Suppose � =2 D, we show that � =2 RnD. By contradiction, suppose � 2 RnD, then for any

x1 2 X1,

�2(x) = F (x1 + x2)� gr(x1) � F (x2) for any x2 � b(x1) by SA,
() gr(x1) � F (x1 + x2)� F (x1) for any x2 � b(x1),
() gr(x1) � F (x1) by concavity of F ,

() gr � F on X1, by SA (for agent 1).

Also, by smoothness

F 0(x1 + b(x1)) = g
r0(x1)

for all x1 2 X1 which is incompatible with both gr � F and the strict concavity of F .
Finally, we show that if � 2 SnD, then SA implies gs(0) = hs(0) = 0. Indeed, if 0 < b(0) < +1,

then �2(0; 0) = hs(0) = 0 and �1(0; b(0)) = gs(0) = 0. Similarly, the result holds if x1> 0 and if

b�1(f0g) = f0g.

6 Concluding comment

The following remark is an immediate corollary of Theorem 1 which generalizes to the many-agent

case (see Suh 1997).

Remark 3 The Moulin and Shenker serial rule and the de Frutos� decreasing serial rule are the
only two symmetric sharing rules satisfying our incentives requirement (proviso iii) of the statement

of Theorem 1).

3Under CM, budget balance and the positivity of output shares require:

F (xi) � �i(xi; 0) � �i(x) for all x and all i.
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As recalled in Section 2, most of the existing literature on cooperative production focuses on

the cost-sharing approach, with the general intuition that the output-sharing problem is a mere

rewriting of the cost-sharing problem (see, e.g., Section 8 of Moulin and Shenker, 1992). However,

the following contrasts markedly with this view.

De�ne the cost function C � F�1; clearly, C and F are equivalent representations of the same

production possibilities. A cost-sharing rule, �, allocates to any vector of demands (y1; y2) 2 R2+
a cost vector (x1; x2) 2 R2+ such that x1 + x2 = C(y1 + y2). The Moulin and Shenker serial rule,

de�ned by

�MS
i (y) =

1

2
C(2yi) and �MS

j (y) = C(y1 + y2)�
1

2
C(2yi)

if yi � yj , is the only cost-sharing rule whose associated demand game has a unique Nash equilibrium
at all pro�les (Theorem 2 in Moulin and Shenker, 1992). In particular, the de Frutos decreasing

serial cost-sharing rule, de�ned by

�dFi (y) =
1

2
C(2yj) and �dFj (y) = C(y1 + y2)�

1

2
C(2yj)

if yi � yj , is not well de�ned when C is strictly convex (i.e. when F is strictly concave, as in our

framework) as it does not guarantee positive cost shares. This fact, in light of Remark 3, suggests

that the di¤erence between the cost- and output-sharing versions of the sharing problem goes beyond

simple rewriting.

This discrepancy between these two formulations of the same problem is reminiscent of a some-

what di¤erent �nding in Moulin and Watts (1997). They show that if given the choice between

playing the average cost game or the average returns game, individuals would unambiguously choose

the latter. We deem worthy of exploration whether adopting the cost- or output-sharing framework

has other practical consequences.

A Appendix

A.1 Proof of Theorem 1

i) =) iii) The proofs of the strategic properties of the Moulin and Shenker serial rule (See Moulin

and Shenker, 1992, Theorem 1) and of �xed-path methods (see Friedman 2002) in the cost-sharing

context can be adapted to our setting. We nonetheless provide a proof for the sake of completeness.

We will use the following lemma extensively; its obvious proof is omitted.

Lemma 1 Suppose f; g 2 F coincide on the interval
�
��; �+

�
, and for any utility function, u,

denote �1 = max
�
u(�; f(�)) and �2 = max

�
u(�; g(�)). The following statements are true:

��1 < �
� i¤ �2 < �

�,

��1 > �
+ i¤ �2 > �

+,

�8� 2
�
��; �+

�
, �1 = � i¤ �2 = �.

The existence of a Nash equilibrium of the supply game is guaranteed by the convexity of pref-

erences and the (easily checked) fact that for any x, the boundary of each agent�s option set is the

graph of a strictly concave function: �1(�; x2) and �2 (x1; �), respectively. Each agent has a unique
best response to the other agent�s strategy.
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Figure 1: An impossible con�guration.

We show uniqueness by contradiction. Fix a preference pro�le, and suppose the supply game ad-

mits two distinct Nash equilibria, x�and x��, at that pro�le. We claim that [b(x�1) � x�2 =) b(x��1 ) > x
��
2 ]

and [b(x�1) � x�2 =) b(x��1 ) < x
��
2 ]. Suppose not, and suppose without loss of generality that

b(x�1) � x�2 and b(x��1 ) � x��2 . Then, if � 2 R, observe that �2(x�1; �) � �2 (x��1 ; �) � hr(�) on the in-
terval [max fb(x�1); b(x��1 )g ;+1[ (and therefore on any closed subinterval). By Lemma 1, x�2 = x��2 .
Because agent 1 has a unique best response to x�2 (and to x

��
2 ) it follows that x

�
1 = x

��
1 , contradicting

the assumption that x� and x�� are distinct. If � 2 S, the argument is similar upon noticing that
�1(�; x�2) � �1(�; x��2 ) � gs(�) on the interval [0;min fx�2; x��2 g].
It follows from the argument of the previous paragraph that the supply game induced by � has a

unique Nash equilibrium at all pro�les if � 2 D. Next, we only show uniqueness for the case � 2 RnD
as the argument is similar for � 2 SnD.
Let � 2 RnD and suppose without loss that b(x�1) � x�2 and b(x��1 ) > x��2 . We claim that b(x��1 ) �

x�2. If not, then x
�
2 > b(x

��
1 ) > x

��
2 and �2(x

�
1; �) � �2(x��1 ; �) � hr(�) on [max fb(x�1); b(x��1 )g ;+1[; see

Figure 1 (drawn for the case b(x��1 ) � b(x�1)). It follows from Lemma 1 and x�2 � maxfb(x�1); b(x��1 )g
that x2 � b(x��1 ), a contradiction of our assumption. We can show similarly that b(x��1 ) � x�2 (and
hence b(x��1 ) = x

�
2) and that b(x

�
1) = x

��
2 . Finally, one can apply Lemma 1 one last time to contradict

b(x��1 ) = x
�
2 > b(x

�
1) = x

��
2 .

iii) =) ii) Obvious.

ii) =) i) Let � be a sharing rule for which the associated supply game has at most one Nash

equilibrium at all pro�les, we show � 2 S [R.
Notation: We say that a 2 � 2 matrix, [�ij ], is acyclic if �12�21 = 0. We say that a sharing

rule, �, is acyclic at a point x 2 R2+ if the Jacobian matrix of � at x,
h
@�i
@xj
(x)
i
, is acyclic. We
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de�ne NE =
n
x 2 R2+j

@�1
@x2
(x) 6= 0 and @�2

@x1
(x) = 0

o
, SW =

n
x 2 R2+j

@�1
@x2
(x) = 0 and @�2

@x1
(x) 6= 0

o
and D =

n
x 2 R2+j

@�1
@x2
(x) = @�2

@x1
(x) = 0

o
.

We start the proof by restating a lemma from the proof of Theorem 2 in Moulin and Shenker

(1992), which still holds in our setting. It is related to the �nding that strategyproof mechanisms

must be acyclic at di¤erentiable points (see Satterthwaite and Sonnenschein, 1981).

Lemma 2 (Lemma 5 in [12]) If the supply game associated with � has at most one Nash equilibrium,
then � is acyclic at all x 2 R2+.

It is clear from acyclicity that NE, SW and D form a partition of R2+ and from smoothness that
NE and SW are open whereas D is closed.

Claim 1 a) � can be written as

�(x) = (g(x1); F (x1 + x2)� g(x1))

on any connected open subset of SW for some mapping g 2 F .
b) � can be written as

�(x) = (F (x1 + x2)� h(x2); h(x2))

on any connected open subset of NE for some mapping h 2 F .

Proof. We only prove statement a). By de�nition, @�1
@x2

� 0 on SW , which implies that for any

connected open subset, �, of SW there exists a mapping g such that �1(x) = g(x1) on �; also,

budget balance requires �2(x) = F (x1 + x2) � g(x1) on �. The monotonicity and smoothness of �
imply that g must be strictly increasing and continuously di¤erentiable, respectively.

It remains to show the strict concavity of g. Consider any x 2 � and " > 0 such that the

closed ball, �B(x; "), is included in � and suppose g is convex on [x1 � "; x1 + "]. Because for any
s 2 [x1 � "; x1 + "], �2(s; �) � F (s + �) � g(s) is strictly concave, one can �nd a utility function u2
such that x2 is agent 2�s best response to any s 2 [x1 � "; x1 + "].4 Then, one can construct a utility
function u1 such that u1(x1 � "; g(x1 � ")) = u1(x1 + "; g(x1 + ")) = max[x1�";x1+"] fu1(s; g(s))g;
see Figure 2. By monotonicity of �1(�; x2) and convexity of preferences, one can �nd u1 "convex
enough" such that u1(x1 � "; g(x1 � ")) = u1(x1 + "; g(x1 + ")) = maxfsj(s;x2)2�g fu1(s; �1(s; x2))g.
Hence, both (x1 � "; x2) and (x1 + "; x2) are Nash equilibria of the supply game, contradicting the
uniqueness assumption.

The remainder of the proof consists in establishing that the boundary between NE and SW is

increasing and is the graph of some increasing real-valued function. But �rst we must make sure

that this boundary exists.

Claim 2 i) D has empty interior,

ii) there exists a boundary, B, between NE and SW , if both are nonempty,

iii) B � D.

Proof. Suppose i) is false and consider an open neighborhood in D containing 4 points xA, xB , xC ,

xD such that xC (resp. xD) lies North of xA (resp. xB) and xB (resp. xD) lies East of xA (resp.

xC); see Figure 3.

4E.g. by making the indi¤erence curves of agent 2�s preference arbitrarily close to being right-angled.
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Figure 2: Multiple equilibria may exist if g is not strictly concave.

Notice that budget balance requires �1(x) + �2(x) = F (x1 + x2) for all x, which implies:

@�1
@x1

(x) +
@�2
@x1

(x) = F 0(x1 + x2) (1)

for all x 2 R2+. Therefore,
@�1
@x1
(x) = F 0(x1 + x2) on D. Thus, taking the integral between xA

and xB yields �1(x
B) = �1(x

A) + F (xB1 + x
B
2 ) � F (xA1 + xA2 ); also, �1(xD) = �1(x

B) because
@�2
@x1

� 0 on D. Therefore �1(x
D) = �1(x

A) + F (xB1 + x
B
2 ) � F (xA1 + xA2 ). Similarly, �1(xD) =

�1(x
C) + F (xD1 + x

D
2 )� F (xC1 + xC2 ) = �1(xA) + F (xD1 + xD2 )� F (xC1 + xC2 ), which implies

F (xB1 + x
B
2 )� F (xA1 + xA2 ) = F (xD1 + xD2 )� F (xC1 + xC2 ),

a clear contradiction of the strict concavity of F . Therefore D is of empty interior and the boundary

between NE and SW exists; smoothness implies that the latter is contained in D.

We call any continuous path of R2+ which is a subset of B a portion of the boundary.

Claim 3 B does not contain vertical or horizontal portions.

Proof. Suppose B contains a non-degenerate horizontal portion
�
x�1 ; x

+
1

�
�fx2g. Smoothness, along

with the fact that B � D and Claim 1 imply h0(x2) = g0(x1) for all x1 in some non-degenerate sub-

interval of
�
x�1 ; x

+
1

�
for some mappings g; h 2 F , contradicting the strict concavity of g. Similarly,

B cannot contain a vertical portion.

Claim 4 On a portion of B, x2 increases with x1.

Proof. As above, h0(x2) = g0(x1) must hold at any point on the boundary and the claim holds true

by strict concavity of g and h.

10



Figure 3:

We introduce some more notation. We de�ne the sets SW+ =
n
x 2 SW j@�2(x)@x1

> 0
o
and SW� =n

x 2 SW j@�2(x)@x1
< 0

o
; the sets NE+ and NE� are similarly de�ned. By smoothness, these four

sets are open.

Claim 5 a) SW� is north-comprehensive: SW� + f0g � R+ � SW�,

b) SW+ is south-comprehensive: SW+ + f0g � R� � SW+,

c) NE� is east-comprehensive: NE� + R+ � f0g � NE�,
d) NE+ is west-comprehensive: NE+ + R� � f0g � NE+.

Proof. We only prove statement a). Let x 2 SW�, and consider an open neighborhood of x

contained in SW�. On that neighborhood, @�1
@x2

= 0, i.e. �1 is independent of x2; in particular,

the ratio �1(x1+";x2)��1(x1;x2)
" is also independent of x2 on that neighborhood for small values of

". Taking the limit, @�1@x1
is independent of x2 on a neighborhood of x. By the strict concavity of

F , expression (1) implies that @�2
@x1

must be decreasing in x2: In addition, because x 2 SW�, we

have @�2
@x1
(x) < 0; it follows that @�2

@x1
(x1; x2 + �) < 0 for any � > 0. Thus, by acyclicity, SW� is

north-comprehensive.

More notation. We denote by SW�=NE� a portion of B with SW� (resp. NE�) in the

immediate northwest (resp. southeast) vicinity of the boundary. NE+=SW+ portions are similarly

de�ned.

Claim 6 B consists only of SW�=NE� and NE+=SW+ portions.

Proof. From the previous claim. Because SW� is north-comprehensive and because B is included

in D, there cannot be any points in SW� south of B. Similarly, there cannot be any points in SW+

(resp. NE�, NE+) north (resp. west, east) of B.

We complete the proof of the claim by showing that any portion of B containing a SW�=NE�

(resp. NE+=SW+) subportion must be a SW�=NE� (resp. NE+=SW+) portion. Suppose there

11



Figure 4:

exists a portion of B containing both a SW�=NE� and a NE+=SW+ subportion. By the com-

prehensiveness of SW� and NE+, it must be that the SW�=NE� subportion lies to the northeast

of the NE+=SW+ subportion (see Figure 4). Yet, the north-comprehensiveness of SW� and the

west-comprehensiveness of NE+ imply that there exists a horizontal, vertical or decreasing portion

of B; a contradiction (Claim 4).

Claim 7 No point of B can lie northwest of another.

Proof. Suppose the claim is not true and let x, x0 2 B such that x01 > x1 and x02 < x2:5 The reader
can check that by Claim 5, x and x0 belong to two portions of di¤erent type. W.l.o.g. assume x

belongs to a NE+=SW+ portion and x0 belongs to a SW�/NE� portion.

De�ne �x1 > x1 to be the smallest real number such that (�x1; t) =2 SW+ for any t � 0 if such a
number exists; if not, de�ne �x1 = x01. Denote by b : [x1; �x1[! R+ the function whose graph is the
north boundary of SW+. Note that by the south-comprehensiveness of SW+, b is well de�ned on

[x1; �x1[; and by the smoothness of �, b is continuous:

We show that b de�nes a NE+=SW+ portion on every interval where it is increasing. Indeed,

suppose there exists x�1 2]x1; �x1[ and " > 0 such that the immediate vicinity north of the graph of
b, V � B((x�1; b(x�1)); ") \ fxjx1 2 [x1; �x1[; x2 > b(x1)g, does not intersect NE+; i.e., such that

V \NE+ = ;.

Then claims 5 and 6 imply V � SW�, which leads to a contradiction by implying the existence of

a horizontal, vertical or decreasing portion of B as in the proof of the previous claim.

We now show that b must be increasing on its domain. Indeed, the immediate vicinity north of

the graph of b cannot intersect NE+ on a non-degenerate non-increasing interval of b (Claim 4), nor

can it intersect NE� (by east-comprehensiveness of NE�, north-comprehensiveness of SW� and

5Clearly, Claim 5 implies x01 6= x1 and x02 6= x2.
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the fact that x0 belongs to a SW�/NE� portion) or SW+ (by de�nition of b); hence it is a subset

of SW�, thus leading to the same contradiction as in the previous paragraph.

Finally, because b is increasing on [x1; �x1[, �x1 is indeed the smallest number such that (�x1; t) =2
SW+ for any t � 0 (the north-comprehensiveness of SW� implies this fact even if �x1 was originally

taken to be equal to x01). It follows that a subset of f�x1g � R+ belongs to the boundary of SW+,

contradicting the fact that SW+ cannot have a vertical boundary (easily proved, as in Claim 3).

Claim 8 B is the graph of a non-decreasing function b : R+ ! R+ [ f+1g which is continuous
and increasing on ft � 0j0 < b(t) < +1g.

Proof. If NE = ; or SW = ;, the boundary B is vacuously de�ned: set b � 0 or b � +1.
If NE 6= ; and SW 6= ;, de�ne the set X1 = fx1 2 R+j9x2 > 0 s.t. (x1; x2) 2 Bg. By the

previous claims (2, 4 and 7), X1 is an interval and there exists a continuous and increasing function

b : X1 ! R+ whose graph is B \ (X1 � R+). We extend the domain of b by setting b(x1) = 0 for all
x1 � infX1 if infX1 > 0 and by de�ning b(x1) = +1 for all x1 � supX1 if supX1 exists.
Conclusion of the proof: The statement of Theorem 1 follows from claims 1 and 8.
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