
On scheduling fees to prevent merging, splitting and

transferring of jobs

Herve Moulin Rice University

May 2004

Abstract

A deterministic server is shared by users with identical linear wait-
ing costs, requesting jobs of arbitrary lengths. Shortest jobs are served
first for efficiency. The server can monitor the length of a job, but not
the identity of its user, thus merging, splitting or partially transfer-
ring jobs offer cooperative strategic opportunities. Can we design cash
transfers to neutralize such manipulations?
We prove that merge-proofness and split-proofness are not com-

patible, and that it is similarly impossible to prevent all transfers of
jobs involving three agents or more. On the other hand, robustness
against pairwise transfers is feasible, and essentially characterize a
one-dimensional set of scheduling methods. This line is borne by two
outstanding methods, the merge-proof S+ and the split-proof S−.
Splitproofness, unlike Mergeproofness, is not compatible with sev-

eral simple tests of equity. Thus the two properties are far from equally
demanding.
Key words: scheduling, queuing, merging, splitting, transferring,

linear waiting cost.

Acknowledgements: I am grateful for their hospitality during the
preparation of this paper to the University of Auckland, and the Fac-
ultes Universitaires Notre Dame de la Paix in Namur, in particular to
Arkadii Slinko and Francois Maniquet.
This work is supported by the NSF under grant SES-0414543.

1

1 The problem and the punch lines

Dividing the burden of joint externalities raises many issues of incentive-
compatibility. One of these is strategic transferring, merging, or splitting of
certain private characteristics of the participants. This type of manipulation
is discussed in the fair division literature (see details in section 2); here we
study it in a simple scheduling problem with transferable utility.
A single deterministic server/machine is shared by users with linear wait-

ing costs, requesting jobs of arbitrary lengths. A job of size xi takes xi units
of time to process; an agent’s disutility is the waiting time until her job is
completed, augmented by a (positive or negative) cash payment selected by
the mechanism. The key assumptions is that the server can monitor the
size of a job, but not the identity of its user. This creates opportunities for
manipulation if two agents i, j can costlessly merge two jobs of sizes xi, xj
into a single job of size xi + xj, reporting to the server under one of their
names; or if agent i can split his job of size xi into two smaller jobs x1i , x

2
i

with x1i + x2i = xi, then request service under two aliases; or, finally, if agent
i can transfer a fraction of his job and add it to agent j’s job.
The key assumption is realistic when the usage of the server/machine

is private, and can’t be traced to its actual beneficiary. Think of a tool
that agents carry to their private workstation, for instance a software used
on a private machine. Protecting the privacy of the users is often a design
constraint, e.g., when they share a single "link" (access point to a database or
phone line). Then the needs of each user of the link remain unknown to the
server, who cannot detect if and when the link is used by agent i on behalf
of another agent j. Two more factors affect the feasibility of the strategic
maneuvers in question. First assuming a false identity should be easy, as is
the case in huge networks such as the internet, where protecting the system
performance against aliases is an important design issue: Douceur [2002].
The second factor is the cost of merging, splitting or transferring jobs: it is
minimal if the job produces an electronic document, or a physical tool easily
transported from one job to the next.
Two very simple scheduling mechanisms illustrate the cooperative ma-

nipulations that we wish to prevent. Given identical linear waiting costs
and the feasibility of cash transfers, efficiency requires to serve the shortest
jobs first. Suppose the server does this and performs no monetary transfer
(at least when the efficient scheduling order is unique, i.e., all jobs are of
different size). This mechanism is highly vulnerable to splitting: given two

2

real jobs x1 = 4, x2 = 3, agent 1 splits his job as x01 = x001 = 2 and cuts his
waiting time by 3. Partial transfers may also work: say we have three jobs
(x1, x2, x3) = (1, 4, 5); if agent 3 transfers 2 units of her job to agent 1, re-
sulting in (x01, x2, x

0
3) = (3, 4, 3), she will complete x3 before agent 2 is served,

and the net gain $4 can be divided between agents 1 and 3 (we assume a cost
of $1 per unit of time). But the merging of jobs is clearly not profitable, as
this can only delay their completion.
Consider next a mechanism serving the longest jobs first, thusmaximizing

total waiting cost. No matter how it deals with ties, this mechanism is badly
vulnerable to merging, as well as to partial transfers: simply use the above
examples backward. But the splitting of a job is never profitable.
Can we design a system of cash transfers to prevent in all problems single

agents from splitting their job, and coalitions from merging them under a
single identity? And what about partial transfers of jobs?
Despite the simplicity of our scheduling model, some of the answers to

these questions are disappointingly negative. If the potential set of users
contains at least 4 agents, a mechanism treating equals equally cannot be
both merge-proof and split-proof: Theorem 1 in Section 4. Moreover every
continuous mechanism (i.e., net waiting costs depend continuously upon the
profile of job sizes) is vulnerable to transfers involving three agents or more:
Section 8.
Yet we show here that the family of merge-proof scheduling mechanisms

is fairly large, and so is that of split-proof mechanisms. Moreover, each
family contains many mechanisms immune to job transfers involving only
two agents. Another result is that immunity to splitting is much more de-
manding than to merging. Specifically we show that Split-proofness, unlike
Merge-proofness, is incompatible with several compelling fairness require-
ments. Proposition 1 in Section 5 gives a precise content to this state-
ment. Restrict attention to efficient mechanisms (serving successively jobs
of increasing size) treating equals equally, and continuous. Every splitproof
mechanism must then charge a positive fee to null jobs, who create no ex-
ternality whatsoever; it must also subsidize some jobs in the sense that their
net waiting cost is smaller than their size xi; next,the net cost of agent i is
not always weakly increasing in xi; the ordering of net costs must sometime
contradict that of job lengths; and finally the net waiting cost of a given
job is unbounded when other jobs become arbitrarily large. By contrast,
merge-proofness is compatible with all five properties just described.
In Section 6, we construct a large family of efficient scheduling mech-

3

anisms, treating equals equally and continuous, and for which the role of
merge-proofness and split-proofness is especially easy to describe. Pick a con-
tinuous function θ fromR2+ intoR such that θ(a, b)+θ(b, a) = min{a, b} for all
a, b. Label the set of users N = {1, 2, .., n} in such a way that x1 ≤ x2 ≤ .. ≤
xn. The θ-mechanism serves the job in the efficient order 1, 2, .., n, and per-
forms cash transfers resulting in the net waiting cost yi = xi+

P
j 6=i θ(xi, xj)

for all i. By construction of θ, this implies
P

i yi = nx1+(n− 1)x2+ ...+xn,
so these transfers are balanced.
We call the above mechanism separable because it divides the efficient

externality min{xi, xj} between agents i, j without paying attention to other
job lengths. Proposition 2 in Section 6 characterizes merge-proof separable
methods by a system of inequalities slightly less demanding than the super-
additivity of θ in its first variable, and split-proof separable methods by a
similar system slightly more demanding than the sub-additivity of θ in its
first variable.
Two separable mechanisms stand out. The first one, called S+, splits the

(i, j)-externality equally, namely θ+(a, b) = 1
2
min{a, b}. The second mecha-

nism, called S−, uses the function θ−(a, b) = b − 1
2
max{a, b}. The method

S+ corresponds to the Shapley value of the optimistic stand alone coopera-
tive game (a coalition S standing alone is served before N/S); the method
S− to the Shapley value of the pessimistic stand alone cooperative game (a
coalition S standing alone is served after N/S).
We find that S+ is merge-proof, whereas S− is split proof - hence the

latter shares all unpalatable consequences of splitproofness discussed above.
In Section 7 we turn to the strategic transfer of jobs. We restrict atten-

tion to job transfers involving only two agents, combined with cash transfers
within a coalition of arbitrary size. We show that S+, S− as well as their
affine combinations y = a · y+ + (1 − a) · y−, a ∈ R, are immune to such
manipulations. Our main result, Theorem 2, is a characterization of the line
of methods borne by S+ and S− based on this property of pairwise transfer-
proofness. Then we characterize the S+ method either by the requirement
that null jobs should not pay (or receive) anything, or by ruling out subsidies
beyond the optimistic stand alone wait (xi ≤ yi).

4

2 Related literature

The earliest discussion in the fair division literature of manipulation by merg-
ing, splitting, and transferring, is in the rationing problem: each agent has
a claim/liability over an amount of money smaller than the sum of individ-
ual claims/liabilities. If the claims take the form of anonymous, transferable
bonds, dividing the money in proportion to individual claims is the only
method invulnerable to transfers, as well as to merging or splitting: Banker
[1981]. Variants and extensions of this result are in Moulin [1987], DeFru-
tos [1999], and Ju [2003]. Related properties of transfer-proofness appear in
the quasi-linear social choice problem (Moulin [1985], Ermolov [1995], Chun
[2000]), in axiomatic cost-sharing (Sprumont [2004]) and more: Ju and Miya-
gawa [2003] offer a unified treatment of most of this literature.
We now review the recent and growingmicroeconomic literature on schedul-

ing. A familiar extension of our model allows linear waiting costs to vary
accross participants. A scheduling problem consists of a profile of job sizes xi
and waiting costs δi per unit of time. Agent i0s disutility is δiwi + ti, where
wi is waiting time until completion of job i and ti is the cash payment. Min-
imizing total waiting cost requires to serve the jobs in the increasing order
of the ratios xi

δi
(Smith [1956]).

The mechanism designer can use the cash transfers to ensure truthful
(dominant strategy) elicitation of the privately known waiting costs: utili-
ties are linear in money (and waiting costs), therefore Vickrey-Clarke-Groves
mechanisms can be readily applied. The first authors to explore this idea are
Dolan [1978] and Mendelson and Whang [1990]. In fact, given linear waiting
costs, we can construct a budget-balanced (fully efficient) VCG mechanism:
Suijs [1996], Mitra and Sen [1998], Mitra [2001,2002]. If we must elicit job
lengths instead of waiting costs, a similar construction is possible (Hain and
Mitra [2001], Kittsteiner and Moldovanu [2003a,b]), provided the VCGmech-
anisms are suitably generalized to take into account the more complicated
allocative externalities from misreporting the size of one’s job.
In the linear scheduling model cash transfers are also a simple tool to

achieve fairness, namely an equitable sharing of the congestion externality.
Several auhors simply apply off-the-shelve solution concepts like the Shapley
value or the core to a relevant cooperative game: Curiel et al. [1989], [1993],
[2002], Hamers et al. [1996]. The most popular solution is the Shapley value
of the optimistic stand alone cooperative game: Curiel et al. [1993] and
Klijn and Sanchez [2002]. It plays an important role in the current paper as

5

solution S+. In the case of identical job sizes, this solution is axiomatized
by Maniquet [2003], while Katta and Sethuraman [2004] suggest alternative
interpretations of fairness. The Shapley value of the pessimistic stand alone
game corresponds to our second solution S−. With identical job sizes it is
axiomatized by Chun [2004a]. Chun [2004b] allows for variable job sizes,
extends both solutions to this context and offers parallel characterizations.
Our approach is original on two accounts. First we explore a new kind of

cooperative manipulation, quite different from the misreport of waiting costs
or of job sizes. In our model, individual preferences are known to the server,
and job size is observable. All the action comes from the inability of the
server to detect the true identity of users, and the users’ ability to request a
job, or part of a job, without revealing its true beneficiary.
Secondly we explore the compatibility of our strategy-proofness proper-

ties with four classic equity tests, based on monotonicity and bounds on
individual disutilities (see Section 5). These tests are inspired by the fair
division literature, and play a role as well in the work of Maniquet [2003]
and Chun [2004]. Here they reveal a fundamental asymmetry between the
requirements of merge-proofness and split-proofness (Proposition 1).
The companion paper Moulin [2004] discusses the same strategic ma-

neuvers when the server instead of cash transfers, uses randomization. In
that context, Split-proofness remains a much more demanding property than
Merge-proofness, yet these two properties are now compatible. A certain
probabilistic scheduling rule, the Proportional rule, is characterized by the
combination of Merge-proofness, Split-proofness and a couple of natural
properties of invariance and fairness.

3 The model

The setN contains all potential users of the simple machine. It may be finite
or infinite. A scheduling problem involves a finite subset N of N . Agent i’s
job is completed in exactly xi units of machine-time. Given a scheduling
problem (N,x), where x ∈ RN

+ , the server must choose the ordering σ of N
- the schedule - in which the jobs will be processed, and a vector t ∈ RN of
monetary transfers such that

P
N ti = 0.

Each agent incurs a waiting cost of $1 per unit of time until completion
of his/her job (a partially completed job is useless). The equality of waiting

6

costs is an important simplifying assumption1.
We write σ(i) < σ(j) to mean that agent i precedes agent j in the ordering

σ, and P (i, σ) = {j ∈ N/σ(j) < σ(i)} is the set of agents preceding i in σ.
Thus the disutility of agent i given σ and t is

yi = xi +
X
P (i,σ)

xj + ti (1)

Notice that ti is a tax on agent i when ti > 0 and a subsidy when ti < 0.
The standard notation aS =

P
i∈S ai will be used throughout the paper.

Because monetary transfers are unrestricted, efficiency amounts to choose an
ordering σ minimizing total waiting costX

N

(xi +
X
P (i,σ)

xj) = xN +
X

(i,j):σ(i)<σ(j)

xi

An ordering is efficient if and only if it schedules shortest jobs first. The set
of efficient orderings is

E(N,x) = {σ|for all i, j ∈ N : xi < xj =⇒ σ(i) < σ(j)}

We use the notations a∧b = min{a, b}, andN(2) for the set of all non-ordered
pairs {i, j} of distinct agents. Then the minimal (efficient) total waiting cost
v(N, x) is

v(N,x) = xN +
X
N(2)

xi ∧ xj

Definition 1 Given N , a scheduling mechanism µ associates to every
problem (N, x), where N ⊂ N and x ∈ RN

+ , a pair µ(N,x) = (σ, t), where
σ is an ordering of N , and t ∈ RN with tN = 0. A scheduling method m
associates to every problem (N, x) a profile of net waiting costs m(N,x) =
y, y ∈ RN , such that

yN = xN +
X

(i,j):σ(i)<σ(j)

xi, for some ordering σ of N.

To each mechanism µ, we associate a method m by formula (1). We call
the mechanism µ efficient if σ ∈ E(N,x) for all N,x; we call the method m
efficient if yN = v(N,x) for all N,x. To an efficient method m corresponds

1The consequences of relaxing this assumption are briefly discussed in Section 9.

7

essentially a unique efficient mechanism µ : the only qualification is at those
problems x where some jobs have the same size, xi = xj, so that E(N, x)
is not a singleton. As this will cause no confusion, we shall state some of
our axioms for mechanisms (e.g. Merge-proofness) and some of them for
methods.
Our first normative requirement is the standard horizontal equity:
Equal Treatment of Equals (ETE): xi = xj =⇒ yi = yj, for all

(N,x), i, j ∈ N
All methods discussed below meet ETE, yet this property is not necessary
to our main characterization result (Theorem 2). By contrast, the following
axiom plays a key role in Theorem 2
Continuity (CONT): the mapping x→ y(N, x) is continuous on RN

+ for
all N .
Continuity ensures that microscopic variations in the job sizes do not have
a macroscopic impact on the profile of net waiting costs. In particular when
xi = xj, a small tremble of xi - the result of a measurement error, or of a
strategic move - is not a matter of concern to agents i, j, or to anyone else.
Our first example is a natural discontinuous mechanism.
Example 1 Shortest Jobs First

For every (N, x) where xi 6= xj for all i, j, the mechanism selects the unique
efficient ordering σ and performs no transfers. At other profiles, it performs
the minimal transfers required by ETE. If at x we have exactly k agents with
xi = a for some a, order them arbitrarily, say i1 < i2 < ... < ik, and perform
the transfers

ti1 =
k − 1
2

a, ti2 =
k − 3
2

a, ...tik = −
(k − 1)
2

a

In other words, the mechanism is defined up to a tie-breaking rule, but the
corresponding method is unique:

yi1 = yi2 = ... = yik =
k + 1

2
a+

X
j:xj<a

xj

Our next two examples are efficient scheduling methods meeting ETE
and CONT, namely the proportional method:

yi =
xi
xN

· v(N, x) for all x 6= 0; y = 0 for x = 0, (2)

8

and the egalitarian method:

yi = xi +
1

n
(
X
N(2)

xi ∧ xj) for all N, x. (3)

The latter charges the same net cost to every agent beyond his/her own stand
alone cost. The proportional method meets all (and the egaliatrian method
meets some) equity tests discussed in Section 5, yet both are vulnerable to
the coalitional maneuvers to which we now turn.

4 Merging and Splitting

The server can recognize the length of the jobs it performs, but not the
identity of the beneficiary of those jobs. We describe first the merging of
several jobs under a single identity, then turn to splitting a given job in
several small jobs under multiple identities.
Given N ⊆ N , a coalition S, S ⊆ N, and an agent i∗ ∈ S, we associate

to every problem (N, x) the (S, i∗)−merged problem (N∗, x∗) as follows

N∗ = (N\S) ∪ {i∗};x∗i∗ = xS and x∗j = xj for all j ∈ N\S

We also use the notation v(S, x) = xS +
P

S(2) xi ∧ xj for the stand alone
waiting cost of coalition S, namely the efficient total wait of S when it is
served before N\S. Given a mechanism µ on N we define:
Merge-proofness (MPF): for all N,S, i∗ as above and all x ∈ RN

+ :

µ(N∗, x∗) = (σ∗, t∗)⇒ yS(N,x) ≤ v(S, x) + k(S, x) · xP (i∗,σ∗) + t∗i∗ (4)

where k(S, x) is the number of agents i ∈ S such that xi > 0.
In this inequality the left-hand side is the net waiting cost of coalition S
before merging, and the right-hand side its net cost after merging. Indeed
coalition S uses efficiently the slot of length xS allocated to agent i∗, and
moreover everyone in S with a non null job must wait until completion of all
jobs in P (i∗, σ∗). Note that for S = N, the merge-proofness inequality is just
the efficiency property.
Given N ⊆ N , i∗ ∈ N, and a finite set T ⊆ N , T ∩N = ∅, we associate

to every problem (N, x), the family of (T, i∗)−splitted problems (N∗, x∗) as
follows

9

N∗ = N ∪ T ; (x∗)T∪i∗ = xi∗ and (x∗)j = xj for all j ∈ NÂi∗

Given a mechanism µ on N we define:
Split-proofness (SPF): for all N,T, i∗ as above, all x ∈ RN

+ and all
(T, i∗)-splitted problem (N∗, x∗)

µ(N∗, x∗) = (σ∗, t∗)⇒ yi∗(N,x) ≤ xi∗ + xP (j∗,σ∗) + (t∗)T∪i∗ (5)

where j∗ is the last agent in T ∪ i∗ for σ∗.
Agent i∗’s net cost before splitting is on the left-hand side; after the split, i∗
must wait until all jobs in P (j∗, σ∗) are completed2, therefore the right-hand
side is his net cost.
As a first application of these definitions, it is easy to verify that Shortest

Job First is not split-proof, but it is merge-proof. Symmetrically, Longest
Job First is split-proof, but not merge-proof.
We check now that the egalitarian method (3) is neither merge-proof nor

split-proof. In the problem N = {1, 2, 3}, x = (1, 1, 4), consider the split
of x3 into x∗3 and x∗4, with x∗3 = x∗4 = 2. The actual wait of agent 3 in
(N,x) is the same as in N∗ = {1, 2, 3, 4}, x∗ = (1, 1, 2, 2)− under the assumed
identities. The split is profitable because the monetary transfer is smaller in
the latter:

y3 = 6 + t3 = 4 +
1

3
(1 + 1 + 1)⇒ t3 = −1

(y∗)34 = 4 + 6 + (t∗)34 = 2(2 +
1

4
(7))⇒ (t∗)34 = −2.5

Next consider the problem N = {1∗, 2, 3, 4}, x = (2, 2, 5, 5). The actual total
wait of agents 1,2 in (N,x) is unchanged as they merge to 1∗ in N∗ =
{1∗, 3, 4}, x∗ = (4, 5, 5). The move is profitable because the net transfer
decreases:

y1∗2 = 6 + t12 = 2(2 +
1

4
(15))⇒ t12 = 5.5

y∗1∗ = 4 + t∗1∗ = 4 +
1

3
(13)⇒ t∗1∗ = 4.33

We let the reader check similarly that the proportional method (2) is not split-
proof, by considering the split of agent 1 from ({1, 2}, (5, 4)) into ({1, 2, 3}, (5, 2, 2)).

2At least if (x∗)j∗ > 0. If (x∗)j∗ = 0, we should replace j∗ by the last agent in T ∪ i∗
with a positive job. But this does not affect the statement of SPF.

10

On the other hand, the proportional method is merge-proof. We omit the
easy proof.
Theorem 1 Assume |N | ≥ 4. There is no scheduling mechanism satisfy-

ing Merge-proofness, Split-proofness, and either Continuity or Equal Treat-
ment of Equals.
The proof is in the Appendix. Recall that merge-proofness implies in particu-
lar efficiency. If we restrict the merge-proofness property by allowing only the
merging of proper coalitions, there may exist some (inefficient) mechanisms
meeting MPF and SPF. I conjecture that this is not the case.

5 Unpalatable consequences of Split-proofness

The formal similarity between merging and splitting suggests that the prop-
erties MPF and SPF are comparably demanding. This intuition is not cor-
rect. We list below five mild normative requirements that we may want to
impose on a scheduling method. Then we show that any "reasonable" split-
proof method must violate each one of these four properties. In the following
statements, we fix a method (N,x)→ y :

• Monotonicity (MON): xi → yi(N,x) is non-decreasing, for all N, i,

x−i ∈ RN\i
+

• Ranking (RKG): {xi ≤ xj}⇒ {yi ≤ yj} for all N, i, j, x

• Stand Alone Bound (SAB): yi ≥ xi for all N, i, x

• Zero Charge for Null Jobs (ZCNJ): xi = 0⇒ yi = 0 for all N, i, x

• Finite Liability (FL): sup
x−i∈RN\i+

yi(N, (xi, x−i)) < +∞ for allN, i, xi

The first three properties are standard equity tests. The Stand Alone Bound
sets a minimal net waiting cost, namely my disutility in the most optimistic
case where I have absolute priority for service. It rules out the subsidization
of any agent beyond this most advantageous situation. Monotonicity says
that my net waiting cost weakly increases when the service time of my job
increases: besides its clear normative meaning, this property also rules out
"sabotage" by artificially increasing one’s job size. Ranking conveys a related
idea by way of interpersonal comparisons: if my job is larger than yours, my
responsibility in the total waiting burden is higher.

11

Zero Charge for Null Jobs frees a "null job" agent of any responsibility:
such an agent is served first by efficiency, and causes no additional waiting
cost to any one: the axiom says that he should not be taxed either, ti = 0.
The combination of Continuity and Zero Charge for Null Jobs implies that
yi converges to zero with xi.
Finally, Finite Liability prevents a job of a given size to pay arbitrary

large fees when other jobs become very large. It encourages participation of
a risk averse user who has no information about other jobs’ sizes.
Many scheduling methods meet these five properties. Examples include

Shortest Job First (example 1) and the proportional method (2): check that
supx−i yi(N, (xi, x−i)) = n · xi for the former, and = (n+1)

2
· xi for the latter.

Moreover, all five properties are preserved under convex combinations. The
egalitarian method (3) fails ZCNJ and FL, but meets the other three.
We now state a negative result about split-proof scheduling methods.
Proposition 1 Fix N and an efficient and continous scheduling method

m treating equals equally. If m is split-proof and N ≥ 5 then it must fails
Monotonicity, Ranking and the Stand Alone bound. If |N | ≥ ∞, it fails Zero
Charge for Null Jobs and Finite Liability as well.
By contrast the S+ solution defined in the next Section, is an efficient

merge-proof method meeting all the other axioms discussed so far: ETE,
CONT, MON, RKG, SAB, ZCNJ and FL.
Proof

Monotonicity. Let N = {1, 2, 3, 4} and x(ε) = (1, 1, 1, 2(1 + ε)). Consider
the split of agent 4 into agents 4,5 and x∗(ε) = (1, 1, 1, 1+ε, 1+ε). By CONT
and ETE:

lim
ε→0

y(x∗(ε)) = y(x∗(0)) = (3, 3, 3, 3, 3)

By efficiency and CONT again:

{y45(x∗(ε)) = 4 + ε+ 5 + ε+ t45(x∗(ε))→ 6}⇒ lim
ε→0

t45(x∗(ε)) = −3

Because the split is not profitable for agent 4, and her real wait after the
split is unchanged, we have

y4(x(ε)) ≤ 5 + 2ε+ t45(x∗(ε))⇒ y4(x(0)) ≤ 2

On the other hand at x = (1, 1, 1, 1) ETE gives y4(x) = 2.5, and we see that
Monotonicity is violated as x4 goes from 1 to 2.

12

Ranking. Let N = {1, 2, 3} and x(ε) = (1, 1, 2(1 + ε)). Consider the split of
agent 3 into 3,4 and x∗(ε) = (1, 1, 1 + ε, 1 + ε). Mimicking the argument of
the proof above we get successively

lim
ε→0

y(x∗(ε)) = (2.5, 2.5, 2.5, 2.5), lim
ε→0

t34(x∗(ε)) = −2, and y3(x(0)) ≤ 2

Now efficiency and ETE give y1(x(0)) = y2(x(0)) ≥ 2.5, a contradiction of
RKG.
Stand Alone bound. Let N = {1, 2}and x(ε) = (1, 3(1 + ε)). Consider the
split of agent 2 into 2,3,4 and x∗(ε) = (1, 1 + ε, 1 + ε, 1 + ε). As before we
have successively

lim
ε→0

y(x∗(ε)) = (2.5, 2.5, 2.5, 2.5), lim
ε→0

t234(x∗(ε)) = −1.5,
⇒ y2(x(0)) ≤ 2.5 < 3 = x2(0)

This contradicts SAB.
Zero Charge for Null Jobs. Let N = {1, 2} and fix an integer p, p ≥ 2.
Set x(ε) = (1

p
, 1 + pε) and consider the split of 2 into 2, 3, ..., p + 1 and

x∗(ε) = (
1
p
, 1
p
+ε, ..., 1

p
+ε). As before we have limε→0 yi(x∗(ε)) =

p+2
2p
implying

limε→0 t1(x∗(ε)) =
1
2
. Then Split-proofness implies y2(x(ε)) ≤ 1 + pε + 1

p
−

t1(x∗(ε)) hence y2(x(0)) ≤ 1
2
+ 1

p
⇐⇒ y1(x(0)) ≥ 1

2
+ 1

p
. But CONT and

ZCNJ imply limp→∞ y1((
1
p
, 1)) = 0, contradiction.

Finite Liability. Set N = {1, 2} and x(ε) = (a, k · (a + ε)), where a > 0 is
arbitrary. Consider the split of 2 to 2, 3, .., k+1 in x∗(ε) = (a, a+ε, .., a+ε).
We have limε→0 t{2,..,k+1}(x∗(ε)) = −k

2
· a, and Split-proofness implies

y2(x(ε)) ≤ a+ k · (a+ ε) + t{2,..,k+1}(x∗(ε)) =⇒ y1(x(0)) ≥ a+
k

2
· a

from which supk y1(a, k ·a) follows. This proves the claim when |N | = 2. The
argument is similar for an arbitrary number of agents.
Remark 1 For the statements about Ranking and the Stand Alone

bound, the assumption Equal Treatment of Equals is redundant. In other
words, any efficient, continous and split-proof method must violate Rank-
ing and the Stand Alone bound for |N | ≥ 4. To check this, take a set
N∗ with four agents. Setting x∗(0) = (1, 1, 1, 1), we have yN∗(x∗(0)) = 10
thus there exists a pair i, j in N∗ such that yij((1, 1, 1, 1)) ≤ 5. Label the

13

agents so that i = 3, j = 4 and N∗ = {1, 2, 3, 4}. Define N = {1, 2, 3}, x(ε)
and x∗(ε), as in the above argument about Ranking. Continuity ensures
limε→0 y34(x∗(ε)) ≤ 5, then limε→0 t34(x∗(ε)) ≤ −2. Split-proofness applied
to the split of 3 in (N, x(ε)) to 3, 4 in (N∗, x∗(ε)) gives y3(x(0)) ≤ 2. Therefore
y12(x(0)) ≥ 5 so that yi(x(0)) ≥ 2.5 for at least one of 1,2. Thus Ranking
fails. The similar proof for the Stand Alone Bound is omitted for brevity.
Whether or not we can drop Equal Treatment from the assumptions in

the two remaining statements is an open question.

6 Separable scheduling methods

The total waiting externality in the problem (N,x) is v(N, x) = xN +P
N(2) xi ∧ xj, namely the cost of having to share the server. A separable

method shares each pairwise externality xi ∧ xj independently of the rest of
the jobs.
Definition 1 Choose a continuous function θ from R2+ into R such that

θ(a, b) + θ(b, a) = a ∧ b for all a, b ∈ R+. The θ-separable scheduling method
is given by

yi(N, x) = xi +
X
N\i

θ(xi, xj) for all N, i ∈ N and x ∈ RN
+

The θ-separable method is obviously efficient, continous, and treats equals
equally.
The Shortest Job First method is θ-separable, except that the function θ is
not continuous:

θ(a, b) = 0 if a < b; θ(a, b) =
a

2
if a = b; θ(a, b) = a if a > b

Neither the egalitarian nor the proportional method is separable.
We speak of a θ−separable mechanism for any mechanism generating the

method in Definition 1.
Proposition 2

a) The θ-separable scheduling method meets
i) Monotonicity iff {θ(a, b) is non-decreasing in a}.
ii) Ranking iff {θ(a, b) is non-decreasing in a and a ≤ b⇒ θ(a, b) ≤ b

2
}.

iii) Stand Alone Bound iff {θ(a, b) ≥ 0 for all a, b}.
iv) Zero Charge for Null Job iff {θ(0, b) = 0 for all b}.

14

v) Finite Liability iff supb θ(a, b) < +∞ for all a.
b) A θ-separable mechanism is merge-proof iff

θ(a1, b) + θ(a2, b) ≤ θ(a1 + a2, b) for all b, a1, a2 : a1 + a2 ≤ b (6)

θ(a1, b) + θ(a2, b) ≤ θ(a1 + a2, b) + b for all b, a1, a2

c) A θ-separable mechanism is split-proof iff

θ(a1 + a2, b) + b ≤ θ(a1, b) + θ(a2, b) for all b, a1, a2 : b ≤ a1, a2 (7)

θ(a1 + a2, b) ≤ θ(a1, b) + θ(a2, b) for all b, a1, a2

Proof
Statement i. Suppose θ(a, b) > θ(a0, b) for some a < a0. Fix n and consider
the (n + 1)−agents profiles x = (a, b, ...b) and x0 = (a0, b, .., b). For n large
enough, we have

y1(x) = a+ n · θ(a, b) > a0 + n · θ(a0, b) = y1(x
0)

contradicting MON. The converse statement is obvious.
Statement ii. Suppose θ(a, b) > θ(a0, b) for some a < a0. Consider the
(n + 2)−agents profile x = (a, a0, b, ...b). For n large enough we get y1 > y2,
contradicting Ranking. Thus θ must be monotonic in its first variable. Next
we fix a, b, a ≤ b, and apply Ranking to x = (a, b) :

y1(x) = a+ θ(a, b) ≤ y2(x) = b+ θ(b, a) = b+ a− θ(a, b)

establishing the second property in statement ii. The converse property is
just as easy.
Merge-proofness. Fix N,S, i∗, x as in the premises of (4) and develop this

inequality for our θ−separable method. Compute first t∗i∗ :

yi∗(N
∗, x∗) = x∗i∗ + x∗P (i∗,σ∗) + t∗i∗ = x∗i∗ +

X
N\S

θ(x∗i∗, xj)

=⇒ t∗i∗ = −xP (i∗,σ∗) +
X
N\S

θ(xS, xj)

15

Next the definition of θ implies

yS(N, x) = xS +
X
S(2)

{θ(xi, xj) + θ(xj, xi)}+
X

i∈S,j∈N\S

θ(xi, xj)

= v(S, x) +
X

j∈N\S

X
i∈S

θ(xi, xj)

Therefore inequality (4) amounts to

0 ≤ (k(S, x)− 1) · xP (i∗,σ∗) +
X

j∈N\S

{θ(xS, xj)−
X
i∈S

θ(xi, xj)} (8)

Check that if θ satisfies (6), then (8) holds for all N,S, i∗ and x. The top
inequality in (6) implies θ(0, b) ≤ 0. Repeated applications of the bottom one
give X

S

θ(xi, b) ≤ θ(xS, b) + (k(S, x)− 1) · b, andX
S

θ(xi, b) ≤ θ(xS, b) if xS ≤ b

Applying the top inequality to b = xj for all j ∈ P (i∗, σ∗), and the bottom
one to xj for all j ∈ N\(S ∪ P (i∗, σ∗)) gives the desired inequality (8).
Next we prove that (6) must hold if θ meets (8) for all problems and all
merging. Consider N = {1, 2, 3}, S = {1, 2}, i∗ = 1 and x = (a1, a2, b) for
arbitrary ai, b in R+. If a1 + a2 < b, P (i∗, σ∗) is empty and (8) yields the
top inequality in (6). Continuity of θ takes care of the case a1 + a2 = b. If
a1 + a2 > b, P (i∗, σ∗) = {3} and (8) gives the bottom inequality in (6).
Split-proofness. We develop similarly inequality (5) for the θ-separable

method. First we compute (t∗)T∪i∗ in (5). Set T ∪ i∗ = R and |R| = r,
then relabel agents in R as 1, 2, .., r with (x∗)1 ≥ (x∗)2 ≥ ... ≥ (x∗)r. Thus
xi∗ =

Pr
1(x∗)k. In the split problem (N∗, x∗), the total wait of coalition R (if

this coalition was truly made of r different agents) is v(R, x∗) +
Pr

k=1 k · xSk
where Sk contains those agents in N\i∗ ranked before k and after k + 1 in
σ∗. In particular for j ∈ Sk, (x∗)k ≥ xj ≥ (x∗)k+1. We can now compute the
net cost of R in two ways:

yR(N∗, x∗) = v(R, x∗) +
rX
1

k · xSk + (t∗)R

16

= v(R, x∗) +
X

j∈N\i∗

rX
1

θ((x∗)k, xj)

from which we get (t∗)R. Substituting in the split-proofness inequality (5)
we get

xi∗ +
X

j∈N\i∗

θ(xi∗ , xj) ≤ xi∗ +
rX
1

xSk + (t∗)R

⇐⇒
X

j∈N\i∗

θ(xi∗, xj) +
rX
1

(k − 1) · xSk ≤
X

j∈N\i∗

rX
1

θ((x∗)k, xj) (9)

We show finally that (7) is true if and only if (9) holds for all N, i∗, T and
x. The "if" statement follows easily from applying (9) to N = {1, 2}, i∗ =
2, T = {3}, x = (b, a1+a2) and x∗ = (b, a1, a2). If b ≤ a1, a2 we have S2 = {1}
and we get the top inequality in (7). For other values of b, S2 is empty and
we get the rest of (7).
Before proving the "only if" statement, we notice a consequence of (7).

Fix k, ak, k = 1, .., r such that a1 ≥ a2 ≥ ≥ ar, and b. We have

b ≤ ak =⇒ θ(a1 + ..+ ar, b) + (k − 1) · b ≤
rX

s=1

θ(as, b)

We omit the easy proof. Apply this inequality to ak = (x∗)k and to b = xj
for some agent j in Sk, we get

θ(xi∗, xj) + (k − 1) · xj ≤
rX

s=1

θ((x∗)s, xj)

Summing up over all j ∈ N\i∗ gives (9) as desired.
Proposition 2 shows that among separable scheduling methods, it is easy

to ensure merge-proofness or split-proofness. The former requires θ to be
something less than superadditive in its first variable; the latter requires θ
to be something more than subadditive in its first variable. The two re-
quirements are incompatible: this results from Theorem 1, or can be checked
directly by comparing systems (6) and (7).
Two separable methods stand out for the simplicity of their definition

and their multiple interpretations. Moreover, they are the backbone of the
characterization of transfer-proof methods in the next section.

17

Definition 2 The S+ and S− separable methods are associated with θ+

and θ− respectively.

θ+(a, b) =
1

2
(a ∧ b); θ−(a, b) = b− 1

2
(a ∨ b) for all a, b

The corresponding net waiting costs and transfers for a problem (N,x) with
|N | = n and x1 ≤ x2 ≤ ... ≤ xn are:

y+i =
1

2
x{1,i−1} + (1 +

n− i

2
)xi and t+i =

1

2
((n− i)xi − x{1,i−1})

y−i = x{1,i−1} − (
i− 3
2
)xi +

1

2
x{i+1,n} and t−i =

1

2
(x{i+1,n} − (i− 1)xi)

where we use the notation x{i,j} =
P

i≤k≤j xk.
These formulas follow easily from Definition 1.
The S+ method divides equally the externality xi∧xj between xi and xj.

If xi < xj, agent i is served first and gives a "rebate" 1
2
xi to agent j. With

the S− method, agent i gives a larger rebate 1
2
xj.

Notice that for |N | = 2, S− simply equalizes net costs y−1 = y−2 = x1+
1
2
x2,

a fairly reasonable compromise. But for larger sizes of N , the method S−

has several unappealing features.
Proposition 3

i) The scheduling method S+ is merge-proof. It also satisfies Monotonicity,
Ranking, Stand Alone Bound, Zero Charge for Null Jobs and Finite Liability.
ii) The scheduling method S− is split-proof. Hence it violates these five prop-
erties.
Proof

That S+ meets the five properties MON, RKG, SAB, ZCNJ and FL is obvi-
ous, either by direct inspection of the formula for y+i , or by invoking Propo-
sition 2. Note that the liability of job i among the users N with |N | = n
is supx−i yi((xi, x−i)) =

n+1
2
· xi. This is the smallest feasible liability in our

model.
Proposition 1 and Split-proofness imply that S− violates all five prop-

erties; this fact can also be checked directly on the formula for y−i , or by
invoking Proposition 2. In particular S− has the following "anti-ranking"
property: xi < xj =⇒ yi > yj.
Next one checks easily that the function θ+ has the subadditivity proper-
ties (6), whereas θ− has the superadditivity properties (7), and the proof is
complete.

18

We conclude this section with several alternative interpretations of S+

and S−.
Lemma 1 The profile of net costs selected by the method S+ is the Shap-

ley value of the optimistic Stand Alone cooperative game S → v(S, x) for all
S ⊆ N. The profile selected by the method S− is the Shapley value of the
pessimistic stand alone game S → w(S, x) = |S| · xN\S + v(S, x).
In the optimistic (resp. pessimistic) Stand Alone game, the total cost of
a coalition S is its efficient cost when it is served before (resp. after) the
complement coalition NÂS.
Proof . The interpretation of S+ as the Shapley value of the optimistic

game is already in Curiel et al [2002]. For the sake of completeness, we give
a proof here. Given N,S ⊆ N and i ∈ N\S, the marginal contribution of
agent i to S is

v(S ∪ i, x)− v(S, x) = xi +
X
j∈S

xi ∧ xj

Therefore the (i, j)−externality xi ∧ xj is charged to agent i if and only if j
appears before i in the random ordering of N : this happens with probability
.5, so the Shapley value awards precisely y+i to agent i.
Next we check that y− is the Shapley value of the game w. By additivity

of the value this amounts to check that y− − y+ is the value of the game
α = w − v. Compute:

y−i − y+i =
1

2
xN −

n

2
xi and α(S ∪ i, x)− α(S, x) = xN\S\i − |S| · xi

from which the desired conclusion follows easily.
Remark 2 Yet another interpretation of S+ is by means of the serial

cost sharing formula of Friedman and Moulin [1999]. Consider the scheduling
problem (N, x) as a cost sharing problem with the demand profile x and the
cost function C(x) = v(N, x). One checks easily that y+ is the profile of cost
shares under the serial cost sharing formula defined there. Finally, we note
that under S+, the transfer t+i to agent i does not depend upon the length of
jobs longer than xi; whereas under S−, t−i is independent of the length of jobs
shorter than xi. In combination with efficiency and equal treatment of equals,
these properties are clearly characteristic. In the related scheduling model
where all jobs are of equal length but agents differ by their linear waiting
cost, Maniquet [2003] and Chun [2004] use similar independence properties
to characterize respectively the analog of our S+ and S− scheduling methods.

19

7 Transfer of jobs and the main result

We consider a manipulation related to merging and splitting, yet more subtle
because it involves a partial transfer of jobs. The number of agents remains
constant during the transfer, therefore in this section we may assumeN = N .
Our main result (Theorem 2 below) characterizes the scheduling mech-

anisms robust against partial transfers of jobs involving only two agents,
together with monetary transfers among possibly more agents. This restric-
tion is crucial. In Section 8 we derive an impossibility result when transfers
among three agents or more are feasible.
Given N, i, j ∈ N, ε > 0, and two profiles x, x0 such that xk = x0k for

k ∈ NÂ{i, j}, we call x0 an ε−shrink (resp. an ε−spread) of x by i, j if

x0i ≤ x0j ⇔ xi ≤ xj; x0i+x
0
j = xi+xj; |x0i−x0j| = |xi−xj|−2ε (resp. |x0i−x0j| = |xi−xj|+2ε)

Finally the notation ∆(σ; i, j) stands for the set of agents in N that ordering
σ ranks between i and j. We are now ready to define the two sides of the
transfer-proofness axiom. Throughout these definitions we fix the set N of
agents, |N | ≥ 3.
Pairwise Shrink-proofness: for all S, S ⊂ N, x, and ε−shrink x0 of x by
i, j ∈ S

yS(N,x) ≤ yS(N, x0)− ε (10)

Pairwise Spread-proofness: for all S,S ⊂ N,x, and ε−spread x0 of x by
i, j ∈ S

σ0 = µ(N, x0)⇒ yS(N,x) ≤ yS(N, x0) + ε+ x∆(σ0;i,j) (11)

Note that we do not allow pairwise transfers exchanging the ordering of jobs
1 and 2, as when x1, x2 with x1 < x2 becomes x01, x

0
2 with x1 ≤ x02 ≤ x01 ≤ x2

and x01 + x02 = x1 + x2 . This restriction is without any loss of generality,
because the deviating agents have every incentive to use efficiently the time
slots allocated to their reported jobs. In the configuration above, the slot for
x02 will be used to complete job x1 and start job x2. Therefore the shift from
x to x0 is equivalent to a shrink from (x1, x2) to (x02, x

0
1).

Definition 3We call the mechanism µ pairwise transfer-proof (PTP)
if it is pairwise shrink-proof and spread-proof.
Several comments on this definition are in order. Firstly, the PTP concept
applies to scheduling mechanisms because, as explained below, the choice of

20

σ0 = µ(N,x0) matters to the spread-proofness property (but not to that of
pairwise shrink-proofness).
The second observation is that PTP rules out certain maneuvers by coali-

tions S of arbitrary size: although the partial transfer of jobs only concerns
two agents, other agents in S are involved in cash transfers inside S.
Next we comment on the inequality defining shrink-proofness. The left-

hand side is the total net cost of coalition S before the (job and cash)
transfers. We claim that the right-hand side is its total net cost after
the job transfer. Without loss of generality, suppose i = 1, j = 2 and
x01 = x1 + ε ≤ x2 − ε = x02. The real job x1 will be completed whenever
x01 is served, and job x2 when x

0
2 is served. If a reported job x

0
1 or x

0
2 is served

after some agent j, j 6= 1, 2, so does the corresponding real job, and vice-
versa. Thus the difference between the waiting time of the real jobs x1, x2,
and that of the reported jobs x1, x2 is 2x1 + x2 − (2x01 + x02) = −ε. Hence
inequality (10).
For instance, we check that the proportional mechanism is not pairwise

shrink-proof. LetN = {1, 2, 3}, x = (1, 6, 5) and S = {1, 2} with x01 = 3, x02 =
4. Thus x0 is a 2-shrink of x by 1, 2, involving no other agent. Compute

y12(x) =
7

12
· (10) > 7

12
· (22)− 2 = y12(x

0)− ε

Recall that this method is in fact merge-proof. We let the reader check that
the egalitarian method also fails (10) for the following three-person example:

x = (1, 8, 2), x0 = (4, 5, 2)⇒ y12(x) = 11
2

3
, y12(x

0) = 14
1

3

Finally we explain inequality (11). Suppose i = 1, j = 2, x01 = x1−ε, x02 =
x2 + ε, x1 ≤ x2. After the report, the real job x1 will not be completed when
job x01 is done, but only during the service of job x02. Thus the difference
between the wait of the real jobs and that of the reported jobs is

2x1 + x2 + x∆(σ0;1,2) − (2x01 + x02) = ε+ x∆(σ0;1,2)

If the set ∆(σ0; 1, 2) is not empty, a spread from x to x0 introduces the
additional waiting time x∆(σ0;1,2) to the reported waiting time of S at x0. Thus
pairwise spread-proofness ends up being easier to meet than pairwise shrink-
proofness. For instance, all three methods Shortest Job First, proportional
and egalitarian are spread-proof.

21

For an example where pairwise spread-proofness is violated, consider the
following θ−separable method:

θ(a, b) =
ab

a+ b
if a ≤ b; =

b2

a+ b
if b ≤ a

Set N = {1, 2, 3} and x = (1, 2, 3). Consider the ε−spread by {1, 2} to
x0 = (1− ε, 2 + ε, 3) with 0 < ε < 1. Inequality (11) for S = {1, 2} reads

y12(x) = 4 + θ(1, 3) + θ(2, 3) ≤ 4 + θ(1− ε, 3) + θ(2 + ε, 3) = y12(x
0) + ε

It is violated because θ(a, b) is strictly concave in a on [0, b].
We are ready to state our main characterization result.
Theorem 2 Fix N with |N | ≥ 4.

i) Choose two continuous functions, α : R+ → R and γ : R+ → RN such
that

P
N γi(z) = 0 for all z. Define a scheduling method y as follows:

y(x) = α(xN) · y+(x) + (1− α(xN)) · y−(x) + γ(xN) for all x ∈ RN
+

where y+, y− are the methods S+ and S− as in Definition 2. Any corre-
sponding mechanism is efficient, continuous, and pairwise transfer-proof.
ii) Conversely, if a mechanism µ is efficient, continuous and pairwise trans-
ferproof, the associated method y takes the above form.
The proof is in the Appendix.
The PTP axiom, almost single handedly, captures a fairly small family of

scheduling methods/mechanisms. This family contains the affine combina-
tions of S+, S− to which we can add some "constant" γ, where the coefficients
of the affine combination and the constant depend only upon xN .
The mild property of Scale Invariance allows us to pick a one-dimensional

family of methods:
Scale Invariance (SI): y(λx) = λy(x) for all λ > 0, x ∈ RN

+

Corollary 1 to Theorem 2 Consider a mechanism µ defined as in
statement i) by the functions α and γ :
i) µ treats equals equally iff γ(z) = 0 for all z.
ii) µ is scale invariant iff α is constant and γ is homogeneous of degree 1.
If we combine Continuity, Equal Treatment, Scale Invariance, with effi-

ciency and Pairwise Transfer-proofness, Corollary 1 tells us that we are left
with the one-dimensional line of methods joining S+ and S−. These methods
are all separable, with corresponding function θ :

θ(a, b) =
1

2
(a ∧ b)− (1− α)

2
(a− b) for all a, b ≥ 0

22

The parameter α is any real number. The method S+ obtains for α = 1 and
S− for α = 0.

Corollary 2 to Theorem 2 Consider a mechanism µ defined as in
statement i) by the functions α and γ :
i) µ is merge-proof if and only if α(z) ≥ 1 for all z.
ii) µ is split-proof if and only if α(z) ≤ 0 for all z.
This establishes the polar role of S+ and S− within the family described

in Theorem 2, or in Corollary 1.
If Theorem 2 and its Corollaries 1 and 2 give a symmetrical role to S+

and S−, this symmetry is destroyed as soon as we introduce the normative
requirements of Section 5. Not surprisingly, these properties point toward
the method S+.
Corollary 3 to Theorem 2 The mechanism S+ is characterized by

the combination of efficiency, Continuity, Pairwise Transfer-proofness and
either Zero Charge for Null Jobs, or the Stand Alone bound.
Remark 3 Two additional properties can be used to single out the S+

method. They both place an upper bound on individual net waiting costs,
which is the familiar idea of a lower bound on individual welfare. The pes-
simistic stand alone bound for agent i is simply yi ≤ w({i}, x) = xN . Both
S+ and S− meet this bound. The unanimity bound for agent i is yi ≤ n+1

2
xi.

It is this agent’s net cost in a hypothetical problem (N, ex) where all jobs are
of size xi. As indicated in the proof of proposition 3, S+ meets this bound,
whereas S− violates it, even for |N | = 2.
Now S+ is characterized by the combination of efficiency, Continuity,

Pairwise Transfer-proofness and either {the pessimistic stand alone bound
plus the unanimity bound}, or {the pessimistic stand alone bound and merge-
proofness}. The proof is in the Appendix.

8 Transfers among three or more agents

The two benchmark methods S+ and S−, and their affine combinations, are
not vulnerable to bilateral partial transfers of jobs, but trilateral transfers
can be a problem.
A simple example with N = {1, 2, 3, 4} illustrates this important point.

In the problem x = (1, 1, 8, 3) coalition T = {1, 2, 3} rearranges its three jobs
as x0 = (2, 4, 4, 3). The actual wait of everyone in T is the same at x and at
the reported x0: in the latter, the slot x01 = 2 is used to complete jobs x1 and

23

x2, whereas the slots x02 = x03 = 4 are devoted to job x3.We check that under
both S+ and S−, the total tax on T decreases from x to x0. Equivalently, the
tax on agent 4 increases. By Definition 2

under S+ at x : t+4 =
1

2
; at x0 : (t+4)

0 = 2

under S− at x : t−4 = 1; at x
0 : (t−4)

0 =
5

2

Now any mechanism described in statement i) of Theorem 2 is vulnerable to
the same trilateral transfer: indeed α(xN) and γ(xN) do not change from x
to x0. Therefore we have proved
Corollary 4 to Theorem 2 If |N | ≥ 4, any efficient and continuous

mechanism is vulnerable to job transfers involving three or more agents.
For the sake of brevity, we do not give a formal definition of profitable

transfers of jobs involving 3 or more agents. The definition is notationally
cumbersome, and brings no additional intuition beyond that provided by
the numerical example above. Notice that the shift from x to x0 may be
interpreted as the combination of merging jobs x1, x2 and splitting job x3.
This suggests that our first negative result, Theorem 1, is closely related to
Corollary 4.

9 Concluding comment

The equality of waiting costs accross agents is an important simplifying as-
sumption in our model. When we allow arbitrary linear waiting costs, the two
solutions S+, S−, are easily extended (see Chun [2004b], who offers a charac-
terization based on Consistency). But the interpretation of Merge-proofness
becomes problematic: which waiting cost will the merged coalition adopt ?
By merging with a null agent whose waiting cost is different, an agent can
effectively misreport his own cost, hence the S+ mechanism becomes vulner-
able to merging, even if the server has full knowledge of individual waiting
costs. On the other hand splitting maneuvers are unambiguous in this con-
text, provided all aliases have the same waiting cost as the true agent; and
transferring tactics are similarly well defined. It is easy to check that the
extended S+ and S− solutions are still pairwise transfer-proof, and the latter
is split-proof.
Whether or not a characterization result similar to Theorem 2 holds in

this context is left for future research.

24

References

[1] Aczél, J. 1996. Lectures on Functional Equations and Their Applica-
tions. New York: Academic.

[2] Banker, R. 1981. Equity consideration in traditional full-cost allocation
practices: an axiomatic perspective, Joint Cost Allocations, S. Moriarty,
ed. Norman: University of Oklahoma.

[3] Chun, Y. 2000. Agreement, Separability, and other Axioms for Quasi-
linear Social Choice Problems, Social Choice and Welfare, 17, 507-521.

[4] Chun, Y., 2004. A Note on Maniquet’s Characterizations of the Shapley
Value in Queuing Problems, mimeo.

[5] Chun, Y., 2004. Consistency and Monotonicity in Sequencing Problems,
mimeo.

[6] Curiel, I., G. Pederzoli and S. Tijs, 1989. Sequencing Games, European
Journal of Operational Research, 40, 344-351.

[7] Curiel, I., J. Potters, V. Rajendra Prasad, S. Tijs and B. Veltman,
1993. Cooperation in One Machine Scheduling, Methods of Operations
Research, 38, 113-131.

[8] Curiel, Il, H. Hamers and F. Klijn, 2002. Sequencing Games: a Survey,
in Chapters in Game Theory in Honor of Stef Tijs, P. Borm and H.
Peters (eds.), pp. 27-50, Kluwer Academic Publishers, Boston.

[9] De Frutos, M.A. 1999. Coalitional Manipulations in a Bankruptcy Prob-
lem, Review of Economic Design, 4,255-272.

[10] Dolan, R., 1978. Incentive Mechanisms for Priority Queueing Problems,
The Bell Journal of Economics 9, 421-436.

[11] Douceur, J. 2002 The Sybil Attack, Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS 2002), LNCS 2429, pp 251-
260.

[12] Ermolov, A. 1995. Coalitional Manipulation in a Quasi-linear Economy,
Games and Economic Behavior, 8, 349-363.

25

[13] Friedman E. and Moulin H., 1999. Three Methods to Share Joint Costs
or Surplus, Journal of Economic Theory, 87, 2, 275-312.

[14] Hain, R. and M. Mitra, 2001. Simple Sequencing Problems with Inter-
dependent Costs, mimeo, University of Bonn.

[15] Hamers, H., J. Suijs, S. Tijs, and P. Borm, 1996. The Split Core for
Sequencing Games, Games and Economic Behavior 15, 165-176.

[16] Ju, B.G., 2003. Manipulations via Merging and Splitting in claim prob-
lems, Review of Economic Design 8, 205-215.

[17] Ju, B.G. and E. Miyagawa, 2003. Coalitional Manipulations and Gen-
eralized Proportional Rules, mimeo, Columbia University.

[18] Katta, A. and J. Sethuraman, 2004. A note on Cooperation in Queues,
mimeo.

[19] Kittsteiner, T. and B. Moldovanu, 2003. Auction-Based Queue Disci-
plines, mimeo, University of Bonn.

[20] Kittsteiner, T. and B. Moldovanu, 2003. Priority Auctions and Queue
Disciplines that Depend on Processing Time, mimeo, University of
Bonn.

[21] Klijn, F. and E. Sánchez, 2002. Sequencing Games Without a Com-
pletely Specific Initial Order, Reports in Statistics and Operations Re-
search, Report 02-04, 1-17.

[22] Maniquet, F., 2003. A Characterization of the Shapley Value in Queue-
ing Problems, Journal of Economic Theory 109/1, 90-103.

[23] Mendelson, H. and S. Whang, 1990. Optimal Incentive Compatible
Priority Pricing for the M/M/1 Queue, Operations Research 38, 870-
883.

[24] Mitra, M. and A. Sen, 1998. Dominant Strategy Implementation of
First-Best Public Decisions, Indian Statistical Institute Delhi Centre,
Manuscript No. 98-02.

[25] Mitra, M., 2001. Mechanism Design in Queueing Problems, Economic
Theory 17, 277-305.

26

[26] Mitra, M., 2002. Achieving the First Best in Sequencing Problems,
Review of Economic Design 7, 75-91.

[27] Moulin, H., 1985. Egalitarianism and Utilitarianism in Quasi-linear Bar-
gaining, Econometrica, 53, 1, 49-67.

[28] Moulin, H., 1987. Equal or Proportional Division of a Surplus, and
Other Methods, International Journal of Game Theory, 16, 3, 161—186.

[29] Moulin, H., 2004. Split-proof Probabilistic Scheduling, mimeo.

[30] Smith, W., 1956. Various Optimizers for Single-Stage Production, Naval
Res. Logistics Quarterly 3, 59-66.

[31] Sprumont, Y., 2003. Aumann-Shapley pricing: a reconsideration of the
discrete case, mimeo.

[32] Suijs, J., 1996. On Incentive Compatibility and Budget Balancedness
in Public Decision Making, Economic Design 2, 193-209.

10 Appendix

10.1 Theorem 1

We fix N , |N | ≥ 4 and a mechanism µ satisfying MPF and SPF, as well as
either CONT and ETE, and we derive a contradiction. Recall that MPF
implies efficiency.
Step 1 A limited symmetry property

FixN, |N | ≥ 2, and two agents 1, 2 ∈ N. Fix any x ∈ RN such that x1 = x2 =
a > 0.We write x−1, x−2 for its projection on N\1 and N\2 respectively, and
define z1, z2 ∈ RN by z12 = 0, z

1
−2 = x−2, and z21 = 0, z

2
−1 = x−1.We claim

y12(N, z1) = y12(N, z2) = y1(N\2, x−2) = y2(N\1, x−1)
In the merging of 1 and 2 in z1 to agent 1 in x−2, merge-proofness (4) gives

y12(z
1) ≤ a+ xP (1,σ∗) + t∗1(x−2) = y1(x−2)

because k({1, 2}, z1) = 1. In the split of 1 in x−2 to agents 1, 2 in z1, split-
proofness implies

27

y1(x−2) ≤ a+ xP (1,σ∗) + (t∗)12(z
1) = y12(z

1)

because 1 is the only agent with a positive job in S = {1, 2}. Thus we get
y12(z

1) = y1(x−2). Consider similarly the merging of 1,2 in z1 to agent 2 in
x−1, and the split of 2 in x−1 to agents 1,2 in z1 : we get y12(z1) = y2(x−1).
Exchanging the roles of 1,2 gives the remaining equalities in the claim.
Step 2 The case of two agents problems

Fix a vector (a, b) ∈ R2+ s.t. 0 < a ≤ b, and an arbitrary triple N = {1, 2, 3}
in N . From Step 1 applied to x = (a, a, b) we get

y1({13}, (a, b)) = y2({23}, (a, b))
Set yi({i, j}, (a, b)) = ui(ij) and yj({i, j}, (a, b)) = vj(ij). We have proven
ui(ij) = uk(kj) for i, j, k all distinct. Applying similarly Step 1 to x =
(a, b, b) we get vj(ij) = vk(ik). Efficiency implies ui(ij) + vj(ij) = 2a + b,
therefore vj(kj) = vj(ij) and ui(ij) = ui(ik).We can now set ui = ui(ij) and
vi = vi(ji) for all j ∈ N\i. Efficiency shows that ui + vj does not depend on
the pair (i, j) in N , therefore ui and vi are both independent of i ∈ N . We
define a function f(a, b) as follows

yi({i, j}, (a, b)) = a+ f(a, b); yj({i, j}, (a, b)) = a+ b− f(a, b)

keeping in mind that the pair (i, j) is arbitrary and a ≤ b.
Step 3

We now compute explicitely the vector of transfers for a three-person problem
N = {1, 2, 3} and x = (a, b, c) with 0 < a ≤ b and a+ b ≤ c. This shows in
particular that it does not depend on the choice of a triple in N .
Consider the merging of 2,3 in x to 2 in x∗ = (a, b+c).As the total physical

wait of agents 2, 3 is the same before and after merging, MPF implies

t23(N,x) ≤ t2({1, 2}, x∗) = −f(a, b+ c)

When splitting agent 2 in x∗ to 2, 3 in x, the physical wait of agent 2 is
similarly constant, thus SPF implies the opposite inequality and we get
t23(x) = −f(a, b+ c).
Next consider the merging of 1,2 in x to 1 in x∗ = (a + b, c), and the

symmetrical split of 1 in x∗ to 1,2 in x. Our choice of a, b, c guarantees that
the actual wait of 1,2 is constant in the merging, and that of 1 is constant in

28

the split. Therefore t12(x) = f(a+ b, c). Because t123 = 0 the vector t(x) is
now computed explicitely. It is convenient to use instead of f the function g
defined by f(α, β) = g(α, α+ β) for all α, β ≥ 0. We have:

t(N,x) = (g(a, d), g(a+ b, d)− g(a, d),−g(a+ b, d)) (12)

for all a, b, d such that 0 < a ≤ b, and 2(a+ b) ≤ d.
Next we invoke ETE or CONT at such a triple (a, b, d) where a = b. ETE

implies t1 = t2 + a. On the other hand CONT implies that f is continuous
in both variables, and so is g. For a small positive ε, the net waiting cost of
agent 1 at (a−ε, a, d) is g(a−ε, d)+a−ε, and it is g(2a+ε, d)−g(a, d)+2a+ε
at (a+ ε, a, d). By continuity, t1 = t2 + a follows, namely

g(2a, d) = 2g(a, d)− a for all a, 0 < a ≤ d

2
(13)

The last step of the proof extends the above argument to four agents problems
like x = (a, b, c, d−(a+b+c)) with 0 < a ≤ b ≤ c and 2(a+b+c) ≤ d. Looking
to the merging of 3,4 and its reverse split, we deduce t34(x) = −g(a + b, d)
from (12). From the merging of 2, 3, 4 and the reverse split, we get t234(x) =
−g(a, d), and finally from the merging of 1,2,3 and its reverse split we have
t123(x) = g(a+ b+ c, d). Gathering our results

t(x) = (g(a, d), g(a+b, d)−g(a, d), g(a+b+c, d)−g(a+b, d),−g(a+b+c, d))

At a profile x where b = c, ETE or the same continuity argument as above
gives

g(a+ b, d)− g(a, d) = g(a+ 2b, d)− g(a+ b, d) + b (14)

We derive finally a contradiction between (14) and (13). Taking a = b in
(14), and omitting d for simplicity, we get

g(3a) = 2g(2a)− g(a)− a = 3g(a)− 3a
Taking b = 2a gives similarly g(5a) = 5g(a)− 8a. Finally taking a = 2x, b =
3x in (14) again gives

g(8x) = 2g(5x)− g(2x)− 3x = 10g(x)− g(2x)− 19x
On the other hand (13) is g(2x) = 2g(x)−x, and implies g(8x) = 8g(x)−12x.
A contradiction follows.

29

10.2 Theorem 2

10.2.1 Proof of Statement i

Consider the method associated with the functions α and γ. As a spread or
a shrink leaves the sum xN , and therefore γ(xN), unchanged, we can simply
ignore γ while checking PTP. Recall that y+ and y− are separable with
associated functions θ+ and θ−. Thus y = αy+ + (1− α)y− can be written

yi(N,x) = xi +
X
j∈N\i

θ(xi, xj;xN)

where θ(a, b; z) = α(z)θ+(a, b) + (1 − α(z))θ−(a, b) = 1
2
(a ∧ b) + 1

2
(α(z) −

1)(a− b).
For fixed b and z, the function a −→ θ(a, b; z) is linear before b and linear

after b, and its slope drops by 1
2
at b. In particular, this function is concave.

Thus all we need to show is that any mechanism coming from the method y
meets PTP.
Consider first S, x, x0 and ε as in the premises of (10). Assume without

loss of generality x1 < x2 and that agent 2 ∈ S transfers ε of his job to 1 ∈ S.
As xN = x0N , we omit xN in θ(xi, xj;xN) and compute the total net cost of
S before and after the shrink:

yS(x) = v(S, x) +
X
N\S

[θ(x1, xj) + θ(x2, xj)]

yS(x
0) = v(S, x0) +

X
N\S

[θ(x01, xj) + θ(x02, xj)]

v(S, x0)− v(S, x) = (2x01 + x02)− (2x1 + x2) +
X

k∈S\{1,2}

pk

where the term pk = x01 ∧ xk + x02 ∧ xk − x1 ∧ xk − x2 ∧ xk is nonnegative
because a → a ∧ xk is concave. Therefore v(S, x0) − v(S, x) ≥ ε. The same
concavity argument shows θ(x01, xj) + θ(x02, xj) ≥ θ(x1, xj) + θ(x2, xj), and
the proof of (10) is complete.
Next we consider a spread, namely S, x, x0 and ε as in the premises of (11)

with x1 ≤ x2 and 1 ∈ S transferring ε of her job to 2 ∈ S. With the same
notation pk as above, we get: v(S, x0) − v(S, x) = −ε +

P
S\{1,2} pk. Setting

qj = θ(x01, xj) + θ(x02, xj)− θ(x1, xj)− θ(x2, xj), we now have

30

yS(x
0) + ε− yS(x) =

X
S\{1,2}

pk +
X
N\S

qj (15)

where the concavity argument shows this time pk ≤ 0 and qj ≤ 0. Check first
that for any agent i /∈ ∆(σ0; 1, 2), we have pi = 0 if i ∈ S\{1, 2} and qi = 0 if
i ∈ N\S. This is clear because the functions a→ a∧ xi and a→ θ(a, xi) are
linear on [0, xi] and on [xi,+∞[. Next we pick i ∈ ∆(σ0; 1, 2) and suppose
first i ∈ S\{1, 2}. We have

x01 ≤ xi ≤ x02 =⇒ pi = x01 + xi − x1 ∧ xi − x2 ∧ xi ⇒ pi ≥ −xi

Finally consider i ∈ ∆(σ0; 1, 2) ∩ N\S. If we show qi + xi ≥ 0, the desired
inequality (11) will follow from (15). Recall that on the interval [x01, x

0
2], the

function a → θ(a, xi) has 2 linear pieces connecting at xi and such that the
slope drops by 1

2
at xi. Therefore

qi = (θ(x
0
2, xi)− θ(x2, xi))− (θ(x1, xi)− θ(x01, xi)) ≥ −

1

2
(x1 − x01)

The inequality qi + xi ≥ 0 follows if xi ≥ x1. If x01 ≤ xi ≤ x1, compute
qi =

x01−xi
2

, ensuring qi + xi ≥ 0. This concludes the proof of statement i.

10.2.2 Proof of Statement ii

We fix N , and an efficient mechanism µ meeting CONT and PTP.
Step 1

For all nonempty and proper subset S of N , we write H(S) = {x ∈ RN
+ |xi <

xj for i ∈ S, j ∈ N\S}. We prove the existence of a function gS(a, b) such
that

gS(a, b) is defined for a, b ≥ 0 such that
a

|S| <
b

|N | (16)

gS(xS, xN) = tS(x) for all x ∈ H(S)

where t(x) is the monetary transfer selected by µ.
For any x ∈ H(S), efficiency of µ implies that σ(x) ranks S ahead of N\S,

therefore yS(x) = v(S, x) + tS(x). Given x ∈ H(S), we define the vector x∗

31

by x∗i =
xS
|S| if i ∈ S, x∗i = xi if i ∈ N\S. Note that x∗ is also in H(x). Our

first step toward proving (16) is to show tS(x) = tS(x
∗).

We call two agents i, j adjacent at x if ∆(σ(x); i, j) = ∅. Given x and
i, j ∈ S, adjacent at x, consider x0 obtained from x by averaging xi and
xj : x

0
i = x0j =

1
2
(xi + xj), x

0
k = xk otherwise. Thus x0 is a shrink of x, and x

a spread of x0, and PTP implies yS(x) = yS(x
0)− ε, where ε = 1

2
|xi − xj|.

Note that x0 is in H(S) as well, and that v(S, x0) = v(S, x)− ε, because
]xi, xj[contains no xk, k 6= i, j.Now yS(x) = v(S, x) + tS(x) and the similar
equality for x0 imply tS(x) = tS(x

0).
For any x ∈ H(S) such that x 6= x∗, we can find two agents i, j ∈ S, adja-

cent at x, and average xi and xj without changing tS(x). Thus we construct
a sequence x◦ = x, x1, x2, ..., by averaging at each step some pair xi, xj where
i, j are adjacent at x. This sequence either stops at x∗ or converges to x∗.
By construction

yS(x
p) = v(S, xp) + tS(x) for p = 0, 1, 2, ...

By continuity of yS and of v(S, .), we deduce yS(x
∗) = v(S, x∗) + tS(x);

because x∗ ∈ H(x), this gives tS(x) = tS(x
∗) as claimed.

A symmetrical construction, starting from any x ∈ H(S), and succes-
sively averaging xi, xj for some i, j ∈ N\S adjacent at x, delivers tN\S(x) =
tN\S(x∗) where (x∗)i =

xN\S
|N\S| if i ∈ N\S and (x∗)i = xi if i ∈ S. Combining

this with tS(x) = tS(x
∗), and tS + tN\S = 0, we see that tS(x) only depends

upon xS and xN\S, and can be written as in (16) for some function gS. Finally
x ∈ H(S) implies xS

|S| <
xN
|N | and the proof of Step 1 is complete.

In the next step we use the following consequence of (16). If at problem
(N,x) we have xj < xi < xk for all j ∈ S and all k ∈ NÂS ∪ {i}, then
ti(x) = gS∪{i}(xS∪{i}, xN)− gS(xS, xN). This holds even if S = ∅, by setting
g∅ = 0, and also if S ∪ {i} = N , by setting gN = 0.
Step 2
We observe first that each function gS is continuous on its domain. For

each a, b ≥ 0 such that a
|S| <

b
|N | , we define x(a, b) = z by zi = a

|S| for i ∈ S,

and zi =
b−a
|N\S| for i ∈ N\S. By Step 1

gS(a, b) = tS(x(a, b)) = yS(x(a, b))− v(S, x(a, b))

and the claim follows by CONT. Next we apply continuity again at those
profiles where two coordinates are equal, and derive a functional equation

32

((17) below) linking the different functions gS.
In the rest of the proof we use the simplified notation S ∪ {i} = S, i,

{i, j} = i, j, etc...
Fix S nonempty, and two agents i, j ∈ N\S. Choose also any three a, b, c

such that 0 ≤ a < b < c. We construct x and, for ε small enough, x(ε) as
follows:

xk = a if k ∈ S;xi = xj = b;xk = c if k ∈ NÂS, i, j
x(ε) = x+ ε(ei − ej) where ei is the i− th unit vector in RN .

For ε small enough and positive, any efficient ordering of N ranks S
before j, j before i, and i before the rest. For ε small and negative, the order
is S ≺ i ≺ j ≺ N\S, i, j. From Step 1, we have

yi(x(ε)) = xS,i,j+ti(x(ε)) = xS,i,j+g
S,i,j(xS,i,j, xN)−gS,j(xS,j−ε, xN) for ε > 0

yi(x(ε)) = xS,i − ε+ gS,i(xS,i − ε, xN)− gS(xS, xN) for ε < 0

By continuity of yi and of gT , for all T , we deduce

b+ gS,i,j(sa+ 2b, d)− gS,j(sa+ b, d) = gS,i(sa+ b, d)− gS(sa, d) (17)

where s = |S|, n = |N | and d = sa + 2b + (n − s − 2)c. Our choice of c is
only limited by 0 ≤ a < b < c. Thus if S, i, j 6= N equation (17) holds for
all a, b, d such that 0 ≤ a < b and d > sa+ (n− s)b. In the case S, i, j = N,
(17) holds by our convention gN ≡ 0 and in that case we have 0 ≤ a < b and
d = sa+ 2b.
Finally the continuity argument applies also to the case S = ∅, a = 0.

Thus (17) holds in this case as well for 0 < b < d (recall our convention
g∅ = 0).
Step 3

We derive a first consequence of (17)

gS(sb, d) =
X
S

gi(b, d)− s(s− 1)
2

b for all ∅ 6= S 6= N, and all 0 < b <
d

n

(18)

33

Equation (17) for S = ∅, a = 0, gives (18) for S = i, j. Apply (17) next to
S = k and a < b, d > nb.

gi,j,k(a+ 2b, d) = (gk,i + gk,j)(a+ b, d)− gk(a, d)− b (19)

Fix d, let a converge to b, and use (18) for S = k, i and S = k, j : we
obtain (18) for S = k, i, j. An easy induction argument, omitted for brevity,
concludes Step 3.
Step 4

We prove that each function gi(a, d) is affine in a, and its slope is independent
of i ∈ N. The assumption |N | ≥ 4 plays a key role in this step, and in this
one only.
Develop (19) using (18) successively for S = i, j, k, S = k, i and S = k, j.

We get

(gi + gj + gk)(
a+ 2b

3
, d) = 2gk(

a+ b

2
, d) + (gi + gj)(

a+ b

2
, d)− gk(a, d)

for 0 < a < b and a+2b
3

< d
n
. As the choice of i, j, k in N is arbitrary, the term

gk(a+b
2
, d)− gk(a, d) is independent of k ∈ N. Set it equal to h(a, b, d) so the

equation above becomesX
ω=i,j,k

gω(
a+ 2b

3
, d)− gω(

a+ b

2
, d) = h(a, b, d)

As |N | ≥ 4, and i, j, k are arbitrary, this implies for all i, gi(a+2b
3

, d) −
gi(a+b

2
, d) = 1

3
h(a, b, d). Thus, for fixed d, every function gi meets the equation

g(
a+ b

2
, d) =

1

4
g(a, d) +

3

4
g(
a+ 2b

3
, d)

Changing variables to a0 = a+2b
3
we get

g(
1

4
a+

3

4
a0) =

1

4
g(a) +

3

4
g(a0) for all 0 ≤ a < a0 <

d

n

where we omit d for simplicity. This is a simple variant of the classic Cauchy
equation (see Aczel [1970]). As g(., d) is continuous on the interval [0, d[, it
must be affine, namely g(a, d) = λ(d)a+β(d). Back to the functions gi, recall
that gi(a+b

2
)− gi(a) is independent of i: thus the slope λ(d) is the same for

all i and we conclude

34

gi(a, d) = λ(d)a+ βi(d) for all 0 < a <
d

n
(20)

Step 5 End of proof
As discussed at the end of Step 2, we can apply (17) to S = NÂi, j, a, b

such that 0 ≤ a < b and d = (n − 2)a + 2b. We obtain one more equation
connecting λ, βi, i ∈ N :

b = (gNÂi + gNÂj)((n− 2)a+ b, d)− gNÂi,j((n− 2)a, d) (21)

Now (18) and (20) give

gNÂi((n− 2)a+ b, d) = (λ(d)− n− 2
2
) · ((n− 2)a+ b) + βNÂi(d),

gNÂi,j((n− 2)a, d) = (λ(d)− n− 3
2
)(n− 2)a+ βNÂi,j(d)

and we omit the similar formula for gNÂj. Upon substituting in (21):

b = βN(d)+(λ(d)−
n− 2
2
)((n−2)a+2b)−1

2
(n−2)a⇐⇒ βN(d) =

n− 1
2

d−λ(d)d

Now we set

α =
2λ+ 1

n
⇐⇒ λ =

nα− 1
2

; and βi =
1

n
(
n− 1
2
− λ)d+ γi

where α and γi, i ∈ N, depend on d. From the continuity of gi in a, d follows
that of βi and of λ in d, hence of α and γi in d. Moreover γN ≡ 0 by
construction. We compute now, with the help of (18), gi and gS in terms of
α and γi :

gi(a, d) = λa+ βi =
nα− 1
2

a+
1− α

2
d+ γi;

gS(a, d) =
nα− s

2
a+

1− α

2
sd+ γS = α

(n− s)

2
a+ (1− α)

s(d− a)

2
+ γS

For our two basic methods y+ and y−, it is easy from Definition 2 to compute
t+S (x), t

−
S (x) whenever x ∈ H(S) :

35

t+S (x) =
1

2
(n− s) · xS; t−S (x) =

1

2
s · xN\S

Compare with the sum of transfers to S in our mechanism µ, namely tS(x) =
gS(xS, xN):

tS(x) = α(xN) · t+S (x) + (1− α(xN)) · t−S (x) + γS(xN) for all x ∈ H(S)

Recall, for any efficient method, any S and any x ∈ H(S), the equation
yS(x) = v(S, x) + tS(x). We have just proven that the method y associated
with µ, and the method ey = αy+ + (1− α)y− + γ have eyS(x) = yS(x) for all
S and x ∈ H(S). Now if all coordinates of x are different, this forces y(x) =ey(x). By continuity the equality holds everywhere on RN

+ . This concludes the
proof of Theorem 2.

10.3 Corollaries of Theorem 2

10.3.1 Corollary 1

Statement i is obvious as y+, y− treat equals equally. For statement ii, the
"if" part is obvious. To prove "only if," consider x = d · ei, where ei is, as
before, the i-th coordinate vector. Compute

y+(x) = dei; y−(x) =
d

2
(1, .., 1)− (n− 1)

2
dei

Scale Invariance implies y(x) = dy(ei). Taking the j-th coordinate of this
equation for j 6= i, gives

(1− α(d))
d

2
+ γj(d) =

1− α(1)

2
+ dγj(1)

As j varies in N and γN ≡ 0, this implies first α(d) = α(1), then γj(d) =
dγj(1) for all j, as claimed.

10.3.2 Corollary 2

Clearly the component γ(xN) in y(x) plays no role in the properties of merge-
proofness and splitproofness, so we can assume γ ≡ 0 without loss of gener-
ality. Observe that the method α · y+ + (1− α) · y− behaves essentially like
a separable method with respect to the function

36

θα(a, b, d) =
1

2
(a ∧ b)− (1− α(d))

2
(a− b)

That is to say, the net cost yi(N,x) is computed as yi(N,x) = xi+
P

N\i θ
α(xi, xj, xN)

for all N, i and x.We can then mimick the proof of Proposition 2: any mech-
anism with method α(xN) · y+ + (1− α(xN)) · y− is mergeproof if and only
if, for any fixed d, the function θα(·, ·, d) meets the system (6); any such
mechanism is split-proof if and only if θα(·, ·, d) meets system (7).
One consequence of MPF is that a −→ θ(a, b, d) is superadditive on [0, b].

In particular

2θ(
b

2
) ≤ θ(b, b)⇐⇒ b

2
+ (1− α)

b

2
≤ b

2
=⇒ α ≥ 1

Conversely, θα meets (6) whenever α ≥ 1. Indeed a −→ θα(a, b, d) has slope
α
2
≥ 1

2
on [0, b] with θ(b) = b

2
, therefore θ(0) ≤ 0. On [0, b] we have θ(a1 +

a2)− θ(a2) = θ(a1)− θ(0), and the top inequality in (6) follows. The bottom
one is equally easy.
A consequence of SPF is θ(2b, b, d)+b ≤ 2θ(b, b, d), from the top inequality

in (7). This amounts to θ(2b, b, d) ≤ 0 =⇒ 1
2
b − (1−α)

2
b ≤ 0 ⇐⇒ α ≤

0. Checking that, conversely, θα meets (7) whenever α ≤ 0 is routine and
omitted.

10.3.3 Corollary 3

Choose α, γ as in the statement of Theorem 2. When does the corresponding
method meet ZCNJ? For all x, all i ∈ N, xi = 0 implies y+i (x) = 0 and
y−i (x) =

1
2
xN . Therefore ZCNJ implies 12(1−α(d))d+ γi(d) = 0 for all i and

all d ≥ 0. From this, γ ≡ 0 and α(d) = 1 for all d follow at once.
Suppose next that the method associated with α, γ meets SAB. Apply

this property first for x, i such that xi = 0. We get 1
2
(1 − α)d + γi ≥ 0.

Summing over i gives α(d) ≤ 1 for all d. Apply next SAB to x = dei and to
agent i

d ≤ αy+i (x) + (1− α)y−i (x) = αd+ (1− α)
3− n

2
d+ γi (22)

⇐⇒ n− 1
2
(α− 1)d+ γi ≥ 0

37

Summing up over i yields α(d) ≥ 1. Thus α ≡ 1 and the inequality above
gives γ ≡ 0 as well.

10.3.4 Remark 3

The pessimistic stand alone bound applied to x = dei gives the inequality
opposed to (22) above, hence α(d) ≤ 1 for all d. Mergeproofness, on the
other hand, amounts to α(d) ≥ 1 for all d.
Next apply the unanimity bound to any x, i such that xi = 0. We get

1
2
(1−α)d+γi ≤ 0, hence α(d) ≥ 1 by summing over i. Thus the combination
of the bounds yi ≤ xN and yi ≤ n+1

2
xi captures, again, the method S+.

.

.

38

