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Abstract

If shortest jobs are served first, splitting a long job into smaller
jobs reported under different aliases, will reduce the actual wait until
completion. If longest jobs are served first, the dual maneuver of
merging several jobs under a single reported identity is profitable.
Both manipulations can be avoided if the scheduling order is random,
and users care only about the expected wait until completion of their
job.
In the natural class of separable scheduling rules, Merge-proofness

holds if individual delay is monotonic in own job size. Split-proofness
is more demanding.
The Proportional rule stands out among rules immune to splitting

and merging. It draws the job served last with probabilities pro-
portional to sizes, then repeats among the remaining jobs. It is the
only split-proof scheduling rule constructed in this recursive way, that
minimizes the worst expected delay of individual jobs; or such that an
agent with a longer job incurs a longer delay.
Key words: probabilistic scheduling, merging, splitting, propor-

tional rule.
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ful to these institutions for their hospitality.

1



1 The problem and the main results

When processing jobs of different lengths, the familiar utilitarian goal of
minimizing total waiting time requires to schedule them from shortest to
longest. A user with a long job can lower his waiting time by splitting
his order in several smaller jobs, if he can pretend that each small job is
requested by a different person. The success of this maneuver rests on the
unability to monitor the identity of the real beneficiaries of any job in the
queue. This may reflect a feasibility constraint, such as the dispersion of
information about the private benefits of each job and the prohibitive cost
to retrieve it. Alternatively, the system designer may need to protect the
users’ privacy when jobs deal with sensitive information. Examples include
users sharing a data base, which can be accessed on a single phone line,
or a single decoding machine processing confidential documents. In large
networks such as the Internet the proliferation of aliases is an issue of serious
concern (Douceur [2002]). We study simple randomized scheduling disciplines
invulnerable to the strategic faking of identities and the resulting tradeoffs
with other normative concerns, such as the minimization of the worst case
waiting time, and the fair distribution of the delay externality.
We focus on the two dual strategic maneuvers of splitting a single job

in smaller jobs reported to the server under different aliases, and of merging
several jobs into a single large job. In line with most of the scheduling
literature (e.g., Lawler et al. [1993]), we assume that partially completed
jobs are useless, so that an efficient server processes jobs whole1. Splitting is
the cooperative manipulation where agent A who needs a job of size x, calls
to help several agents A’,A",.., not involved in the initial scheduling problem,
and requests on their behalf jobs of sizes a, a0, a”, .. such that a+a0+a”+·· =
x. If the last agent served among A,A’,A",.., is strictly earlier than A in the
initial problem, the maneuver is profitable. Symmetrically agents A,B,C,..,
who need jobs of sizes a, b, c, .., can merge into a single agent A requesting a
job of size x = a+ b+ c+ ··. The merged agents schedule their true jobs as
they please during the time where job x is processed. Merging is profitable if
the waiting time of at least one merged agent can thus be reduced, without
increasing that of any other.
A rule serving shortest jobs first is vulnerable to splitting, irrespective of

1At least in the scheduling problem, where all jobs are born at the same date. In the
queuing problem, efficiency is compatible with preemptive service: see Section 8.
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the tie-breaking rule; on the other hand it is "merge-proof", because a merged
job is never served earlier than any of its component jobs. Similarly, serving
longest jobs first (hence maximizing total waiting time) is a "split-proof"
rule, whereas it is highly vulnerable to merging.
Call a scheduling rule deterministic if it selects a processing order for any

profile of (deterministic) job sizes. A simple impossibility result holds true
with as few as three agents: a deterministic rule cannot be both split-proof
and merge-proof. Assume without loss of generality that when agents A,B,C
each have a job of size 2, the rule orders them alphabetically. If now A,B
show up with jobs (a1, b1) = (2, 4), A must be served first, otherwise B and C
both reduce their wait by merging in the initial three person problem. If B,C
show up with (b2, c2) = (4, 2), B must be served first otherwise B shortens his
wait by splitting into (a0, b0) = (2, 2). Next consider the problem (a, b, c) =
(1, 4, 1) If B is served last there, then at (b2, c2), C splits advantageously to
(a”, b”) = (1, 1). If B is served first or second at (a, b, c), and A,C merge into
a1 = 2, C benefits strictly whereas A suffers no harm (and even benefits if B
was served first at (a, b, c)). This proves our claim.
Randomizing the scheduling of jobs is the simplest way to restore fairness

when efficiency compels to process them whole. We submit another advan-
tage of randomization: if we assume that each participant seeks to minimize
the expected wait until the completion of his or her job,we can construct
scheduling rules that are simultaneously split-proof and merge-proof. An
example is the Uniform scheduling rule chooses each ordering of the n par-
ticipants with equal probability 1/n!, ignoring all differences in job lengths.
It is easy to check its invulnerability to splitting and merging maneuvers2

Yet for all its simplicity, the Uniform rule is problematic on two accounts:
responsiveness and liability.
Responsiveness is the idea —familiar in the cost sharing literature: e.g.,

Moulin and Sprumont [2003]— that waiting costs should be positively cor-
related with job lengths, because the longer the job, the larger the delay
externality upon other participants. Loosely speaking, Shortest Jobs First is
the most responsive rule of all; in particular it meets the two following re-
sponsiveness properties. The Demand Monotonicity axiom requires that the
net waiting cost yi−xi, where yi is the expected completion date of agent i’s
job with size xi, be non decreasing in xi. Longest Jobs First emphatically fails
this property; the Uniform rule barely meets it, as yi − xi =

1
2

P
j 6=i xj does

2We omit the argument for brevity. The claim also follows from Proposition 4.
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not depend on xi at all. The Ranking axiom compares net waiting costs of
any two agents i, j in a given problem: if xi ≤ xj, it requires yi−xi ≤ yj−xj.
Although these two properties are not logically related, their normative con-
tent is similar: a larger job creates more delay for other users, hence it should
bear a larger share of the delay externality. Ranking conveys this idea by
interpersonal comparisons in a given problem, while Demand Monotonicity
compares the shares of a given agent for different job sizes. Both Longest
Jobs First and the Uniform rule fail Ranking. More generally in our model,
Demand Monotonicity is "easy" to meet, and for many scheduling rules it im-
plies Merge-proofness (Proposition 2); Ranking, on the other hand, is much
more demanding and leaves little room for Split-proofness (see sections 6,7).
The liability of a scheduling rule measures the worst expected wait of

a given job when other jobs are arbitrarily large. A job "chokes" if large
jobs are scheduled ahead of it often enough that its expected wait grows
unbounded. The risk of choking may discourage participation when users
can opt it of the system (as discussed in Friedman et al. [2003]). To avoid
choking, we place a finite cap on the expected wait of any job that only
depends upon this job’ size and the number of other users, but not on the
size of these competing jobs. Under Shortest Jobs First, if n agents share
the server the liability of a job of length xi is n · xi: indeed the longest wait
occurs when all other jobs are only slightly shorter than xi. On the other
hand, under either Longest Jobs First or the Uniform rule, this liability is
infinite because yi goes to infinity as xj does, for any j 6= i.
We show that Merge-proofness is very easy to achieve in probabilistic

scheduling, in particular it does not restrict the responsiveness of the rule,
and is compatible with the minimal feasible liability3. Split-proofness, on the
other hand, limits the responsiveness of the rule, and places a lower bound
on its liability. Our main result is that a certain probabilistic scheduling
rule achieves the best feasible compromise between split-proofness and the
two goals of maximizing responsiveness and minimizing individual liability.
This Proportional rule is split-proof and merge-proof, meets Monotonicity
and Ranking, and guarantees the finite liability n · xi at all problems. More-
over, within the set of separable rules or within that of recursive rules (see
next paragraph), the Proportional one is characterized by the combination
of Split-proofness, Merge-proofness, and either Ranking or the cap n · xi on
individual liability(Theorems 1 and 2 in Section 7).

3The smallest feasible liability is n+1
2 xi: Lemma 7 in Section 6.2.
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A scheduling rule is separable if the relative ranking of any subset of jobs
is independent of other jobs’ sizes. A rule is recursive if it can be generated
by n independent successive draws, choosing first the agent served last, then
the agent served next to last in the reduced problem with n− 1 agents, and
so on.
The paramount example of separable rules are the parametric scheduling

rules. Choose for each positive job length x, a cumulative distribution func-
tion Fx on [0,+∞[. Given a set N of participants and a profile xi, i ∈ N of
job sizes, we draw |N | independent random variables Zi, where Zi has cdf
Fxi; then we order the jobs as the realizations of these variables, breaking ties
with a uniform dice. For instance the Uniform rule obtains if the cdf Fx is
independent of x. The Proportional rule is parametric with the Weibull cdf
Fx(z) = zx for all x > 0. Its name comes from the fact that for any agents
i, j, k, .., the probability that i is served last equals xi

xi+xj+xk+·· . More gener-

ally, a quasi-proportional rule is parametric with Fx(z) = zw(x) for all x > 0,
where w is an arbitrary positive function. Such a rule is both separable and
recursive; in fact the two properties Separability and Recursivity essentially
characterize the family of quasi-proportional rules (Proposition 1).
A quasi-proportional rule is merge-proof if w is non decreasing; it is split-

proof if and only if w is subadditive (Proposition 4). Ranking of a finite
liability, on the other hand, essentially require w to be superadditive (Section
6): the pivotal role of the Proportional rule, for which w is additive, is thus
especially clear in the quasi-proportional family.
Two general remarks about the interpretation of Merge-proofness and

Split-proofness. If the context makes it easy to assume fake identities, split-
ting can be viewed as a non-cooperative manipulation, in contrast to merging
that requires the cooperation of several different agents. In this case split-
ting is potentially a much more serious problem than merging. On the other
hand, if the system manager can detect falke identities, a splitting maneu-
vers is again a cooperative move requiring the coordinated action of the agent
with a "true" job with one or more "passive" agents who in truth have no
job to submit. In that case splitting and merging are equally difficult to
implement.
Next we note that even if the system manager cannot detect fake identi-

ties, agents must not be allowed to leave the system before the reported jobs
are completed, otherwise any agent could "duplicate" his true job of length
a in several requests for jobs of the same size (under assumed identities), and
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leave the system as soon as one of these jobs is completed. Oviously such
maneuvers would always be profitable at those profiles x where all true jobs
are of the same size (and at many other profiles as well).
In Section 3 we define scheduling rules, choosing a random ordering of

service for every set of agents with jobs of arbitrary sizes, and scheduling
methods computing the profile of expected waiting times on the same domain.
The properties of Separability and Recursivity are introduced in Section 4,
along with the important classes of parametric and quasi-proportional rules.
In Section 5 we define merge-proof and split-proof rules, and show that these
properties take a simple form for separable, and in particular parametric and
quasi-proportional, rules. Section 6 defines the Ranking property, and the
measure of individual liability. Our main results are in Section 7. Within the
set of recursive rules, we characterize the Proportional one by the neutrality
of splits ( the property we call Split-invariance), or by the combination of
Split-proofness and either the Ranking property or a simple bound on liabil-
ity (Theorem 2). Parallel yet weaker results hold within the set of separable
rules: under the same premises the scheduling method must be the Propor-
tional one, but the rule may be different. The extension of some of our results
to queuing, as well as some open questions are gathered in Section 8. The
longer or peripheral proofs are in the Appendix.

2 Related literature

This paper is inspired by three essentially independent streams of micro-
economic literature: the first one applies the mechanism design approach
to queuing and scheduling, the second one discusses splitting and merging
maneuvers in various fair division problems, and the third one studies the
random assignment of private commodities.
We start with the research on on scheduling and queuing (under the

assumption that only completed jobs matter) when monetary transfers are
feasible. That literature typically assumes quasi-linear preferences in money,
and linear waiting costs. One idea is to propose fair monetary compen-
sations by applying solutions concepts from cooperative game theory: the
Shapley value is increasingly popular for the scheduling model (Curiel et
al. [1989],[1993],[2002], Klijn and Sanchez [2002], Maniquet [2003], Chun
[2004 a,b]); in the scheduling problem, Haviv and Ritov [1998], Haviv [2001]
apply the Aumann-Shapley pricing rule to various service disciplines. A dif-
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ferent, and more developed, theme is to design cash transfers ensuring the
truthful revelation of waiting costs. This leads to interesting (in particu-
lar, budget-balanced) Vicrey-Clarke-Groves mechanisms, or generalizations
thereof: Dolan [1978], and more recently Suijs [1996], Mitra [2001,2002], Mi-
tra and Sen [2002]. Closer to our model, Kittsteiner and Moldovanu[2003 a,b]
consider the truthful revelation of job sizes, assuming that agents cannot be
punished ex post for misreporting. This type of noncooperative misrepresen-
tation differs sharply from the cooperative moves of splitting and merging
jobs. In our model the system manager can punish agents who minimize ex
ante the length of their job, and agents have no incentive to exagerate the
size of their job either.
The companion paper Moulin [2004] discusses merging and splitting ma-

neuvers in the quasi-linear scheduling model just discussed. The results there
are less encouraging than in the probabilistic model of this paper, in the sense
that no efficient mechanism can be both split-proof and merge-proof. Just
like here, Merge-proofness proves much easier to meet than Split-proofness,
that forces several unpalatable normative features, such as the systematic
violation of Monotonicity and Ranking. See section 8 for further discussion
of this model.
We turn to the discussion of splitting and merging in the fair division

literature. The earliest contribution deal with the rationing problem (Banker
[1981], Moulin [1987], De Frutos [1999], Ju [2003]) where the proportional
rule is the only one immune against such maneuvers. In the quasi-linear
social choice problem, the same property leads to the egalitarian division
of surplus (Moulin [1985], Chun[]), and in the cost sharing problem with
variable demands, to the Aumann-Shapley rule (Sprumont [2004]). Most of
these results are surveyed in Ju and Myiagawa [2003].
Although splitting and merging are not meaningful there, the recent liter-

ature on random assignment is distinctly related to the present paper. Note
that the scheduling problem is similar to the assignment of indivisible ob-
jects, where objects are slots in the processing order. The twist is that when
jobs are of different sizes, the value of a given slot depends on who is served
before, hence a slot is not a purely private good as in the assignment prob-
lem.The analog of our Uniform rule in the assignment model is the Random
Priority mechanism, selecting a "pecking order" with uniform probability. Its
efficiency and strategy-proofness properties are discussed by Abdulkadiroglu
and Sonmez [1999], Bogomolnaia and Moulin [2001], who contrast it with
the alternative Probabilistic Serial mechanism. The probabilistic schedul-

7



ing of jobs of identical sizes is a special case of the assignment problem, for
which the Probabilistic Serial unambiguously dominates Random Priority
(Cres and Moulin [2000], Bogomolnaia and Moulin [2002]).

3 The model

The infinite set N of potential agents is fixed throughout. A scheduling prob-
lem is a pair (N,x) where N is a finite subset of N , and x is a profile of non-
negative job sizes, xi ∈ R+ for all i ∈ N. The set of orderings of N is Φ(N),
with generic element σ : σ(i) < σ(j) means that job i is served/scheduled
before job j. A random ordering is a probability distribution p on Φ(N); the
set of such distributions is denoted ∆[Φ(N)].
We assume that agents care only to minimize expected completion time

of their own job, i.e., the expected wait yi of agent i is her disutlity. Given
the random ordering p and a problem (N,x), the expected wait of agent i
until completion of her job is

yi = xi +
X

j∈NÂi

prob{σ(j) < σ(i)|x} · xj (1)

where prob{σ(j) < σ(i)|x} =
P

σ:σ(j)<σ(i) pσ(N,x). Conversely, our first re-
sult describes those profiles y ∈ RN

+ feasible at a given problem (N, x), namely
such that (1) holds for some lottery p ∈ ∆[Φ(N)]. Define for all x ∈ RN

+ and
all S ⊆ N, the function v(S, x) =

P
S x

2
i +

P
S(2) xi · xj, where S(2) is the

set of non ordered pairs from S ( the cardinality of this set is |S|·(|S|−1)
2

). Note
that v is supermodular with respect to S.
Lemma 1

i)The profile y ∈ RN
+ is feasible at (N,x), x ∈ RN

+ , if and only if for all i
{xi = 0 =⇒ 0 ≤ yi ≤

P
N xj}, and moreover y belongs to the core of the

game (N, v(·, x)), i.e.,X
N

xi · yi = v(N,x) and
X
S

xi · yi ≥ v(S, x) for all S ⊆ N.

ii)The profile y ∈ RN
+ is efficient at (N,x), x ∈ RN

+ , if and only if for all
i {xi = 0 =⇒ yi = 0}, and moreover y belongs to the core of the game
(N, v(·, x)). We denote by F (N,x) the set of efficient profiles y at (N, x).
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This result is proven in Queyrane [1992]. For the sake of completeness
we provide a (different) proof in the Appendix.
Lemma 1 implies that if all jobs are positive, all random orderings are

efficient, because the weighted sum
P

N xi ·yi is independent of the choice of
p. When some jobs are null efficiency only requires to schedule all null jobs
before any non-null job.
We write RN

++ for the set of profiles x with all positive coordinates, and
x À 0 as a short-hand for x ∈ RN

++. Similarly x ≥ 0 is a short-hand for
x ∈ RN

+ .
Definition 1

An efficient scheduling rule is a mapping ρ0 associating to each problem
(N,x), xÀ 0, a random ordering p ∈ ∆[Φ(N)].
An efficient scheduling method is a mapping µ associating to each problem
(N,x), x ≥ 0, an efficient profile y ∈ F (N, x).
We only need to define efficient scheduling rules over strictly positive

profiles x, because the relative ordering of null jobs is irrelevant, as long as
they are served before all non null jobs. On the other hand, an efficient
scheduling method is defined for all profiles, because the wait of null jobs is
unambiguous; moreover it will prove convenient in Sections 5,6 to define a
method for all profiles in RN

+ .
In the sequel when we speak of a method or a rule, we always mean that

it is efficient.

4 Separable, recursive and parametric rules

For a given set of n agents, the dimension of the set of scheduling rules is of

the order of n
n2

2 , and in such a large set the properties of Merge- and Split-
proofness are not enough to pin down some simple rules. We shall restrict
attention to those rules meeting either Separability, a property reminiscent
of the familiar Consistency axiom of the fair division literature, or a certain
Recursivity property (Definition 6) below.
Given N,S, S ⊂ N, and x ∈ RN

+ , we write x[S] its projection on RS
+; for

any σ ∈ Φ(N), σ[S] ∈ Φ(S) is similarly the restriction of σ to S.
Definition 2

The scheduling rule ρ is separable if for all N,S, S ⊂ N, xÀ 0, the (random)
ordering of the jobs in S is independent of the jobs outside S:
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for all σ∗ ∈ Φ(S) :
X

σ∈Φ(N):σ[S]=σ∗
pσ(N, x) is independent of x[NÂS]

For a separable rule ρ, we speak of the probability that a job of size xj
for agent j precedes a job of size xi for agent i, without specifying either the
rest of the participants or the size of their jobs: we write this probability
θi,j(xi, xj), so that the method µ associated with ρ takes the form

yi(N,x) = xi +
X

j∈NÂi

θi,j(xi, xj) · xj (2)

Definition 3
The scheduling method µ is separable if it takes the form (2) for all N, x, x ≥
0, where for all i, j ∈ N , θi,j is a function from R2+ into [0, 1] such that for
all a, b ≥ 0

θi,j(a, b) + θi,j(b, a) = 1, and a > 0⇒ θi,j(a, 0) = 1.

It follows from Lemma 1 that for any choice of the functions θi,j, equation
(2) defines a feasible profile of expected waits: θi,j non negative impliesP

S xi ·yi = v(S, x)+
P

i∈S,j∈NÂS θ
i,j(xi, xj) ·xi ·xj ≥ v(S, x). Yet it does not

follows that we can always achieve the method {θi,j} by means of a separable
scheduling rule ρ4.
The family of parametric rules is an important class of separable schedul-

ing rules that are anonymous as well, i.e., such that for all N , the mapping
x → p(N,x) is symmetric in all variables on RN

++ . In particular θ
i,j = θ is

independent of i, j. Choose for each a > 0 a cumulative distribution func-
tion Fa on [0,+∞[ with no mass at 0. Thus Fa is any non decreasing and
right-continuous function on [0,+∞[ such that Fa(0) = 0 and Fa(∞) = 1.
Definition 4

Given a scheduling problem (N,x), x À 0, the parametric rule associated
with the family {Fa, a > 0} picks |N | independent random variables Zxi

with cdf Fxi for all i ∈ N, and orders jobs according to the realization of
these variables, breaking ties randomly with uniform probability.

4For a given matrix [θi,j(xi, xj)] = [ti,j] when can we find a lottery p ∈ ∆(Φ(N)) such
that prob{σ(j) < σ(i)} = ti,j for all i, j ? Clearly the equalities ti,j+ tj,i = 1 are necessary
but not sufficient. To provide a complete set of necessary and sufficient conditions is still
an open problem: see Fishburn [1992].
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Note that if the problem (N,x) contains some null jobs, we can extend
the definition of the parametric rule by drawing Z0 = 0 for all null jobs, i.e.,
using the cdf F0 concentrated at 0, F0(z) = 1 for all z ≥ 0.
The mutual stochastic independence of the random variables Zxi implies

separability. Moreover the function θi,j = θ is

θ(a, b) = prob{Za < Zb}+
1

2
prob{Za = Zb} for all a, b. (3)

Examples of parametric rules include the three benchmark rules discussed in
Section 1:

• Shortest Jobs First: Fa is the cdf concentrated at a (Fa(z) = 1 if z ≥ a,
= 0 if z < a); θ(a, b) = 1 if b < a.

• Longest Jobs First: Fa is the cdf concentrated at 1a ; θ(a, b) = 1 if a < b.

• the Uniform rule: Fa = F1 is any cdf with no mass at zero; θ(a, b) = 1
2

for all a, b.

Our next example is a rule where if Ann’s job is larger than Bob’s, the
probability that Ann is scheduled after Bob is strictly above 1

2
and strictly

below 1.
Example 1. The Serial rule.

The cdf Fa is uniform on [0, a], i.e., Fa(z) = min{ za , 1}. Here (3) gives easily
θ(a, b) = a

2b
if a ≤ b, = 1 − b

2a
if b ≤ a. Thus for a profile of job sizes such

that 0 < x1 ≤ x2 ≤ · · · ≤ xn, the expected wait of agent i is

yi = (1 +
n− i

2
) · xi +

i−1X
j=1

(1− xj
2xi
) · xj

This formula explains the serial terminology. Indeed the expected wait of
agent i does not depend on the sizes of jobs larger that his own job : if x and x0

only differ in coordinate j, j 6= i, and xi ≤ xj < x0j, then yi(x) = yi(x
0). This

is the serial principle discussed by Sprumont [1998] and others. Moreover,
the Serial scheduling method is the only mapping x→ y from RN

+ into itself
meeting the following four properties: the serial principle, equal treatment
of equals (xi = xj ⇒ yi = yj),

P
N xi · yi = v(N,x) (Lemma 1). We omit the

straightforward proof for brevity.
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We turn to the subfamily of parametric rules that is at the heart of this
paper.
Definition 5

Let w be a function on R+, such that w(0) = 0 and a > 0 =⇒ w(a) > 0.
The w−quasi-proportional scheduling rule is the parametric rule where for
all a > 0, Fa is the Weibull cdf Fa(z) = min{zw(a), 1} for all z ≥ 0.
Lemma 2

Fix N , an ordering σ ∈ Θ(N), and a profile x ∈ RN
++ . Set wk = w(xσ−1(k)),

so w1 is the weight of the job scheduled first and wn that of the job scheduled
last. The probability of σ for the w−quasi-proportional rule is

pσ =
wnPn
1 wk

· wn−1Pn−1
1 wk

· ... · w2
w1 + w2

(4)

In particular θ(a, b) = w(a)
w(b)+w(a)

, and

yi = xi +
X
NÂi

w(xi)

w(xj) + w(xi)
· xj for all i ∈ N

(with the convention 0
0
= 1 in the equation above)

Proof.
Because the distribution of each variable Zi is non atomic, and these variables
are independent, the probability of a tie Zi = Zj is null. Hence, with the
notations above, the probability that ordering σ is selected is that of the
event {Z1 ≤ Z2 ≤ ·· ≤ Zn}, where Zi is Weibull with parameter wi. This
is precisely (4), as follows from a simple computation that we reproduce for
the case n = 3:Z 1

0

w3 · zw3−1{
Z z

0

w2 · tw2−1{
Z t

0

w1 · sw1−1ds}dt}dz =

Z 1

0

w3 · zw3−1{
Z z

0

w2 · tw1+w2−1dt}dz =
w2

w1 + w2

Z 1

0

w3 · zw1+w2+w3dz

There is an alternative, perhaps more intuitive definition of quasi-proportional
rules, for those problems (N, x) where the numbers w(xi) are all rationals,
hence w(xi) = bi

d
for some integers bi, d. For each agent i put bi balls of colour

i in an urn and empty the urn by successive draws with uniform probabil-
ity and without replacement; schedule the jobs in the order in which each
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colour vanishes in the urn (when the last ball of this colour is drawn). This
generates precisely the random ordering in Lemma 25.
The Uniform rule is quasi-proportional with w(a) = 1 for all a > 0. The

Shortest (resp. Longest) Job First rule is the limit of the quasi-proportional
rules w(a) = aα, when α goes to +∞ (resp. to −∞). The quasi-proportional
rule to which our main results (Section 7) are devoted is the Proportional
rule, for which w(a) = a. Another remarkable rule (see Lemma 7 in Section
6.2) is the Quadratic rule for which w(a) = a2.
Finally we note an important property of quasi-proportional rules re-

vealed by equation (4): the probability pσ is computed recursively by finding
first the probability wn

n
1 wk

that agent σ−1(n) be ranked last in problem (N,x),
multiplying this number by the probability that agent σ−1(n− 1) be ranked
last in the reduced problem (NÂ{σ−1(n)}, x[NÂσ−1(n)]), and so on. In other
words the scheduling rule is entirely determined once we know the probability
distribution of the job served last at every problem.
Definition 6

The scheduling rule ρ is recursive if there exists for all N a function π from
RN
++ into ∆(N), such that for all N,x, and σ ∈ Φ(N) with σ−1(n) = i, we
have

pσ(N, x) = πi(N, x) · pσ[NÂi](NÂi, x[NÂi])

We can extend the definition of π(N, ·) to RN
+ Â{0} by setting πi(N, x) = 0

whenever xi = 0. Then the equation above implies efficiency.
The serial rule is an example of a parametric rule that is not recursive.

Take the problem N = {1, 2, 3}, x = (1, 2, 3) and check:

prob{Z1 < Z2 < Z3} =
19

36
; prob{max{Z1, Z2} < Z3} =

11

18
; prob{Z1 < Z2} =

3

4

Our next result, of which the proof is relegated to the Appendix, explains
the central role of quasi-proportional rules in our model. Recall that a rule
ρ (resp. a method µ ) is anonymous if the mapping x → p(N,x) (resp.
x→ y(N,x) ) is symmetric in all variables on RN

++ (resp. RN
+ ).

Proposition 1
A scheduling rule is quasi-proportional if and only if it is separable, recursive,
anonymous and meets the following Positivity property

5I am grateful to R.J. Aumann for pointing out this interpretation.
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prob{σ(j) < σ(i)|x} > 0 for all N, x, xÀ 0, and all i, j.

Note that Positivity is needed in the above statement: Shortest Jobs First
and Longest Jobs First meet all three other properties. It is not hard to
describe the more complicated set of separable and recursive scheduling rules,
by mimicking the proof techniques of Theorem 2 in Moulin and Stong [2002
]. We omit the details for brevity.
Remark 1

An dual definition of Recursivity works by drawing the agent scheduled first
in the given problem, then repeating in the reduced problem and so on. For
instance if we schedule i first with probability 1

w(xi)
, the resulting rule is

separable and the probability that job j precedes job i is w(xi)
w(xj)+w(xi)

, just like
with the rule of Definition 5; these two rules are different with three or more
agents, but they implement the same method. However this dual definition of
Recursivity does not yield interesting Split-proof rules. For instance the dual
Proportional rule (scheduling i first with probability 1

xi
is not Split-proof.

5 Merging and Splittinig

5.1 Merge-proofness and demand monotonicity

We start with a 5 agents example. In the problem (N,x), where N =
{1, 2, 3, 4, 5}, asssume that the coalition {1, 2, 3} merges its jobs. This
means that they report as a single agent of the coalition, say 1∗, a job of
length x∗1∗ = x1 + x2 + x3, and choose freely a scheduling order, possibly a
randomized one, of their "true" jobs in the time interval chosen by the server
to process the merged job. Write y∗1∗ for the expected wait of the merged job
of size x∗1∗, so that y

∗
1∗ − x∗1∗ is the expected length of time during which job

x∗1∗ will wait for the jobs of agents 4 and 5. The latter expected wait is borne
by all three agents upon merging. The other part of their true wait comes
from the processing order of jobs 1, 2, and 3: Lemma 1 describes the range
F ({1, 2, 3}, (x1, x2, x3)) of such profiles of expected waits. Summing up we
see that the profile ey = (ey1, ey2, ey3) of expected waits is feasible for {1, 2, 3}
after merging if and only if ey ∈ (y∗1∗−x∗1∗) · (1, 1, 1)+F ({1, 2, 3}, (x1, x2, x3)).
If y is the intial profile of waits for our three agents, merging is profitable if
and only if they can find ey such that ey ≤ y with at least one strict inequality.
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Observe that the description of successful merges only uses the schedul-
ing method, not the actual scheduling rule from which it is derived. This
simplifies greatly the analysis of the Merge-proofness property, of which the
definition is a straightforward generalization of the above example. We in-
troduce some notations first. Given a scheduling problem (N,x), a proper
subset (coalition) T of N , and an agent i∗ ∈ T , the merger of T into i∗ creates
a new problem (N∗, x∗), where N∗ = (NÂT ) ∪ {i∗}, x∗i∗ =

P
T xi, x

∗
j = xj

for j ∈ NÂT . We write e for the vector in RN with all coordinates equal
to 1. Finally, as in Lemma 1, the set F (T, x[T ]) consists of the profiles of
expected waits feasible for coalition T when it is scheduled before NÂT .
Definition 7

Given a scheduling method µ, a problem (N, x), x ≥ 0, and T, i∗ as above, we
write y = µ(N, x) for the expected waits before merging and y∗ = µ(N∗, x∗)
for the (reported) waits after merging. We say that µ is vulnerable to merging
by T, i∗ at problem (N,x) if there exists a vector ey[T ] ∈ RT such that

ey[T ] ∈ (y∗i∗ − X
T

xi) · e[T ] + F (T, x[T ]); ey[T ] ≤ y[T ] and ey[T ] 6= y[T ] (5)

We say that the method µ is merge-proof if it is not vulnerable to merging
at any problem by any coalition. We say that the scheduling rule ρ is merge-
proof if the associated method is.
A null agent, xi = 0, does not wait in the original problem, but may wait

after merging. On the onther hand, adding a null agent to a merging coalition
never helps those agents. Threfore in checking merge-proofness of a method,
it is enough to check property (5) for coalitions T such that x[T ] À 0.
Our contention that Merge-proofness is "easy" to achieve relies on the

mild responsiveness property stating that an agent’s share of the delay ex-
ternality be non decreasing in the size of his own job.
Definition 8

The scheduling method µ is demand monotonic if for all N, and i ∈ N ,
yi(N, x) − xi is non decreasing in xi. The scheduling rule ρ is demand
monotonic if the associated method is.
The dual interpretation of this property, both as a normative and an

incentive-compatibility statement, is standard ( see e.g., Moulin and Spru-
mont [2003]): increasing the size of my job augments the delay externality,
and it is only fair that my share of this externality should not decrease; on
the other hand if the property fails, I would benefit by an artificial increase
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of the size of my job, provided I am able to enjoy the service as soon as my
real job is completed.
Lemma 3

i)The θ-separable scheduling method (Definition 3) is demand monotonic if
and only if for all i, j, all b > 0, θi,j(a, b) is non decreasing in a;
ii)The parametric rule {Fa, a > 0} is demand monotonic if a → Za is
stochastic-dominance monotonic , i.e., {a ≤ b}⇒ {Fb(z) ≤ Fa(z) for all z}.
iii)The w−quasi-proportional rule is demand monotonic if and only if w is
non decreasing.
Proof of statements i, iii.
If θi,j(a, b) is non decreasing in a, equation (2) implies Demand Monotonic-
ity at once. Conversely, if the θ−separable method is demand monotonic,
yi({i, j}, x)−xi = θi,j(xi, xj) ·xj is non decreasing in xi, completing the proof
of statement i. Statement iii follows at once.
The proof of statement ii is in the Appendix. Here is a demand monotonic

parametric rule for which a → Za is not stochastic-dominance monotonic.
For a < 1, let Za = 2 with probability one, and for a ≥ 1, let Za = 1 or 3
with respective probabilities 1

4
and 3

4
.

Shortest Jobs First, the Serial rule (Example 1), the Uniform6, Propor-
tional, and Quadratic rules are all demand monotonic. Longest Jobs First is
emphatically not demand monotonic.
Proposition 2

An anonymous and demand monotonic separable scheduling method is merge-
proof. For instance a demand monotonic parametric rule is merge-proof.
Proof
We show first a preliminary result.The scheduling method µ is merge-proof
if for every (N, x), x ≥ 0, T, i∗ as in Definition 7, with y = µ(N,x) and
y∗ = µ(N∗, x∗), we haveX

T

xi · yi +
X
T (2)

xi · xj ≤ (
X
T

xi) · y∗i∗ (6)

Recall that T (2) is the set of non ordered pairs in T . Consider a vector ey[T ] in
the set defined in property (5). Using the notation

P
T xi = xT , we compute

from Lemma 1
6Note that for the Uniform rule, yi − xi is actually independent of xi. It is easy to see

that the Uniform method is characterized by this property and Anonymity.
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X
T

xi · eyi = xT · (y∗i∗ − xT ) + v(T, x) = xT · y∗i∗ −
X
T (2)

xi · xj

Thus (6) is equivalent to
P

T xi · yi ≤
P

T xi · eyi, and {ey[T ] ≤ y[T ] andey[T ] 6= y[T ]} is impossible.
We pick now an anonymous θ−separable method and prove (6) for any

N,x, T, i∗. We develop (6) using (2). The term
P

T xi · yi in the LHS is
computed as

X
T

xi·yi =
X
T

xi·(xi+
X
NÂi

θ(xi, xj)·xj) =
X
T

x2i+
X
T (2)

xi·xj+
X

i∈T,j∈NÂT

θ(xi, xj)·xi·xj

Thus the LHS of (6) is x2T +
P

i∈T,j∈NÂT θ(xi, xj) · xi · xj. The RHS is xT ·
[xT +

P
j∈NÂT θ(xT , xj) · xj], therefore (6) amounts toX

j∈NÂT

xj · [
X
i∈T

θ(xi, xj) · xi] ≤
X

j∈NÂT

xj · [θ(xT , xj) · xT ].

This holds if a → θ(a, b) · a is superadditive for b > 0 (the inequality above
always holds if xj = 0). As θ is non negative, the latter is true if θ(a, b) is
non decreasing in a (because θ is non negative). The proof of Proposition 2
is complete.
A plausible statement is that an anonymous separable method is merge-

proof if and only if it is demand monotonic. This is not true, however. We
saw in the above proof that the anonymous θ−separable method is merge-
proof if a→ θ(a, b)·a is superadditive. Hence the w−quasi-proportional rule
is merge-proof if a→ a·w(a) is superadditive7. We can choose such a function
w that fails to be non decreasing, and the corresponding quasi-proportional
rule will not be demand monotonic (Lemma 3).
We observe finally that the Uniform method meets a stronger property

than merge-proofness, namely it is Merge-invariant. This means that when
a coalition merges, it can achieve after merging precisely the same profile of
expected wait as before merging, and no better. Formally Merge-invariance
requires that for all N,x, T, i∗ as in the premises of Definition 7,

7Indeed this implies for all a, a0 : w(a + a0) ≥ a
a+a0w(a) +

a0

a+a0w(a
0); applying the

concave and increasing function f(z) = z
z+w(b) to both sides of this inequality gives the

superadditivity of a · θ(a, b) = a·w(a)
w(a)+w(b) as claimed.

17



y[T ] ∈ (y∗i∗ −
X
T

xi) · e[T ] + F (eT , x[T ]). (7)

To check this for the uniform method, set z[T ] = y[T ] − (y∗i∗ −
P

T xi) · e[T ],
and compute zi = (xi +

1
2
xNÂi) − 1

2
xNÂT = xi +

1
2
xTÂi for all i ∈ T . By

Lemma 1, z[T ] ∈ F (T, x[T ]) as desired. In fact we can say more.
Proposition 3

The Uniform method is the only merge-invariant scheduling method.
Note that this characterization holds within the full space of scheduling

methods, separable or not. In view of the dreadful normative features of
the Uniform rule discussed in Section 6, we interpret Proposition 3 as a
negative result: merge-invariance is not compatible with even a modicum of
responsiveness and limited liability.
Proof
Given N,S, S ⊆ N , the set of real valued functions x → f(x) defined on
RN
+ , that depend only upon x[NÂS] and xS =

P
S xi is denoted Λ(S). Fix a

merge-invariant method µ, and N,x, T, i∗ as in the premises of Definition 7.
Property (7) implies

X
T

xi · yi = xT · (y∗i∗ − xT ) + v(T, x)

⇒
X
T

xi · yi +
X
T (2)

xi · yi = xT · y∗i∗ ∈ Λ(T )

Setting zi = yi − 1
2
xi this gives

P
T xi · zi ∈ Λ(T ). On the other hand y ∈

F (N,x) implies
P

N xi·yi =
P

T xi·(zi+ 1
2
xi) = v(N, x), from which we deriveP

N xi · zi = 1
2
x2N ∈ Λ(N). As the choice of T wass arbitrary, we concludeP

T xi ·zi ∈ Λ(T )∩Λ(NÂT ) for all T , and in particular xi ·zi = ϕi(xi, xN) for
some function ϕi. Now from the equality

P
i ϕi(xi, xN) =

1
2
x2N , the inequality

ϕi ≥ 0, and ϕi(0, xN) = 0, we get zi =
1
2
xN by a straightforward application

of the Cauchy equation (Aczel [1966]).

5.2 Split-proofness

We start by a three agents example. In the problem (N,x) where N =
{1, 2, 3}, assume that agent 3 reports as two agents 3, 4 and splits her (true)
job of size x3 into two jobs of sizes x∗3, x∗4, with x∗3+x∗4 = x3. After splitting,
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agent 3 must wait until both "sub-jobs" are completed hence the delay she
experiences from jobs 1 and 2 is evaluated by computing the probabilities
that these jobs are scheduled before at least one of the sub-jobs. Setting
x∗ = (x1, x2, x∗3, x∗4) and using the notations of Definition 1, we see that
the split benefits agent 3 iff

X
i=1,2

prob{σ(i) < max(σ(3), σ(4))|x∗} · xi <
X
i=1,2

prob{σ(i) < σ(3)|x} · xi

The following notations are used in the general definition of Split-proofness.
Given a problem (N, x), x À 0, a coalition T such that T ∩N = ∅, and an
agent i∗ ∈ N , the splitting of i∗into i∗∪T creates a new problem (N∗, x∗), x∗ ≥
0, where N∗ = N ∪ T , xi∗ =

P
i∗∪T (x∗)i, (x∗)j = xj for j ∈ NÂi∗. Note

that the initial job is positive, xi∗ > 0, because a null job has no incentive to
deviate; on the other hand we allow some coordinate of x∗ to be null, because
by splitting xi∗ into x

∗ such that (x∗)i∗ = 0, (x∗)j = xi∗, agent i∗ effectively
assumes a new identity as agent j and such maneuvers are both realistic and
important in our model (see the proof of Lemma 4 below).
Definition 9

Fix a scheduling rule ρ, a problem (N, x), xÀ 0, and T, i∗ as above. We say
that ρ is split-proof at (N,x) with respect to T, i∗ if

yi∗(N, x) ≤ xi∗ +
X

j∈NÂi∗

prob{σ(j) < max
i∗∪T

σ(i)|x∗} · xj (8)

We say that ρ is split-proof if it is split-proof for all (N,x) and T, i∗.
The right-hand side of the above inequality is the (true) expected wait of

agent i∗ after the split. Note that the definition of Split-proofness applies to
a scheduling rule: knowledge of the method associated with a given rule is
not enough to decide whether or not the rule is split-proof.
For a separable scheduling rule (Definition 2), Split-proofness takes a

much simpler form. Recall our notation θi,j(xi, xj) for the probability that
agent j’s job of size xj precedes agent i’s job of size xi.
Lemma 4

The separable scheduling rule ρ is split-proof if and only if the corresponding
method is anonymous ( θi,j = θ is independent of i, j), and moreover for all
S, i, i /∈ S, and all positive numbers b, aj, j ∈ S,
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θ(b,
X
S

aj) ≥ prob{max
S

σ(j) < σ(i)|(b, aj)} (9)

Proof
Statement "if". Fix (N,x) and T, i∗ as in the premises of Definition 9. By
assumption yi∗(N, x)−xi∗ =

P
NÂi∗

θ(xi∗, xj)·xj. Next the term prob{σ(j) <
maxi∗∪T σ(i)|x∗} depends only upon (x∗)[j∪i∗∪T ] by Separability of ρ. Thus
inequality (8) follows from θ(xi∗ , xj) ≤ prob{σ(j) < maxi∗∪T σ(i)|x∗}, which
is precisely (9).
Statement "only if". We show first that θi,j is independent of i, j. Fix a, b > 0
and consider in problemN = {1, 2}, x = (a, b), the split of agent 1 into agents
1, 3 with (x∗)1 = 0, (x∗)3 = a. In the split problem, agent 1 is scheduled first
by efficiency, so the probability that agent 2 is last is just θ2,3(b, a). Thus
split-proofness implies θ2,1(b, a) ≥ θ2,3(b, a). Exchanging the roles of 1, 3 gives
θ2,1 = θ2,3. By θi,j(b, a) + θj,i(a, b) = 1 we have now θ1,2 = θ3,2; Anonymity
follows.
Next fix S, i, i /∈ S,and b, aj as in the premises of (9) and choose an agent

1 ∈ S. In the problemN = {1, i}, x = (aS, b) a split by 1 to S with (x∗)j = aj
for all j ∈ S cannot benefit agent 1: this gives inequality (9), and completes
the proof of Lemma 4.
Examples of split-proof separable rules include the Uniform and Propor-

tional rules (by Proposition 4), and Longest Job First. On the other hand
neither the serial rule (Example 1) nor the Quadratic rule is split-proof. The
latter claim follows from the Corollary to proposition 4 below. To check the
former one, recall that Za is uniform on [0, a], and consider S = {1, 2}, i = 3
and b = 3, a1 = a2 = 1. Then compute θ(3, 2) = 2

3
< prob{max(σ(1), σ(2)) <

σ(3)|(3, 1, 1)} = 7
9
.

Applying Lemma 4 to parametric rules, we find a very convenient suffi-
cient condition for Split-proofness in that set of rules. Fix a parametric rule
{Fa, a > 0} and assume for a moment that all distributions Fa are atomless
(i.e., Fa is continuous). As ties occur with probability zero, the inequality
(9) amounts to

prob{ZaS ≤ Zb} ≥ prob{max
S

Zaj ≤ Zb}⇐⇒Z ∞

0

FaS(z) · dFb(z) ≥
Z ∞

0

Πj∈SFaj(z) · dFb(z)
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which holds true if FaS(z) ≥ Πj∈SFaj(z). The latter inequality is in fact
sufficient for Split-proofness, whether or not the corresponding distributions
have atoms.
Proposition 4

If the cdfs {Fa, a > 0} satisfy Fa·Fb ≤ Fa+b for all a, b > 0, the corresponding
parametric rule is split-proof. If they satisfy Fa · Fb ≤ Fa+b ≤ Fa for all
a, b > 0, the rule is both merge-proof and split-proof.
Corollary

The w−quasi-proportional rule is split-proof if and only if w is subadditive.
It is merge-proof and split-proof if w is non decreasing and subadditive.
The proof of proposition 4 in the case of distributions with atoms, is

relegated to the Appendix.
Proof of Corollary. For the w−quasi-proportional rule, the cdfs Fa are

atomless. Inequality Fa(z) · Fb(z) ≤ Fa+b(z) is always true if z ≥ 1, and
amounts to w(a) +w(b) ≥ w(a+ b) if z < 1. This proves the "if" statement.
Conversely, suppose the w−rule is split-proof. By Separability, inequality (9)
must be true. As Πj∈SFaj(z) = z S w(aj), the right-hand side in (9) equals

w(b)
w(b)+ S w(aj)

, therefore this inequality reads

θ(b,
X
S

aj) =
w(b)

w(b) + w(
P

S aj)
≥ w(b)

w(b) +
P

S w(aj)

implying the subadditivity of w.
The Corollary identifies a rich class of merge-proof and split-proof quasi-

proportional rules. Suppose we restrict attention to scale invariant quasi-
proportional rules, namely such that the scheduling order follows the same
distribution in problem (N,x) and in problem (N, λ · x), for any positive
scaling factor λ. It is easy to check with the help of lemma 28 that this forces
to choose a weight function of the form w(a) = aα, for some real number
α. Among these rules, Merge-proofness imposes α ≥ 0, and Split-proofness
imposes α ≤ 1. The Uniform rule, α = 0, and the Proportional rule, α = 1,
are the two extreme points of this interval of rules.
But we stress that there are many other merge-proof and split-proof para-

metric scheduling rules. Two examples are the cdfs Fa(z) = min{ (1+a)za+z
, 1},

and Fa(z) = e−
a2

z(a+z) . In both cases one checks that Fa(z) is non increas-
ing in a and Fa(z) ·Fb(z) ≤ Fa+b(z). Moreover, Merge-proofness and Split-

8And a standard application of the Cauchy equation.
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proofness are stable by convex combinations of rules, i.e., if ρ and ρ0 are two
merge-proof (rersp. split-proof) scheduling rules , for any λ ∈ [0, 1] the rule
(N,x)→ λ · p(N, x) + (1− λ) · p0(N,x) is merge-proof (resp.split-proof) too.
Notice that parametric rules are not stable by convex combinations, thus we
generate many more merge-proof and split-proof rules in this fashion9.
The Uniform and Proportional rules are the two extreme points of the

one-dimensional interval of scale invariant quasi-proportional rules that are
merge-proof and split-proof. They also stand out for two other, more fun-
damental reasons: the Uniform rule is merge-invariant, whereas the Propor-
tional rule is split-invariant. To check the latter claim, observe that the cdfs
Fa(z) = za satisfy Fa · Fb = Fa+b for all a, b > 0, therefore inequality (9) is
actually an equality for this rule, and the same holds true for inequality (8),
expressing that the expected wait of agent i∗ is the same before and after the
split.
While Merge- invariance single-handedly characterizes the Uniform rule

(Proposition 3), the Proportional rule is not the only split-invariant rule.
However we show in section 7 that the Split-invariance property characterizes
the Proportional rule both within the class of separable rules (Theorem 1)
and within that of recursive rules (Theorem 2).
We conclude this Section with another sufficient condition for Split-proofness,

generalizing the subadditivity of w to arbitrary recursive rules (Definition 6).
Lemma 5

The recursive scheduling rule ρ is split-proof if for all N, i ∈ N, j /∈ N , and
all x ∈ RN

+ , ex ∈ RN∪j
+

{x[NÂi] = ex[NÂi], xi = exi+exj} =⇒ {πk(N,x) ≥ πk(N∪j, ex) for all k ∈ NÂi}.

This says that when agent i splits his job in two (or more) pieces, the
probability that another job is scheduled last does not become larger. Loosely
speaking, each function πk(N, x) is subadditive upon splitting. The proof is
in the Appendix.

9Separability is stable by convex combinations, but Recursivity is not.
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6 Responsiveness and Liability

6.1 The Ranking axiom

We discuss now two normative properties of scheduling methods, Ranking
and Limited Liability. We show in the next section that within split-proof
rules, these properties clearly point toward the Proportional rule.
Definition 9

The scheduling method µ meets Ranking if for all N,x, x ≥ 0, and i, j ∈ N

xi ≤ xj ⇒ yi(N, x)− xi ≤ yj(N, x)− xj

As discussed in section 1, the interpretation of Ranking is similar to that
of Demand Monotonicity, with the difference that it makes interpersonal
comparison of delay shares. Another similarity is that both axioms are esay
to express for anonymous separable methods, hence for all parametric rules.
Lemma 6

The anonymous θ−separable method ( θi,j = θ does not depend on i, j) meets
Ranking if and only if it is demand monotonic ( θ(a, b) is non decreasing in
a for all b > 0) and moreover

for all i, j, all a, b > 0 : θ(a, b) ≤ a

a+ b
.

Proof
The "if" statement follows by developing the inequality yi−xi ≤ yj−xj with
the help of (2). To prove "only if", apply first Ranking in the two person
problem N = {1, 2}, x = (a, b), to get the upper bound on θ(a, b). Next
we show by contradiction that θ(a, b) is non decreasing in a. Suppose for
some a, a0, b > 0, we have a < a0 yet θ(a, b) > θ(a0, b). Consider the problem
N = {1, 2, .., n}, x = (a, a0, b, .., b): for n large enough we get y1−x1 > y2−x2,
in contradiction of Ranking.
For instance the Serial method (Example 1) meets Ranking.
Comparing statement i) in Lemma 3 and Lemma 6, we see that Ranking is

strictly more demanding than DemandMonotonicity for split-proof separable
methods.
Another consequence of Lemma 6 is that thew−quasi-proportional method

meets Ranking if and only if w(a)
a
is non decreasing. E.g., for w(a) = aα,

Ranking holds if and only if α ≥ 1. Hence a tension between Ranking and
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Split-proofness: the w−quasi-proportional rule is split-proof iff w is subaddi-
tive ( Corollary to Proposition 4); it meets Ranking iff w(a)

a
is non decreasing,

which implies that w is superadditive. Both properties are true iff w is linear,
namely when the rule is the Proportional one. As explained in the next Sec-
tion, this tension occurs in the much larger classes of separable or recursive
scheduling rules.

6.2 Limited liability

Definition 10
The liability of a scheduling method µ is the function λ(n, a) = supi,x−i yi(a, x−i),
where n is an integer no less than 2 and a > 0, and where the supremum is
taken over all subsets N of N with n agents, all choices of i ∈ N , and all job
profiles x−i ∈ RNÂi

+ for the other agents.
The liability measures the worst conceivable expected wait for an agent

who only knows the number of other users, and the size of her own job.
To limit the liability is of paramount importance when non participation is
an option, for instance if another server, slower but with a low liability, is
available.
For the Uniform rule, yi(a, x−i) = a + 1

2
xNÂi hence λ(n, a) = +∞. To-

gether with the violation of Ranking, this is a damning critique of this rule.
By contrast Shortest Jobs First has λ(n, a) = n · a, and so does the Pro-
portional rule. The former claim is clear, and the latter results from the
following computation

λ(n, a) = sup
x−i≥0

{a+
X
NÂi

a

a+ xj
· xj} = a+

X
NÂi

sup
xj

a

a+ xj
· xj = n · a

This level of liability is about twice larger than the minimal feasible liability:
Lemma 7

i)For any scheduling method µ, we have λ(n, a) ≥ n+1
2
· a = λ∗(n, a).

ii)The θ−separable method has the minimal liability λ∗ if and only if θi,j(a, b) ≤
a
2b
for all i, j, and all a, b > 0. Examples include the Serial method (Example

1) and the Quadratic method (w(a) = a2).
Proof

For an arbitrary method µ, consider a problem (N,x) where xi = a for all
i ∈ N . Feasibility of y = µ(N,x) (Lemma 1) implies a · (

P
N yi) = v(N,x) =
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n(n+1)
2

· a2. Therefore maxN yi ≥ n(n+1)
2

· a, establishing statement i. Next
assume that µ is separable. For any N, i, and a > 0, compute the worst
expected wait from equation (2):

sup
x−i

yi(a, x−i) = a+
X

j∈NÂi

sup
xj

θi,j(a, xj) · xj (10)

from which statement ii is straightforward.
The goal of minimizing the liability of a rule conflicts with that of ensuring

it is split-proof; the simplest way to demonstrate this important trade-off is to
look at the line of scale invariant quasi-proportional rules, namely w(a) = aα.
Using equation (10) it is easy to compute

• if α < 1, then λ(n, a) = +∞ for all n, a;

• if 1 ≤ α < +∞, then λ(n, a) = (1 + (n − 1) (α−1)
1− 1

α

α
) · a; thus for

1 ≤ α ≤ 2, λ(n, a) decreases from n · a to n+1
2
· a, and it increases from

n+1
2
· a to n · a for 2 ≤ α < +∞.

Recall that a rule in this family is splitproof iff α ≤ 1: therefore the Propor-
tional rule is the only split-proof rule with finite liability. This observation
generalizes to quasi-proportional rules in the following way:

• if w(a)
a
is non increasing, and lim+∞

w(a)
a
= 0, and/or lim0

w(a)
a
= +∞,

then λ(n, a) = +∞ for all n, a;

• if w(a)
a
is non decreasing, then λ(n, a) ≤ n · a for all n, a.

On the other hand the w−rule is split-proof when w(a)
a
is non increasing (by

the Corollary to Proposition 4). The proof of the two claims above is again
a straightforward consequence of (10). We omit the details.

7 Characterizations of the proportional rule
and method

We offer first a characterization of the proportional method under Separa-
bility, then we characterize the proportional rule in the class of recursive
rules.

25



Our first result explains the general trade-off between Ranking and Split-
proofness, its relation to the liability measure, and the critical role of the
Proportional rule: under separability, the liability of a split-proof rule is not
smaller — and that of a rule meeting Ranking is not larger — than that of the
Proportional rule.
Lemma 8

i)If the separable scheduling rule ρ is split-proof, then λ(n, a) ≥ n · a for all
n, a;
ii)If the separable scheduling method µ meets Ranking, then λ(n, a) ≤ n · a
for all n, a.
Proof

Statement i) is a consequence of Lemma 9 in the Appendix, as explained
there. For statement ii), consider the θ−separable method; Ranking implies
for all i, j and all a, b > 0 such that a ≤ b:

yi({i, j}, (a, b))− a ≤ yj({i, j}, (a, b))− b⇐⇒ θi,j(a, b) · b ≤ θj,i(b, a) · a
⇐⇒ θi,j(a, b) ≤ a

a+ b
≤ a

b

and λ(n, a) ≤ n · a then follows from (10).
Theorem 1

i)If the separable scheduling rule ρ is split-invariant, then its method is Pro-
portional: yi(N, x) = xi +

P
NÂi

xi·xj
xi+xj

for all N, x, x ≥ 0, and i.
ii)If the separable rule ρ is split-proof and meets one of Ranking or {for some
n, λ(n, a) ≤ n · a for all a}, then its method is Proportional.
Theorem 2

i)The Proportional rule is the only recursive and split-invariant scheduling
rule.
ii)The Proportional rule is the only recursive and split-proof rule that also
meets one of Ranking or {λ(2, a) ≤ 2a for all a}.
Both Theorems are proven in the Appendix by essentially the same ar-

gument. Yet in the class of separable rules, we only characterize the Pro-
portional method, whereas in the recursive class we capture the rule itself.
For |N | = 4 it is easy to construct a separable and split-invariant rule that
is not the Proportional one. I conjecture that such a construction is possible
for |N | =∞ as well. This suggests that Theorem 1 cannot be improved into
a characterization of the Proportional rule.
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Remark 2
In the class of parametric rules (Definition 4), a variant of Theorem 2 holds
true. Recall that the parametric class neither contains nor is contained in
the recursive class. If a rule is split-invariant, or if it is split-proof and
meets either Ranking or {λ(2, a) ≤ 2a for all a}, the argument in Sections
9.5,9.6 show that for all N,x, and all i, the probability that i is scheduled
last is proportional to xi. I have shown that this property characterizes
the Proportional rule among continuous (atomless) parametric rules10, and
conjecture that the same holds among all parametric rules.

8 Open problems and future research

1. Parametric rules have a natural extension to queuing problems, where jobs
are born at arbitrary dates. Each time a new job i of size xi is born, we draw
the variable Zi with cdf Fxi independently of the draws of all Zj corresponding
to jobs born earlier, and we process jobs in the preemptive priority defined by
these realizations. This definition preserves the property of merge-proofness
provided the reported merged job is born not earlier than the youngest of
the component jobs; it preserves split-proofness as well, if the split jobs are
born not earlier than the true job. Thus the extended Proportional rule
remains equally appealing because of these two properties, plus Ranking and
the same liability cap n · a, where n is the number of jobs not older than
one’s own. Obviously the definition of the liability should be modified if the
arrival of new jobs is Poisson with a known arrival rate. Whether or not the
characterizations of the Proportional extend to the queuing context is left
for future research.
2. Minimizing total waiting time is not compatible with Split-proofness,

so a natural question is to understand the trade-off between these two re-
quirements. The minimal waiting time in problem (N, x) is w(N,x) =P

N xi +
P

N(2)min{xi, xj}. Define the index of "excess wait" ew(n) for

a method µ as the largest ratio N yi
w(N,x)

over all problems. An interesting
question is to evaluate the minimal index of excess wait among split-proof
(and merge-proof) scheduling rules. A plausible conjecture is that the Pro-
portional rule achieves this minimum. Yet it is hard to compute the index
of excess wait of a specific rule such as the Proportional one, therefore the

10The proof is available upon request.
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conjecture is not an easy one to crack.
Another interesting trade-off is between the utilitarian goal to minimize

the index of excess wait, and that of guaranteeing to each participant the
lowest feasible liability. We saw in Section 6 that Shortest Jobs First offers
a liability about twice as large as the lowest feasible one. Conversely, the
Quadratic rule guarantees the lowest feasible liability, and work in progress
with Arkadii Slinko shows that its index of excess wait does not exceed 1.21.
How far is 1.21 from the lowest index of excess wait among all rules with
minimal liability?
3. Is Theorem 2 a tight statement? I.e., can we find split-proof rules

meeting one or both of Ranking and {for some n, λ(n, a) ≤ n · a for all a},
and different from the Proportional one? I conjecture that such rules exist.
4. In the companion paper Moulin [2004] I discuss the partial transfer

of jobs among users, another strategic maneuver related to merging and
splitting. Two (or more) agents choose to reallocate their jobs of sizes x1 and
x2 as x01 and x

0
2, with x1+x2 = x01+x02, and for instance x1 < x01 and x2 > x02.

If the server schedules job x01 before job x02 , then agent 1’s true job of size
x1 and a chunk of agent 2’s true job is processed at that time, and the rest
of agent 2’s true job is completed when job x02 is served; if job x02 comes up
before job x01 , both agents must wait until the latter time to complete their
true jobs. The transfer of jobs encompasses splitting: if x2 = 0, the above
move is equivalent to a split of job x1 in two; it encompasses merging as well:
if x02 = 0, we have the merging of jobs x1 and x2 (recall Zero-Consistency in
footnote 4).
What scheduling rules are invulnerable to partial transfers among two

or more participants? In the quasi-linear model of our companion paper, all
efficient rules are vulnerable to transfers involving three or more agents, but
pairwise transfer-proofness points to a one-dimensional line of rules borne
by two appealing rules, one split-proof and the other merge-proof. These
solutions are not built on any proportionality idea, but apply instead the
Shapley value to an appropriate cooperative game. They can also be derived
from invariance or consistency properties (Maniquet [2003], Chun [2004 a,b]).
I conjecture that the situation is more favourable in the probabilistic

scheduling framework. In particular, the Proportional and Uniform rules
appear to be transfer-proof, for any number of participants. To understand
the broader impact of transfer-proofness is left for future research.

28



References

[1] Aczél, J. 1996. Lectures on Functional Equations and Their Applica-
tions. New York: Academic.

[2] Abdulkadiroglu, A. and T. Sönmez. Random serial dictatorship and the
core from random endowments in house allocation problems, Economet-
rica, 66, 1998, 689-701.

[3] Banker, R. 1981. Equity consideration in traditional full-cost allocation
practices: an axiomatic perspective, Joint Cost Allocations, S. Moriarty,
ed. Norman: University of Oklahoma.

[4] Bogomolnaia, A. and H. Moulin. A New Solution to the Random As-
signment Problem, Journal of Economic Theory, 100, 295-328, 2001.

[5] Bogomolnaia, A. and H. Moulin. A Simple RandomAssignment Problem
with A Unique Solution, Economic Theory, 19, 3, 623-636, 2002.

[6] Chun, Y., 2004. A Note on Maniquet’s Characterizations of the Shapley
Value in Queuing Problems, mimeo.

[7] Chun, Y., 2004. Consistency and Monotonicity in Sequencing Problems,
mimeo.

[8] Curiel, I., G. Pederzoli and S. Tijs. Sequencing Games, European Jour-
nal of Operational Research, 40, 1989, 344-351.

[9] Curiel, I., J. Potters, V. Rajendra Prasad, S. Tijs and B. Veltman. Co-
operation in One Machine Scheduling, Methods of Operations Research,
38, 1993, 113-131.

[10] Curiel, Il, H. Hamers and F. Klijn, 2002. Sequencing Games: a Survey,
in Chapters in Game Theory in Honor of Stef Tijs, P. Borm and H.
Peters (eds.), pp. 27-50, Kluwer Academic Publishers, Boston.

[11] Crés, H. and H. Moulin. Scheduling with Opting Out: Improving upon
Random Priority, Operations Research, 49, 4, 565-577, 2001.

[12] De Frutos, M.A. Coalitional Manipulations in a Bankruptcy Problem,
Review of Economic Design, 4, 1999, 255-272.

29



[13] Dolan, R., 1978. Incentive Mechanisms for Priority Queueing Problems,
The Bell Journal of Economics 9, 421-436.

[14] Douceur, J. The Sybil Attack, Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS 2002), LNCS 2429, pp 251-
260.

[15] Fishburn, P. Induced binary probabilities and the linear ordering poly-
tope: a status report, Mathematical Social Sciences, 23, 1992, 67-80.

[16] Friedman, E. and S. Henderson. Fairness and Efficiency in Processor
Sharing Protocols to Minimize Sojourn Times, 2002, mimeo.

[17] Haviv, M. The Aumann-Shapley Price Mechanism for Allocating Con-
gestion Costs, Operation Research Letters, 29, 2001, 211-215.

[18] Haviv, M. and Y. Ritov. Externalities, Tangible Externalities, and
Queue Disciplines, Management Science, 44, 6, 1998, 850-858.

[19] Ju, B.G. Manipulations via Merging and Splitting in claim problems,
Review of Economic Design, 8, 2003, 205-215.

[20] Ju, B.G. and E. Miyagawa, 2003. Coalitional Manipulations and Gen-
eralized Proportional Rules, mimeo, Columbia University.

[21] Kittsteiner, T. and B. Moldovanu, 2003. Auction-Based Queue Disci-
plines, mimeo, University of Bonn.

[22] Kittsteiner, T. and B. Moldovanu, 2003. Priority Auctions and Queue
Disciplines that Depend on Processing Time, mimeo, University of
Bonn.

[23] Klijn, F. and E. Sánchez, 2002. Sequencing Games Without a Com-
pletely Specific Initial Order, Reports in Statistics and Operations Re-
search, Report 02-04, 1-17.

[24] Lawler, E., J.K. Lenstra, Kan A. Rinnooy, and D. Shmoys. Sequencing
and Scheduling: Algorithms and Complexity, Chapter 9 in Handbooks
in Operations Research andManagement Science, Vol. 4, 1993, Elsevier.

[25] Maniquet, F., 2003. A Characterization of the Shapley Value in Queue-
ing Problems, Journal of Economic Theory, 109,1, 90-103.

30



[26] Mitra, M., 2001. Mechanism Design in Queueing Problems, Economic
Theory, 17, 277-305.

[27] Mitra, M., 2002. Achieving the First Best in Sequencing Problems,
Review of Economic Design, 7, 75-91.

[28] Mitra, M. and A. Sen, 1998. Dominant Strategy Implementation of
First-Best Public Decisions, Indian Statistical Institute Delhi Centre,
Manuscript No. 98-02.

[29] Moulin, H., 1985 Egalitarianism and Utilitarianism in Quasi-linear Bar-
gaining, Econometrica, 53, 1, 49-67.

[30] Moulin, H., 1987. Equal or Proportional Division of a Surplus, and
Other Methods, International Journal of Game Theory, 16, 3, 161—186.

[31] Moulin, H., 2004. On Scheduling Fees to Prevent Merging, Splitting
and Transferring Jobs, mimeo.

[32] Moulin, H. and Y. Sprumont, 2003. On Demand Responsiveness in
Additive Cost Sharing, forthcoming in Journal of Economic Theory.

[33] Moulin, H. and R. Stong. Fair Queuing and other Probabilistic Alloca-
tion Methods, Mathematics of Operations Research, 27, 1, 2002, 1-31.

[34] Queyranne, M. Structure of a Simple Scheduling Polyhedron, Mathe-
matical Programming, 58, 1993, 263-285.

[35] Shapley, L.S., 1971. Core of Convex Games, International Journal of
Game Theory, 1, 11-26.

[36] Sprumont, Y. Ordinal Cost Sharing, Journal of Economic Theory, 81,
1998, 126-162.

[37] Sprumont, Y., 2003. Aumann-Shapley pricing: a reconsideration of the
discrete case, mimeo, Universite de Montreal.

[38] Suijs, J., 1996. On Incentive Compatibility and Budget Balancedness
in Public Decision Making, Economic Design, 2, 193-209

31



9 Appendix

9.1 Proof of lemma 1

Statement i). Write F0(N,x) for the set of feasible profiles of expected
waits at (N,x), and C(N, x) for the core of (N, v(·, x)) Also use x · y for the
coordinatewise multiplication of vectors x, y Fix (N,x) and define eN = {i ∈
N |xi > 0}. Together the three following facts prove the statement:
1.If N = eN then y ∈ F0(N,x)⇐⇒ x · y ∈ C(N, x)

2. y ∈ F0(N,x)⇐⇒ {y[N ] ∈ F0( eN,x[N ]) and yi ∈ [0,
P

N xj]}
3. x · y ∈ C(N, x)⇐⇒ x[N ] · y[N ] ∈ C( eN, x[N ]).

Fact 3 requires no proof and fact 2 is clear: once we order jobs randomly ineN to achieve y[N ], where we schedule null jobs does not matter and we can
achieve any y[NÂN ] within the announced bounds.
Now fix (N,x) with x À 0, and for all σ ∈ Φ(N) let yσ be the profile

of wait under σ namely yσi =
P

P (i;σ) xj, where P (i;σ) = {j ∈ N |σ(j) ≤
σ(i)}. Set P−(i;σ) = P (i;σ)Â{i}. Routine computation shows (x · yσ) =
v(P (i;σ), x) − v(P−(i;σ), x), namely x · yσ is the vector of marginal contri-
butions in the game (N, v(·, x)). As v(·, x) is supermodular, a classic result
(Shapley [1971]) says that C(N, x) is the convex hull of x · yσ, σ ∈ Φ(N). On
the other hand F0(N, x) is the convex hull of yσ, σ ∈ Φ(N). This gives fact
1 because xÀ 0.
Statement ii). "Only if" is clear from statement i). "If" follows from

the fact that such a vector minimize the sum
P

N xi · yi +
P

NÂN yi over
F0(N,x).

9.2 Proof of Proposition 1

Only the " if" statement requires a proof. Let ρ be a rule with the four stated
properties, and π(N,x) be the associated probability distribution of the last
scheduled agent. By Anonymity, it takes the form π(n, x), where n = |N |
and is symmetric in all variables xi. Fix n, x and use the simplified notation
{1, 2, .., n − 1|x} for the event {σ(1) < σ(2) < .. < σ(n − 1)|x}. A simple
partition of this event gives the equality

prob{1, 2, .., n−1|x} = prob{1, 2, .., n|x}+
X

1≤i≤n−1
prob{1, .., i−1, n, i, .., n−1|x}
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The above summation is πn−1(x) · prob{1, 2, .., n− 2|x[NÂn,n−1]}, by Separa-
bility and Recursivity. Writing π(n, x) simply as π(x), we get

(1−πn(x))·prob{1, 2, .., n−1|x[NÂn]} = πn−1(x)·prob{1, 2, .., n−2|x[NÂn,n−1]}
(11)

Apply (11) first for n = 3, with the notation θ(b, a) = π2((a, b)) for
the probability that a job of size a precedes one of size b. We have for all
x = (a, b, c), x À 0, (1− π3(x)) · θ(b, a) = π2(x). By Positivity, θ(b, a) > 0,
so π2(x) = 0 would imply π1(x) = 0. Exchanging the role of agents 1 and 3,
we see that π2(x) = 0 is impossible. Thus πi(x) > 0 for i = 1, 2, 3. We can
now rewrite (11) as

θ(b, a) =
π2

π1 + π2
(a, b, c)⇐⇒ π1

π2
(a, b, c) =

1

θ(b, a)
− 1

namely the ratio π1
π2
only depends on a, b. From π1

π2
· π2
π3
· π3
π1
, a standard

argument gives the existence of three real positive function wi such that
πi
πj
(a, b) = wi(a)

wj(a)
for all i, j in {1, 2, 3}. Anonymity gives wi = w for all i, and

we conclude πi(x) =
wi(xi)

w1(x1)+w2(x2)+w3(x3)
for all 3-dimensional profile xÀ 0.

Finally we show πi(x) =
wi(xi)
wj(xj)

for any positive profile in Rn
+, by

an induction argument on n. Assume this holds up to n − 1. This im-
plies prob{1, 2, .., n − 2|xNÂn,n−1} 6= 0, therefore (11) becomes (1 − πn(x)) ·
πn−1(xNÂn) = πn−1(x). Now π(x)À 0 and the desired claim follow at once.

9.3 Proof of Lemma 3 statement ii, and Proposition 4

Step 1.We start by a reformulation of the probability that a job of size b
precedes one of size a, namely θ(a, b) given by (3), for a general parametric
rule {Fa, a > 0} where the cdfs may have atoms. Recall that each Fa lives in
the space H of non-decreasing, right-continuous real-valued functions on R+
with bounded range. For such a function F we write ∂F (z) = F (z)− F−(z)
for the jump of F at z, where F−(z) is the left limit of F at z. We denote
by F+ the integral of these jumps, namely the staircase function F+(z) =P

t≤z ∂F (t) ( the sum is well defined because F is non-decreasing). Check
that F 0 = F − F+ is continuous and non decreasing.
This canonical decomposition, F = F 0 + F+ allows us to define the

integral
R∞
0

F · dG, for any two F,G ∈ H. If F,G are both continuous, this
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is the familiar Stieljes integral (e.g., Hardy et al [1938]). For arbitrary F,G
in H we write J (F ),J (G) for the set of their jumps, namely z ∈ J (F ) ⇔
∂F (z) > 0; then we define

R
F+ · dG0 =

P
J (F ) ∂F (z) · (G(∞) − G(z)) =

(F+ · G)(∞) −
P

J (F ) ∂F (z) · G(z), and
R
F · dG+ =

P
J (G) F (z) · ∂G(z).

these combine into the following definition

Z ∞

0

F ·dG =
Z ∞

0

F 0·dG0+(F+·G0)(∞)−
X
J (F )

∂F (z)·G0(z)+
X
J (G)

F (z)·∂G(z).

From this it is straightforward to deduce the integration by parts formula:

Z ∞

0

F ·dG+
Z ∞

0

G ·dF = (F ·G)(∞)− (F ·G)(0)+
X

J (F )∩J (G)

∂F (z) ·∂G(z).

(12)
Now we take two random variables Za, Zb with cdfs Fa, Fb, and we com-

pute

prob{Za = Zb} =
X

J (a)∩J (b)

∂Fa(z) · ∂Fb(z)

indeed the equality only occurs when both draws are in the atomic part of
the two cdfs. Similarly the probability of {Zb ≤ Za} is

Z ∞

0

F 0
b ·dF 0

a+(F
+
b ·F 0

a )(∞)−
X
J (b)

∂Fb(z)·F 0
a (z)+

X
J (a)

Fb(z)·∂Fa(z) =

Z ∞

0

Fb·dFa

where the last term is the probability of {Zb ≤ Za} ∩ {Za ∈ J (a)} and the
sum of the two middle terms is the probability of {Zb ≤ Za} ∩ {Zb ∈ J (b)}.
Comparing with equation (3), and using integration by parts (12) we conclude

θ(a, b) =

Z ∞

0

Fb · dFa −
1

2

X
J (a)∩J (b)

∂Fa(z) · ∂Fb(z) =

=

Z ∞

0

(1− Fa) · dFb +
1

2

X
J (a)∩J (b)

∂Fa(z) · ∂Fb(z) (13)
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Step 2: statement ii) in Lemma 3. Let {Fa, a > 0} be as in the state-
ment. We develop θ(a, b) with the help of (13) and the definition of the
integral

θ(a, b) =

Z ∞

0

(1−Fa)·dF 0
b +
X
J (b)

(1−Fa)(z)·∂Fb(z)+
1

2

X
J (a)∩J (b)

∂Fa(z)·∂Fb(z)

The first integral term is non decreasing in a as Fa(z) is non increasing in
a. The second term is also non decreasing, but the variation of ∂Fa(z) in a
is ambiguous. However, the terms corresponding to any z ∈ J (a) ∩ J (b) in
the second and third sum are

(1− Fa(z)) · ∂Fb(z) + ∂Fa(z) · ∂Fb(z) = 1−
1

2
(Fa(z) + F−b (z)) · ∂Fb(z)

and the desired monotonicity follows.
Step 3: Proposition 4. We must show inequality (9) when Fa ·Fb ≤ Fa+b

holds for all a, b > 0. We must prove inequality (9), which takes the following
form for parametric rules (as already discussed just before Proposition 4).

a =
mX
1

aj =⇒ prob{Za ≤ Zb} ≥ prob{max
1,..,m

Zaj ≤ Zb} (14)

Denote by eZk the k-th order statistics of the independent variables Zaj , thuseZ1 = min1,..,m Zaj and eZm = max1,..,m Zaj . Compute

prob{max
1,..,m

Zaj ≤ Zb} = prob{eZm < Zb}+
1

2
prob{eZm−1 < eZm = Zb}

+
1

3
prob{eZm−2 < eZm−1 = eZm = Zb}+ ·· ≤ prob{eZm < Zb}+

1

2
prob{eZm = Zb} =

=
R∞
0

Fa1 · .. · Fam · dFb − 1
2

P
J ∗∩J (b) ∂(Fa1 · .. · Fam)(z) · ∂Fb(z)

where J ∗ = ∪1,..,mJ (aj). Mimicking the argument in Step 2 it is easy to
show that T (G) =

R
G · dF − 1

2

P
∂G · ∂F is monotonic in the sense that

{G1(z) ≤ G2(z) for all z} =⇒ T (G1) ≤ T (G2). Applying this to G1 =
Fa1 · .. · Fam and G2 = Fa gives (14) and completes the proof.
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9.4 Proof of Lemma 5

We fix a recursive rule ρ as in the statement of lemma 5, and we must prove
inequality (8) under the premises of Definition 9. In view of equation (1)
it is enough to prove prob{σ(j) < σ(i∗)|x} ≤ prob{σ(j) < maxi∗∪T σ(i)|x∗}
which we rephrase as

prob{σ(i∗) < σ(j)|x} ≥ prob{max
i∗∪T

σ(i) < σ(j)|x∗} (15)

. We use an induction argument on the number q of agents in N ∪ T . For
q = 3, we must check for all agents 1, 2, 3, all a, b, x3 > 0, and x1 = a+ b

prob{σ(1) < σ(3)|(x1, x3)} ≥ prob{σ(1), σ(2) < σ(3)|(a, b, x3)}

which amounts to π3(x1, x3) ≥ π3(a, b, x3) and follows by assumption. For
the induction step, we use Recursivity to develop both sides of inequality
(15), which is then equivalent to the following

πj(x)+
P

NÂi∗,j
πk(x)·prob{σ(i∗) < σ(j)|x[NÂk]} ≥ πj(x∗)+

P
NÂi∗,j

πk(x∗)·
prob{maxi∗∪T σ(i) < σ(j)|(x∗)[N∪TÂk]}.
The subadditivity assumption on π ensures πj(x∗) ≥ πj(x) and πk(x∗) ≥

πk(x); together with the the inductive assumption this proves (15) and the
Lemma.

9.5 Lemma 9 and proof of Lemma 8 statement i

Lemma 9.
Let ρ be a split-proof scheduling rule, and let θi,j(a, b) = prob{σ(j) <
σ(i)|(a, b)} be the probability that a job of size b by j precedes one of size a by
i in the two person problem. Then θi,j = θ is independent of i, j. Moreover
a→ θ(a, c− a) is subadditive in a. Finally supb θ(a, b) · b ≥ a.
Proof

That θi,j does not depend on i, j was established in the proof of state-
ment "only if"in Lemma 4 (note that Separability of ρ is not needed for
the argument). Next we define for all a, c such that 0 ≤ a ≤ c, f(a, c) =
θ(a, c − a). Fix a1, a2, a3 > 0 and consider the split of agent 2 in prob-
lem {1, 2}, (a1, a2 + a3) to agents 2, 3 in {1, 2, 3}, (a1, a2, a3). Split-proofness
implies

36



f(a1, a1 + a2 + a3) = θ(a1, a2 + a3) ≥ prob{1 is last in (a1, a2, a3)} (16)

A similar argument gives f(ai, a1 + a2 + a3) ≥ prob{i is last in (a1, a2, a3)}.
Summing up gives

P
1,2,3 f(ai, a1 + a2 + a3) ≥ 1, implying

f(a1, a1+a2+a3)+f(a2, a1+a2+a3) ≥ 1−f(a3, a1+a2+a3) = f(a3, a1+a2+a3)

where the equality comes from θ(a, b) + θ(b, a) = 1.
To prove the last statement, fix a > 0 and m ∈ N, and note f(m ·

a, 2m · a) = 1
2
. By superadditivity of f , f(a, 2m · a) ≥ 1

m
f(m · a, 2m · a)⇔

θ(a, (2m− 1) · a) ≥ 1
2m

, from which supb θ(a, b) · b ≥ a follows at once.
Statement i in Lemma 8

If the rule ρ is separable, its liability λ(n, a) = supx−i yi(a, x−i) is given by
equation (10). Now supb θ(a, b) · b ≥ a implies λ(n, a) ≥ n · a.

9.6 Theorems 1 and 2

Throughout the proof, we use the notations of lemma 9, and the properties
of the functions θ f discussed there.
Statement i

If ρ is split-invariant, inequality (16) in the above proof is in fact an equality,
therefore

P
1,2,3 f(ai, a1 + a2 + a3) = 1. This implies that f(a, c) is linear

in a (Cauchy’s theorem applies because f ≥ 0), and from f(a, 2a) = 1
2
(or

f(a, a) = 1) we get f(a, c) = a
c
⇔ θ(a, b) = a

a+b
. Now if ρ is separable

(Theorem 1), its method µ given by (2) is Proportional. Next for Theorem 2
assume ρ is recursive (not necessarily separable). In the split of 2 in problem
{1, 2}, (x1,

P
NÂ1 xi) to {2, 3, .., n} in problem N,x, Split-invariance gives

θ(x1,
P

NÂ1 xi) = π1(x), where π is the distribution of the agent served last
(Definition 6). We conclude that π is proportional, and by Recursivity that
ρ is the Proportional rule.
Statement ii

Fix a split-proof rule ρ such that θ(a, b) ≤ a
b
for all a, b > 0. We claim that

θ(a, b) = a
a+b
. The assumption writes f(a, c) ≤ a

c−a for all 0 < a < c. Apply
k times the subadditivity of f in its first variable:

f(a, c) ≤ 2f(a
2
, c) ≤ .. ≤ 2kf( a

2k
, c) ≤ a

c− a
2k
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Thus f(a, c) ≤ a
c
. By subadditivity again

1 = f(c, c) ≤ f(a, c) + f(c− a, c) ≤ a

c
+

c− a

c
= 1

hence the claim.
To statement ii) in Theorem 1. Fix a split-proof and separable rule ρ

such that for some n we have λ(n, a) ≤ n · a, for all a. At the n−profile
x = (a, b, b, .., b) this implies y1(n, x) = a + (n − 1) · θ(a, b) · b ≤ n · a,
hence θ(a, b) ≤ a

b
, and the above observation gives θ(a, b) = a

a+b
, so the

method derived from ρ is Proportional. Next observe by Lemma 6 that
Ranking.implies λ(2, a) ≤ 2·a for all a, which completes the proof of Theorem
1.
From the assumptions in statement ii) of Theorem 2, we get as above

θ(a, b) = a
a+b
. Consider next the split of 2 in problem {1, 2}, (x1,

P
NÂ1 xi) to

{2, 3, .., n} in problem N,x. Split-proofness gives π1(x) ≤ θ(x1,
P

NÂ1 xi) =
x1

N xi
. Repeat the argument for all i: as π(x) is a probability distribution,

we conclude that it is the Proportional one, and that ρ is the Proportional
rule by Recursivity.
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