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Abstract. We introduce a model of bargaining among groups, and
characterize a family of solutions using a Consistency axiom and a few other
invariance and monotonicity properties. For each solution in the family, there
exists some constant α ≥ 0 such that the "bargaining power" of a group is
proportional to cα, where c is the cardinality of the group.
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1. Introduction
In many concrete bargaining situations, the actors are not individual agents but
groups of agents, represented by a single agent at the bargaining table. Examples
include labor disputes between "management" representing stockholders, and a union
representing workers. The negotiation of an international treaty is carried out by a
few individuals representing a complex mix of political and business interests. In fact,
a survey at economics journals reveals that most applied bargaining papers deal with
group bargaining problems. In a group bargaining problem, the bargaining power of
a group vis-à-vis other groups depends in general on the group’s internal composition
as well as those of the other groups. Often the literature sidesteps the need for
group bargaining solutions by assuming that the payoffs are linear in a physical good
or monetary unit so that the group can be regarded as a bargaining party with a
well-defined payoff. (See, for example, Jun [6] and Horn and Wolinsky [5]).
Harsanyi’s joint bargaining paradox ([4]) is the observation that several parties to

a negotiation may not find it advantageous to "join," namely to mandate a represen-
tative to negotiate on their behalf.
In this paper we take an axiomatic view of joint bargaining that does not preclude,

nor imply, the paradox. We start in Section 2 with a simple model where groups
of different sizes divide a dollar. We impose a version of the celebrated Consistency
axiom ( Aumann and Maschler [1], Moulin [10], Young [15]; Thomson [12] surveys its
applications to various fair division problems), as well as a handful of milder axioms on
which more below. We characterize the following one-dimensional family of division
rules (Theorem 1 in Section 2). If K groups of respective sizes ck, k = 1, ...,K
bargain over a dollar, the total share to the k-th group is proportional to cαk , where
the parameter α is a nonnegative real number. Thus if the intragroup division rule

is equal split, the share of an agent in the k-th group is cα−1k
K
j=1 c

α
j

.

The joint bargaining paradox occurs when the merging of two disjoint groups of
sizes c1and c2 results in a net loss for the union of these two groups

(c1 + c2)
α

(c1 + c2)α +
P

k≥3 c
α
k

<
cα1 + cα2P

k≥1 c
α
k

namely when 0 ≤ α < 1. Symmetrically, merging is advantageous when α > 1. The
two extreme rules are α = 0, where all groups receive the same share of the dollar,
irrespective of their size, and α = +∞ where the largest groups split the dollar and
leave no crumbs for smaller groups. With the neutral rule corresponding to α = 1,
the formation of groups has no effect on individual shares.
Next we transport our axiomatic discussion to generalized bargaining problems,

specifying a partition of the agents in groups (coalitions), in addition to a set of
feasible utility profiles and a disagreement utility profile. The Consistency axiom
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becomes a group version of the classic separability property studied by Harsanyi [3],
[4], Lensberg [9] and Thomson and Lensberg [13]. The other axioms are

• symmetry of the solution with respect to permutations of the agents that respect
the group structure: Anonymity

• invariance with respect to the replication of the group structure and the fea-
sible utility set or with respect to the rescaling of the utility set: Replication
Invariance and Common Scale Invariance

• monotonicity of group share in the size of the group, when the bargaining prob-
lem is symmetric across groups (as in the divide-the-dollar example): Group
Size Monotonicity

While Common Scale and Replication invariances are classic properties in the
axiomatic bargaining literature (see Thomson and Lensberg [13], Chapter 9), Group
Size Monotonicity is genuine to our model. It rules out "trivial" versions of the joint
bargaining paradox where a larger coalition is systematically discriminated against,
as when we take α < 0 in the formulas above.
We show in Section 3 that our axioms are met by a rich family of (generalized)

bargaining solutions, that can not be parameterized with a finite number of variables.
But when in Section 4 we add to the group properties above the familiar requirements
of the Nash solution - Contraction Independence and Invariance to Affine Transfor-
mations - we are left with the one-dimensional family of asymmetric Nash solutions
where the bargaining power of an agent in a group of size ck is cα−1k ; the parameter
α varies as before between 0 and +∞.
Similarly when we add in Section 5 the requirements of the path monotone so-

lutions - Issue Monotonicity - the resulting solutions select a utility profile u by
equalizing ui

cα−1k

across all agents.

2. Divide-the-dollar model

The set N of potential agents is infinite, and each problem specifies first a finite
subset N of N of concerned agents. We write P = {Gk; k ∈ K} a partition of N
in nonempty groups (or coalitions) Gk. Here K is an arbitrary finite set of indices.
We write the cardinality of Gk as ck = |Gk|, and set |P | = {ck; k ∈ K}. Note that
ck ∈ N∗ = {1, 2, ...}.
A division problem is a triple (N,P, s) where s, a nonnegative real number, is the

amount of money to be divided. A solution to this problem is a vector y ∈ RN
+ such

that
P

N yi = s. We write A(N, s) for the set of such solutions. A division rule is a
mapping ϕ associating to every problem (N,P, s) a solution ϕ(N,P, s) ∈ A(N, s).
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We write
P
(N ) for the set of permutations of N with a generic element σ. For

any y ∈ A(N, s) we define σ(y) ∈ A(σ(N), s) by [σ(y)]i = yσ−1(i). For any partition
P = {Gk; k ∈ K} of N , σ(P ) = {σ(Gk); k ∈ K} defines a partition of σ(N). Hence
the notation σ(N,P, s) = (σ(N), σ(P ), s).We are ready to define the basic horizontal
equity requirement:
Anonymity: for all σ ∈

P
(N ), and all (N,P, s) :

ϕ(σ(N,P, s)) = σ[ϕ(N,P, s)]

By taking for σ the permutation exchanging two agents in Gk, we see that these
two agents must receive the same share. Moreover, two coalitions Gk, Gk0 of the same
size also receive the same share (choose a permutation exchanging Gk and Gk0). And
two problems (N,G, s) and (N 0, G0, s) where |N | = |N 0| and |P 0| = |P | must give the
same share to Gk, G

0
k0 if |Gk| = |G0

k0|.
In the next axiom we use the notation P−k for the partition of N\Gk induced by

P.
Group Consistency (GCSY): for all (N,P, s), k ∈ K and i ∈ N\Gk

y = ϕ(N,P, s) =⇒ yi = ϕi(N\Gk, P−k, s−
X
Gk

yi)

The interpretation is standard: the shares allocated in the N-problem to the
coalitions in P−k are a fair division of

P
N/Gk

yi under the restricted partition.
Scale Invariance (SI): for all (N,P, s) and λ ∈ R++ : ϕ(N,P, λ · s) = λϕ(N,P, s)
Scale Invariance rules out the "wealth effect" justifying different divisions for $10

or $10,000. We are primarily interested in the impact of the group structure, and will
not challenge the SI requirement. It is an interesting and open question to generalize
Theorem 1 and its corollary when this property is removed.
Our next axiom conveys the simple yet crucial idea that a larger group size per

se is not harmful:
Group Size Monotonicity (GSM) for all (N,P, s), all k, l ∈ K :

|Gk| ≥ |Gl| =⇒
X
Gk

yi ≥
X
Gl

yi, wherey = ϕ(N,P, s)

Violation of Group Size Monotonicity is a coarse version of the joint bargaining
paradox that is of little practical relevance. Instead the presence or absence of
the paradox is captured by the next two properties.
Given (N,P ) and k, l ∈ K, we write P [k, l] for the partition of N obtained by

merging Gk and Gl into a single coalition Gk ∪Gl.
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Joint Bargaining Harmful (JBH): for all (N,P, s) and all k, l ∈ K

y = ϕ(N,P, s), y0 = ϕ(N,P [k, l], s) =⇒
X
Gk∪Gl

y0i <
X
Gk∪Gl

yi

Joint Bargaining Beneficial (JBB) is the statement obtained by switching to the
opposite inequality.
Our last axiom, Replication Invariance, requires identical divisions of the dollar

between two coalitions with respective sizes 2 and 5, or with respective sizes 200
and 500. This may or may not make sense from the point of view of the relative
bargaining power of groups, therefore we present below two sets of results where this
axiom is or is not present.
Replication Invariance (RI): for any r ∈ N∗, any (N t, P t, s), t = 1, 2 s. t. |N1| =

r · |N2| and |P 1| = r · |P 2| :

{|G1
k| = r · |G2

l |} =⇒ {
X
G1k

y1i =
X
G2l

y2j} where yt = ϕ(N t, P t, s)

Taking r = 1 in the above property, we see that RI implies a weaker form of
Anonymity, namely the total share of a coalition only depends on the cardinality
profile |P | of the partition. In the sequel we only consider anonymous rules anyway.
Each rule described in our next result is constructed from two ingredients. First

a priority ranking of coalitions based on their sizes, and captured in the statement
below by the preordering % of N, coarser than its natural ordering: if the partition
P contains two coalitions of respective sizes ck, cl and ck Â cl, then Gl receives no
resources: they are shared among the coalitions whose size is in the highest indiffer-
ence class of % . The second ingredient is a weight function determining the relative
shares of the latter coalitions.
Theorem 1
Fix an arbitrary preording (complete, transitive) % of N∗ compatible with the

natural order of N∗ (a ≥ b =⇒ a % b), and a positive function w on N∗. Assume
also that w is nondecreasing on each indifference class I(t) of % .
For each problem (N,P, s), let I(t∗) be the highest indifference class reached by

|P |, namely ck ∈ I(t∗)⇐⇒ ck % cl for all l ∈ K. The formula

ϕi(N,P, s) =
1

ck
· w(ck)P

l∈I(t∗)w(cl)
·s if i ∈ Gk and ck ∈ I(t∗) (1)
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ϕi(N,P, s) = 0 if i ∈ Gk and ck /∈ I(t∗)

defines an anonymous division rule satisfying Group Consistency, Scale Invariance,
and Group Size Monotonicity.
Conversely, every anonymous rule satisfying these three axioms is constructed in

this fashion.
When the preordering % is complete indifference, the share of a coalition of size

ck is always proportional to w(ck). If, on the other hand, % is the natural ordering of
N, the rule divides s equally among all largest coalitions of P.
Corollary to Theorem 1
Within anonymous division rules, the four properties Group Consistency, Scale

Invariance, Group Size Monotonicity and Replication Invariance, characterize the
following one-dimensional family of rules:

ϕα
i (N,P, s) =

cα−1kP
l∈K cαl

· s for all (N,P, s), all i ∈ Gk

where 0 ≤ α ≤ +∞. Here ϕ∞ is the rule dividing s equally among all agents in the
largest coalitions of P.
A benchmark rule in the family ϕα is ϕ1, sharing s equally among all agents, and

ignoring P entirely. For this rule joint bargaining is "neutral." For 0 ≤ α < 1, the
rule ϕα exhibits the joint bargaining paradox (axiom JBH), with the extreme rule ϕ0

dividing s equally among all coalition, irrespective of their sizes. For 1 < α < +∞,
the rule ϕα meets JBB, and ϕ∞ meets the weak form of JBB with a weak inequality
in lieu of a strict one.
Proof of Theorem 1
The first statement - the rule ϕ defined by (1) meets ANO, GCSY, SI and GSM - is
straightforward, hence we omit its proof.
To prove the converse statement, we observe that under an anonymous rule ϕ, the

share yi of an agent i only depends upon |P | = (ck, k ∈ K) = c, and the membership
of agent i; in particular all members of a given coalition Gk get the same share, and
two coalitions Gk, Gl of identical size receive the same total share as well. Thus an
anonymous rule ϕ can be written in the reduced form ψ(K, c, s), where K is a finite
set, c ∈ NK

∗ and s ∈ R+. The reduced rule ψ is a symmetric function of all variables
ck, and ψ(K, c, s) = x is a vector of shares in RK

+ such that
P

K xk = s. We interpret
xk as the total share of the k-th coalition, so that ϕ is related to ψ as follows:

ϕi(N,P, s) =
1

ck
ψk(K, c, s) if c = |P | and i ∈ Gk
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For the anonymous rule ϕ, GCSY, SI and GSM imply respectively for ψ :

CSY : for all (K, c, s) and all k, l ∈ K, k 6= l
x = ψ(K, c, s) =⇒ xl = ψl(K\{k}, c−k, s− xk)

SI : for all (K, c, s) and λ ≥ 0 : ψ(K, c, λs) = λψ(K, c, s)
GSM: for all (K, c, s) and k, l ∈ K :

ck ≥ cl =⇒ xk ≥ xl, where x = ψ(K, c, s)

We fix now a reduced rule ψ meeting these three properties and use the simplifying
notation f(k; c) = ψ({1, ..., k}, c, 1). Define the binary relation %on N∗ as follows:

c1 % c2 ⇐⇒ f1(2; c1, c2) > 0

Its associated strict and indifference parts are:

c1 Â c2 ⇐⇒ f(2; c1, c2) = (1, 0); c1 ∼ c2 ⇐⇒ f(2; c1, c2)À 0

This relation is complete, and by GSM it is compatible with the natural order of
N∗.We claim that it is transitive. We check first that Â is transitive. Assume c1 Â c2
and c2 Â c3 and consider x = f(3; c1, c2, c3). CSY and SI imply:

x3 = (1− x1)f3(2; c2, c3) = 0 =⇒ x1 = (1− x3)f1(2; c1, c2) = 1

By CSY and SI again, x3 = (1 − x2)f3(2; c1, c3), implying f(2; c1,c3) = (1, 0) as
was to be proved.
Next we check that ∼ is transitive. Assume c1 ∼ c2 and c2 ∼ c3, and invoke CSY

and SI again:

(x2, x3) = (1− x1)f(2; c2, c3); (x1, x2) = (1− x3)f(2; c1, c2)

If x3 = 1, the r.h.s. equality gives x1 = x2 = 0, hence a contradiction in the l.h.s.
one. Thus x3 < 1, and the r.h.s. equality implies x1, x2 are both positive, hence
x1, x2 < 1 as well. Then x3 > 0 from the l.h.s. equality, and finally 0 < xk < 1 for
all k. From CSY + SI again, (x1, x3) = (1− x2)f(2; c1, c3) gives c1 ∼ c3 as desired.
A similar argument completes the proof of the claim. For instance suppose c1 Â c2

and c2 ∼ c3. If x1 < 1, the l.h.s. equality implies 0 < x2, x3 < 1, and a contradiction
in the r.h.s. Thus x1 = 1 and (x1, x3) = f(2; c1, c3) gives c1 Â c3 as desired.
Given a profile (k; c) of arbitrary size and x = f(k; c), repeated applications of

CSY and SI give

(xk, xk0) = (1−
X
l 6=k,k0

xl) · f(2, (ck, ck0)) (2)
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implying that xk = 0 if and only if ck is not in the highest indifference class reached
by c. It remains to show that within any given indifference class I(t), our method
divides s in proportion to w(ck), for some positive function w, nondecreasing on each
indifference class I(t). If I(t) is a singleton there is nothing to prove so we assume
|I(t)| ≥ 2.
Take a set K, |K| ≥ 3, and a profile c ∈ I(t)K. Set x = f(k; c) and apply (2),

recalling xk > 0 for all k ∈ K :

xk
xl
=

fk(2; (ck, cl))

fl(2; (ck, cl))
= h(ck, cl) for all k, l ∈ K

where h does not depend on k, l by Anonymity. Therefore for all j, k, l ∈ K :

h(cj, ck) · h(ck, cl) · h(cl, cj) = 1
A standard argument shows that h can be written h(ck, cl) =

w(ck)
w(cl)

for some
positive function w, and x now takes the form given in (1). That w is nondecreasing
on I(t) follows at once from GSY. This concludes the proof of Theorem 1.
Remark 1
Given a reduced rule ψ as described in the theorem, consider the Joint Bargaining

Harmful property. First of all, JBH implies that % is the full indifference relation
on N∗. Suppose not. Then we can find c1 such that c1 + 1 Â c1 and we have

f(3; c1, 1, c1 + 1) = (0, 0, 1) and f(2; c1 + 1, c1 + 1) = (
1
2
, 1
2
)

contradicting JBH.
Thus ψ is entirely described by a nonincreasing and positive function w defined

on N∗ :

ψk(K, c, s) =
w(ck)P
K w(cl)

·s for all k, allc, s (3)

Now JBH requires w to be strictly subadditive.
Turning to the Joint Bargaining Beneficial property, we note that it does not place

any restriction on the relation %, and simply requires w to be strictly superadditive
within each class I(t). We omit the easy proof.

Proof of Corollary
It is easy to check that each rule ϕα, 0 ≤ α ≤ +∞, meets Replication Invariance.
Conversely, let ϕ be a rule as in the statement of the theorem. If ϕ is replication
invariant, its reduced form ψ satisfies:
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RI: for all (K, c, s) and all r ∈ N∗ : ψ(K, r · c, s) = ψ(K, c, s).

We check first that % must be the natural order of N∗ or the full indifference.
Suppose 1 v 2. Then RI implies r v 2r for all r ∈ N∗, hence [r, 2r] is contained

in one indifference class (% is compatible with the natural order). Therefore % is
the full indifference. Suppose next 2 Â 1 and 2 v 3. Then RI implies 2r Â r and
2r v 3r. The latter implies 4 v 6 and 6 v 9, therefore 4 v 8, a contradiction.
Thus 2 Â 1 implies 3 Â 2. Repeat the argument to show that 3 Â 2 and 3 v 4 is
impossible: the latter would imply 9 v 12 and 12 v 16 hence 10 v 15, contradiction.
An obvious induction shows that % must be the natural order of N∗.
If Â is the natural order of N∗, ψ divides s equally among all largest coalitions,

namely ϕ = ϕ∞. Assume now that % is full indifference, so that ψ is represented
as in (3) by a simple positive and nondecreasing function w. We apply RI to an
arbitrary profile c1, c2 :

w(rc1)

w(rc1) + w(rc2)
=

w(c1)

w(c1) + w(c2)
⇐⇒ w(rc1)

w(c1)
=

w(rc2)

w(c2)

Without loss of generality, we can choose w(1) = 1, and the above property now
implies

w(a · b) = w(a) · w(b) for all a, b ∈ N∗
Let p1 = 2, p2, p3, ...be the increasing sequence of prime numbers. Set a =

Πprii , b = Πp
r0i
i , with ri, r

0
i ∈ N, almost all zero. The multiplicative property of w

implies

w(a)

w(b)
= Πw(pi)

ri−r0i

That w is nondecreasing implies, for any two sequences ri, r0i in N with only
finitely many non-zero terms:

{Πpiri−r
0
i ≥ 1 =⇒ Πw(pi)

ri−r0i ≥ 0}

⇐⇒ {
X
(ri − r0i) log pi ≥ 0 =⇒

X
(ri − r0i) logw(pi) ≥ 0}

The implication
P
{log pi}zi ≥ 0 =⇒

P
{logw(pi)} · zi ≥ 0 thus holds for any

sequence zi in Z with finitely many non-zero terms. Likewise for any sequence in Q,
and even in R by continuity. Farkas’ Lemma now implies the existence of α ∈ R+
such that

logw(pi) = α log pi for all i =⇒ w(a) = aα for all a ∈ N∗
Thus ψ = ψα, as desired. The proof of the Corollary is complete.
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3. Axiomatic bargaining with a coalition structure
Given the set N of potential agents, a classic bargaining problem is a pair (N,S)
where N is a finite subset of N and S is a convex, compact, comprehensive subset
of RN

∗ containing at least one point uÀ 0. The profile 0 is the disagreement utility
profile. Note that our results extend easily to the model where the disagreement
point d is arbitrary in RN .
A group bargaining problem is a triple (N,P, S) where (N,S) is a classic problem

and P = {Gk; k ∈ K} is a partition of N as in Section 2. A bargaining solution F
associates to every group bargaining problem (N,P, S) a utility profile u = F (N,P, S)
that is efficient ({u0 ≥ u and u0 ∈ S} =⇒ u0 = u) and strictly positive (u À 0).
Thus for each partition P , the restriction of F is a classic bargaining solution, not
necessarily symmetric with respect toN : when S is symmetric (e.g., S corresponds to
a "divide the dollar" problem) but P is not, the solution u is typically not egalitarian.
We now adapt the five axioms introduced in Section 2 to the bargaining context.

For a permutation σ ∈
P
(N ), we write σ(S) = {σ(u)|u ∈ S}, and σ(N,P, S) =

(σ(N), σ(P ), σ(S)).
Anonymity (ANO) : for all σ ∈

P
(N ), all (N,P, S), F (σ(N,P, S)) = σ(F (N,P, S))

If P0 = {{i}, i ∈ N} denotes the finest partition of N , and P 0 = {N} its coarsest
partition, Anonymity of F implies that F (N,P0, S) and F (N,P 0, S) are two anony-
mous classic bargaining solutions.
In the statement of the group consistency axiom, we use the same notation P−k

as in Section 2. In addition, given u ∈ RN
+ , and S, we write S−k(u) for the restriction

of S to N\Gk when agents in Gk receive uGk
, the projection of u on RGk : S−k(u) =

{v ∈ RN\Gk
+ |(v, uGk

) ∈ S}.
Group Consistency (GCSY): for all (N,P, S) and all k ∈ K

ui = Fi(N\Gk;P−k;S−k(u)) for all i ∈ N\Gk, where u = F (N,P, S)

If F is group-consistent, its restriction to P0 is consistent in the usual sense of this
term for bargaining solutions: Lensberg [9], Thomson and Lensberg [13]. But when
P is arbitrary, group consistency bears only on the elimination of entire coalitions of
agents. It requires intergroup consistency, but says nothing of intragroup consistency.
Common Scale Invariance (CSI): for any (N,P, S) and any λ > 0 : F (N,P, λ ·

S) = λ · F (N,P, S).
Before defining Group Size Monotonicity and Replication Invariance, we need a

few more definitions. Given (N,P ), we call a utility profile u group symmetric if for
all σ ∈

P
(N) (a permutation of N) we have σ(P ) = P =⇒ σ(u) = u. Equivalently,

u is group symmetric if and only if

ui = uj for all i ∈ Gk, j ∈ Gl such that k = l or |Gk| = |Gl|.
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We denote U(N,P ) the set of such utility profiles. We call a problem (N,P, S)
group-symmetric if we have

σ(P ) = P =⇒ σ(S) = S for all σ ∈
P
(N)

For both the coarsest and the finest partitions of N, group symmetry is simply
the symmetry of S in all coordinates. For other partitions, the condition imposes
fewer constraints on S.
An important consequence of Anonymity follows. If F is an anonymous solu-

tion and (N,P, S) a group symmetric problem, then F (N,P, S) = u is itself group
symmetric.
We define next the trace operator t from RN into RK , for a given partition P of

N : {t[N,P, u]}k =
P

Gk
ui for all k ∈ K. Finally, the trace of the group bargaining

problem (N,P, S) is the following classic K-bargaining problem

t[N,P, S] = {t[N,P, u]|u ∈ U(N,P ) ∩ S}
We let the reader check that t[N,P, S] is indeed convex, compact, comprehensive,

and contains some v À 0. Note that adding utilities accross agents would not make
necessarily make sense in an arbitrary bargaining context. But in the sequel we are
only using the trace operation for group symmetric problems (N,P, S) and anonymous
solutions F, that always select a utility profile in U(N,P ) ∩ S. In this case the
trace problem t[N,P, u] collects all profiles of "group utilities" that can feasibly be
distributed in a group symmetric way. We are now ready to state our last two
axioms.
Group Size Monotonicity (GSM): for any group symmetric (N,P, S) s. t. t[N,P, S]

is symmetric as well, for all k, l ∈ K :

|Gk| ≥ |Gl| =⇒
P

Gk
ui ≥

P
Gl
uj where u = F (N,P, S)

The comparison of group utilities in the above statement applies only to those
problems (N,P, S) that are both intra-group and inter-group symmetric: the former
is the group symmetry property of (N,P, S), the latter is the assumption that the
trace problem t[N,P, S] is itself symmetric in RK. Under those circumstances, Group
Size Monotonicity requires group shares to be at least weakly increasing in group size.
Replication Invariance (RI): for any r ∈ N∗ and any two group symmetric prob-

lems (Nε, P ε, Sε), ε = 1, 2, such that |N1| = r · |N2|, |P 1| = r · |P 2| and t[N1, P 1, S1] =
t[N2, P 2, S2] :

|G1
k| = r · |G2

l | =⇒
P

G1k
u1i =

P
G2k

u2j , where u
ε = F (Nε, P ε.Sε)
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We abuse notation slightly by equating the two traces t[Nε, P ε.Sε] in the above
definition. They are in fact two subsets in RK1

+ and RK2
+ respectively, but the as-

sumptions on the two problems (Nε, P ε, Sε) allow us to identify k1 ∈ K1 and k2 ∈ K2

whenever ck1 = ck2.
To interpret RI, observe that the replication (from ε = 2 to 1) "spreads" r copies

of U(N2, P 2)∩S2 to obtain U(N1, P 1)∩S1. The axiom requires our solution to spread
similarly the selected utility profile. Naturally, this property is only meaningful for
anonymous solutions F .
We conclude this section by explicitely relating the two models, divide the dollar

and bargaining, developed in this section and the previous one. We identify the
division of $s and the bargaining set A−(N, s) = {u ∈ RN

+ |
P

N ui ≤ s}. And we
project the group bargaining solution F into the following division rule ϕ :

ϕ(N,P, s) = F (N,P,A−(N, s))

Lemma 1
The above projection operator transports the five properties of F - Anonymity,

Group Consistency, Group Size Monotonicity, Common Scale Invariance and Repli-
cation Invariance-, into the properties with the same name for ϕ.
We omit the straightforward proof. The key observation is that for any partition

of N , A−(N, s) is group symmetric and its trace t[N,P,A−(N, s)] = A−(K, s) is
symmetric as well.
Combining Lemma 1 with Theorem 1 and its Corollary in Section 2, we see that

if a bargaining solution F meets ANO, GCSY, RI, CSI and GSM, its projection ϕ
is determined up to a single parameter α, therefore so is F (N,P,A−(N, s)). But we
still have a great many ways to define F for general problems (N,P, S), in particular
when S is not group symmetric. For instance, we can choose for each c = 1, 2, ... a
collective utility function Wc on Rc

+ with the following properties:

Wc(a · I) =cα · ap for all c ∈ N∗, a ∈ R+

where I = (1, ..., 1) is the diagonal unit vector in Rc
+. Then the group bargaining

solution

F (N,P, S) = argmax
u∈S

X
k∈K

W|Gk|(uGk
)

does meet all five axioms. Notice that F is narrowly constrained for group symmetric
problems, but unconstrained for other problems.
Remark 2
There is an alternative formulation for the two axioms of group size monotonicity

and replication invariance. Let
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Ŝ ≡ {û ∈ RK : ûk = ui for i ∈ Gk, for some u ∈ U(N,P ) ∩ S},
and consider the projection of a group symmetric bargaining problem (N,P, S)

onto the classic K−bargaining problem (K, bS). This projection differs from- but is
related to- the trace operator.
Group Size Monotonicity (GSM): for any group symmetric (N,P, S) s. t. (K, Ŝ)

is symmetric as well, for all k, l ∈ K :

|Gk| ≥ |Gl| =⇒ ui ≥ uj for i ∈ Gk and j ∈ Gl where u = F (N,P, S)

Replication Invariance (RI): Let (Nε, P ε, Sε), ε = 1, 2, be two group symmetric
problems. Suppose that |N1| = r · |N2|, |P 1| = r · |P 2| and (K1, Ŝ1) = (K2, Ŝ2) :

|G1
k| = r · |G2

l | =⇒ u1i = u2j for i ∈ Gk and j ∈ Gl where uε = F (Nε, P ε, Sε)

We let the reader check the equivalence of these two formulations.
Remark 3
The joint bargaining paradox, or its absence, cannot be easily formulated when

two coalitions of different sizes merge: as utility is not transferable, comparing the
total utility over these two coalitions before and after the merging has no clear in-
terpretation. However it is a simple matter to express JBB and JBH when two
coalitions of identical size merge, because anonymous solutions do not discriminate
between the merging agents before or after the merging.
Given a partition P = {Gk, k ∈ K} of N and two coalitions Gk, Gl of identical

size, recall that P [k, l] is the partition resulting from merging these two coalitions.
Then JBH requires the following from an anonymous bargaining solution F . For all
S such that both (N,P, S) and (N,P [k, l], S) are group symmetric:

Fi(N,P [k, l], S) < Fi(N,P, S) for all i ∈ Gk ∪Gl

4. Nash bargaining solution with a coalition structure
The most common axiomatization of the Nash bargaining solution relies on the fol-
lowing two properties:
Contraction Independence (CI): for all (N,P ) and all S, S0 :

{S0 ⊆ S and F (N,P, S) = u ∈ S0} =⇒ F (N,P, S 0) = u

Individual Scale Invariance (ISI): for all (N,P, S) and all β ∈ RN
++ :

F (N,P, β • S) = β • F (N,P, S)
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where β • u = (βiui)i∈N .
The interpretation of these two axioms is standard: see for instance Thomson

and Lensberg [13] or Peters [11]. In the classic bargaining problem (without a
coalition structure), the two axioms characterize the weighted Nash solutions: Kalai
[7]. Therefore a group bargaining solution F meets CI and ISI if and only if there
exists for all pairs (N,P ) a profile of "weights" θ(N,P ) ∈ RN

++ such that

F θ(N,P, S) = argmaxu∈S
P

i∈N θi(N,P ) · log ui, for all S.

Note that the profile of weights is unique for a given solution, up to a multiplicative
constant. When we combine the group sensitive axioms of Section 3 with the two
properties above, we obtain a simple family of weighted Nash solutions.
Theorem 2
Fix an arbitrary positive and nondecreasing function w on N∗, and for all pair

(N,P ) with c = |P | define the following profile of weights

θi(N,P ) =
w(ck)

ck
for all k and all i ∈ Gk

The corresponding weighted Nash solution Fw meets the three axioms Anonymity,
Group Consistency, and Group Size Monotonicity.
Conversely, this family of solutions exhausts all group bargaining solutions meet-

ing these three axioms, as well as Contraction Independence and Individual Scale
Invariance.
Corollary to Theorem 2
The four group sensitive axioms - Anonymity, Group Consistency, Replication

Invariance and Group Size Monotonicity-, together with Contraction Independence
and Individual Scale Invariance, characterize the one-dimensional family of weighted
Nash solutions Fα, 0 ≤ α < +∞ :

θi(N,P ) = cα−1k for all k and all i ∈ Gk

In the group bargaining solutions identified by Theorem 2 and its Corollary, the
weight of an individual agent may actually decrease with respect to the size of the
coalition of which he is a member: this holds true whenever 0 ≤ α < 1 for the
solutions described in the Corollary, and more generally if w(z)/z decreases in z.
This corresponds to the joint bargaining paradox in the sense of Remark 3, Section
3.
One benchmark member of the family Fα is the group-insensitive solution F 1 : this

solution is the ordinary symmetric Nash bargaining solution, ignoring the partition
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P altogether. Another benchmark is the solution F 0, treating all groups equally -
irrespective of their size - in the divide-the-dollar game, and exhibiting the strongest
form of joint bargaining paradox compatible with Group Size Monotonicity. This
solution was introduced and axiomatically characterized by Chae and Heidhues [2].
Note that the family Fα does not allow α = +∞, because we require from a group

bargaining solution that it gives a positive share to every participant. The limit of
Fα when α goes to infinity applies the symmetric Nash solution among all agents in
the largest coalitions, while keeping all other agents at their disagreement level.
Proof of Theorem 2
First Statement.
For any choice of w, the solution Fw is clearly Anonymous because the permuta-

tion σ respects the size of coalitions, hence their weight w(|Gk|).
The solution Fw meets GCSY because the relative weight of two agents i ∈ Gk

and j ∈ Gl only depends upon the relative sizes of Gk and Gl, hence is not affected
when other coalitions are removed.
To check that Fw meets GSM, pick a problem (N,P, S) where S is group sym-

metric and T = t[N,P, S] is symmetric as well. Because the weights θi(N,P ) are
constant within each coalition, and equal in two coalitions of equal size, the utility
profile u∗ = Fw(N,P, S) is group symmetric. Setting z∗ = t(N,P, u∗) we have

u∗ = argmax
u∈S

X
k∈K

w(ck)

ck

X
i∈Gk

log ui ⇐⇒ z∗ = argmax
z∈T

X
k∈K

w(ck) log zk

The GSM property now follows from the fact that over a symmetric utility set T ,
a weighted Nash solution is monotonic in weights: w(ck) ≥ w(cl) =⇒ z∗k ≥ z∗l . This
fact is clear for two coalition problems (|K| = 2). For an arbitrary |K|, and two
coalitions k, l, notice that (z∗k, z

∗
l ) is the corresponding weighted Nash solution in the

{k, l}− slice of T at z∗ - namely the set {(zk, zl)/(zk, zl, z∗−k,l) ∈ T}-, and the latter
set is symmetric.
Second Statement.
If F is a solution meeting CI and ISI, it is a weighted Nash solution F θ, where the
weight profile depends arbitrarily upon (N,P ). The only restriction is θi(N,P ) > 0
because we insist that a solution to a group bargaining problem give a positive utility
to each agent ( see at the beginning of Section 3).
Let ϕ be the projection of F θ into a divide-the-dollar solution. By Lemma 1, ϕ

meets ANO, CSY, CSI, and GSM. Therefore ϕ is represented as in Theorem 1 by a
preordering % of N and a weight function w. As ϕ gives a positive share to every
coalition, % is the full indifference relation and w is nondecreasing over all N∗. For
all (N,P, s) :
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ϕi(N,P, s) =
1

ck

w(ck)P
l∈K w(cl)

for all k, all i ∈ Gk

On the other hand, the utility profile u∗ = F θ(N,P,A−(N, s)) is easily computed

u∗ = argmax{
X
i∈N

θi(N,P ) log ui|
X
i∈N

ui = 1} =⇒ u∗i =
θi(N,P )P
j∈N θj(N,P )

}

From u∗ = ϕ(N,P, s), we deduce first that θi(N,P ) is constant within each coali-
tion Gk, next that up to a multiplicative rescaling, θ is as stated in Theorem 2.
Proof of the Corollary
Immediate in view of the Corollary to Theorem 1, and the fact that Replication

Invariance of F is respected in the projection of F into ϕ.

5. Egalitarian Solution with a Coalition Structure
The egalitarian solution for a classic bargaining problem (N,S) picks the highest
point in S along the diagonal of RN

+ . In order to guarantee that this defines an
efficient point of S, we require the feasible utility set to meet
Minimal Transferability: for all u ∈ S, all i ∈ N : {ui > 0} =⇒ {∃v ∈ S0, vi < ui

and vj > uj, all j 6= i}.
This additional requirement does not affect the discussion of Section 3.
The asymmetric generalizations of the egalitarian solution are called the path

monotone solutions (Thomson and Myerson [14]). Fix a monotone and continuous
path in RN

+ , starting at 0 and strictly increasing in all coordinates. The intersection
of this path with the Pareto frontier of S defines a solution F satisfying the following
property
Issue Monotonicity (IM): for all N , all S, T : {S ⊆ T} =⇒ {F (N,S) ≤ F (N,T ).
Issue Monotonicity is a much stronger requirement than Contraction Indepen-

dence, and is enough to characterize the path monotone solutions. Upon adding
Common Scale Invariance, the path must now be a straight line borne by a line
δ À 0.See Kalai [8].
Turning now to our group bargaining model, we see that the combination of IM

and CSI implies that for all S, F (N,P, S) = u is the efficient utility profile in S borne
by a strictly positive vector δ(N,P ), namely ui

δi(N,P )
is independent of i ∈ N. Note

that the set of weights δ(N,P ) is defined up to a multiplicative constant. In our
last result we show that the group sensitive axioms ANO, GCSY, GSM and RI force
precisely the same structure on the weights δ as on the weights θ of the Nash solution
in the previous section.
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Theorem 3
Fix an arbitrary positive and nondecreasing function w on N∗ and for all pairs

(N,P ) with c = |P | define the following profile of weights

δi(N,P ) =
w(ck)

ck
for all k and all i ∈ Gk

The group bargaining solution borne by the ray δ(N,P ), for all (N,P ), meets
Anonymity, Group Consistency, and Group Size Monotonicity.
Conversely, this family exhausts all group bargaining solutions meeting these three

axioms, as well as Issue Monotonicity and Common Scale Invariance.
Corollary to Theorem 3
Adding Replication Invariance to the axioms above selects the one-dimensional

family of weights

δi(N,P ) = cα−1k for all k, all i ∈ Gk

where 0 ≤ α < +∞.
Proof of Theorem 3
In the direct statement, checking ANO and GCSY is straightforward. Only GSM

requires some attention. Pick a group symmetric problem (N,P, S) and let u be
the utility profile equalizing ckui

w(ck)
across all i ∈ N. Then u ∈ U(N,P ), therefore

z = t[N,P, u] equalizes zk
w(ck)

across k ∈ K, hence ck ≥ cl =⇒ zk ≥ zl, establishing
GSM.
Conversely, let F be a solution satisfying IM and CSI. Then F (N,P, ·) is the

path solution borne by a ray δ(N,P )À 0, equalizing ui
δi(N,P )

across all i.
By Lemma 1 and Theorem 1, the divide-the-dollar solution ϕ associated with F

takes the form

ϕi(N,P, s) =
1

ck

w(ck)P
K w(cl)

· s all k, all i ∈ Gk

for some positive and nondecreasing function w. Recall that % is the full indifference
because ϕ(N,P, s)À 0 for all problems. The desired conclusion follows.
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