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Abstract

In this paper we introduce a new view on the distributions of unit root tests.
Taking a contour given by the fixed sum of squares instead of the fixed sample
size, we show that the null distributions of most commonly used unit root tests
such as the ones by Dickey-Fuller (1979, 1981) and Phillips (1987) are normal
in large samples. The normal asymptotics along the new contour continue to
hold under the local-to-unity alternatives, in which case the tests have normal
limit distributions with mean given by the product of the square root of the
level of the contour and the locality parameter. Our results are derived for
the general unit root models with innovations satisfying the functional central
limit theory that is routinely employed to obtain the unit root asymptotics.
Moreover, the new asymptotics are shown to be applicable also for the models
with deterministic components, as long as they are removed recursively by using
only the past information.
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1. Introduction

It is well known that the distributional theories for many of the commonly used unit root
tests are nonstandard. For instance, the Dickey-Fuller and Phillips tests both have non-
normal distributions, which are usually represented by the functionals of Brownian motion
under the null hypothesis of unit root. The characteristics of their null distributions, which
are often referred to as the Dickey-Fuller distributions named after who first tabulate them,
have been studied by several authors including Evans and Savin (1981, 1984) and Abadir
(1993). In particular, the Dickey-Fuller distributions are known to be asymmetric and
skewed to the left, as demonstrated in, e.g., Fuller (1996). The nonstandard nature of the
limit distribution theory for the unit root tests extends to the case of the near unit root,
which is often considered as the local alternative to the unit root null hypothesis. Under
the local-to-unity alternative hypothesis, the limit distributions of the unit root tests are
generally given by the functionals of Ornstein-Uhlenbeck process.

This paper introduces a novel view on these and other related distributions. The sam-
pling distribution of a statistic is usually obtained for a given sample size. Using the
conventional sampling distribution of the statistic for the purpose of statistical inference
thus implies that we evaluate the likelihood of a realized value of a statistic against other
possible realizations along the contour given by the fixed sample size. In this paper, we
consider taking a different contour in obtaining the sampling distribution of the statistic,
i.e., the contour that is given by the fixed sum of squares. In order to assess the likelihood
of the statistic, we therefore look for other possible realizations with their sum of squares,
rather than their sample sizes, holding fixed. As we show in the paper, the distribution
theory of a unit root test can be very different, depending upon whether we take the con-
ventional contour of the fixed sample size or the new contour of the fixed sum of squares to
evaluate the likelihood of the test statistic.

The distinction and choice between the two contours introduced above matter only for
the nonstationary models including the unit root or near unit root. In particular, they
become unimportant for the stationary models. For the observations from stationary time
series, the sum of squares becomes a constant multiple of the sample size in the limit. The
contours of the equi-sample-size and the equi-squared-sum to evaluate the likelihood of a
realized sample are thus virtually identical if the size of the sample is large enough. The
limit distribution theories are therefore identical regardless of the choice of the contours.
This is not so for the samples from unit root processes. If normalized as necessary, the sum
of squares of the samples from unit root processes remain to be random even in the limit.
For the samples from the unit root and near unit root models, it would thus yield a new
asymptotic theory different from the conventional one to evaluate the likelihood of a given
realization against all other possible realizations with the same sum of squares.

As an illustration, we provide ten simulated sample paths with equal sample size, and
another ten with equal sum of squares, respectively, in Figures 1 and 2.2 For the equi-
sample-size paths provided in Figure 1, the one with largest sum of squares are presented

2More precisely, ten sample paths at 5%, . . . , 95% percentiles were chosen out of ten thousand realizations.
The sample size is fixed at 100 for Figure 1, while we set the sum of squares to be 0.23 times 100 squared
for Figure 2. The setting yields the most comparable results for the two contours considered here.
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Figure 1: Sample Paths with Equal Sample Size

in the top-left corner and the one with the smallest sum of squares in the bottom-right
corner. For the sample paths with equi-squared-sum in Figure 2, the one with the smallest
sample size to attain the required squared sum is presented in the top-left corner, and the
one with the largest sample size in the bottom-right corner. Figures 1 and 2 represent
two different contours we may take to obtain the sampling distributions of the statistics
involving unit root processes. The former shows the contour of the samples of fixed sample
size (with varying sums of squares as required to have the same sample size), while the
latter represents the contour of fixed sum of squares (with varying sample sizes as required
to have the same sum of squares).

The new contour is particularly relevant in testing for a unit root. For the unit root test,
the information content of the sample is effectively measured, not by the sample size, but
by the sum of squares. The most conspicuous characteristic of the unit root processes (that
is constrasted with the stationary process) is the presence of stochastic trend. The degree
of conspicuousness of their stochastic trend would essentially lead us to believe, or not to
believe, the presence of a unit root in the underlying time series. How conspicuous should
they be for us to reject, or not to reject, the unit root hypothesis? Here comes the point
that we need a formal statistical test. The remaining question is whether to evaluate the
likelihood of a given observation against other possible realizations either of the same sample
size exhibiting different degrees of stochastic trends, or having similar degrees of stochastic
trends with varying sample sizes. At least in this regard, it appears to be more reasonable
to consider the contour of the equi-squared-sum rather than that of the equi-sample-size.

Our asymptotic results are rather surprising. Along the new contour of equi-squared-
sum, we have the usual normal asymptotics for the unit root and near unit root models.
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Figure 2: Sample Paths with Equal Sum of Squares

The limit distribution of the t-ratio is standard normal under the null of unit root, and it
is simply shifted with the location parameter given by the product of the square root of
the level of the contour and the locality parameter under the alternative of local-to-unity.
The nonstandard nature of the conventional limit distribution theories of the unit root and
near unit root models therefore completely disappears once the contour of equi-squared-
sum is taken. Perhaps it may merely suggest that the usual contour of equi-sample-size
is inappropriate for the unit root and near unit root models. The new asymptotics are
developed under very weak conditions, which only require the innovations to satisfy the usual
functional central limit theory. Our results are also applicable for models with deterministic
components, as long as they are removed recursively by using only the past information.

The rest of the paper is organized as follows. The main results of the paper are given
in Section 2. There we consider the prototype unit root model and the test statistic, and
develop a new asymptotics along the contour of the equi-squared-sum. The asymptotics are
shown to be normal under both the null of unit root and the alternative of local-to-unity.
Section 3 extends our main results. In particular, it is shown that the normal asymptotics
continue to apply for the models with intercept if the recursive demeaning is used. The
tests based on more general unit root models are also investigated and shown to yield the
normal asymptotics along the new contour. The concluding remarks are in Section 4, and
the mathematical proofs are given in Appendix. A word on notation. As usual, →d, →p

and →a.s. are used to signify respectively the convergence in distribution, the convergence in
probability and the almost sure convergence, and ∼ denotes the equivalence in distribution.
The standard Brownian motion is denoted by W throughout the paper.
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2. Main Results

We consider the autoregressive model

yt = αyt−1 + ut, (1)

and the test of the unit root hypothesis

α = 1. (2)

We assume that

Assumption 2.1 Let (ut,Ft) be a martingale difference sequence, with some filtration
(Ft), satisfying invariance principle.

The martingale difference condition in Assumption 2.1 is not necessary and will be
relaxed later. It is introduced here simply to avoid unnecessary complications and focus on
the main issue of the paper. We may consider more general unit root models driven by linear
processes or weakly dependent innovations without any difficulty. For such general models,
the unit root test may be based on the regression augmented with the lagged differences as
for the tests by Dickey and Fuller (1979, 1981), or can be done using the statistic modified
nonparametrically as in the tests by Phillips (1987). These tests will be considered explicitly
in a later section. They all have the same limit distributions as the test based on the simple
model considered here. We define

Wn(r) =
1

σ
√

n

[nr]
∑

t=1

ut (3)

for r ≥ 0, where [z] signifies the largest integer which does not exceed z and σ2 is the
asymptotic variance of (ut), i.e., the probability limit of (1/n)

∑n
t=1 u2

t . Under Assumption
2.1, we have Wn →d W as n → ∞, where W is the standard Brownian motion.

Let y1, . . . , yn be the random sample of size n. The unit root hypothesis is routinely
tested by the t-ratio on the autoregressive coefficient α, which is given by

Tn =
α̂n − 1

s(α̂n)
, (4)

where α̂n = (
∑n

t=1 y2
t−1)

−1
∑n

t=1 yt−1yt is the least squares estimator of α with the standard

error s(α̂n) = σ̂(
∑n

t=1 y2
t−1)

−1/2, and σ̂2 denotes the usual error variance estimate obtained
from the fitted residual (ût) in regression (1). It is well known that under the null hypothesis
of unit root

Tn →d

(
∫ 1

0
W (r)2dr

)−1/2∫ 1

0
W (r) dW (r) (5)

as n → ∞. The limiting distribution appeared in (5), often called the Dickey-Fuller dis-
tribution, is nonnormal and skewed to the left. The unit root hypothesis is rejected if Tn

takes a large negative value.
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We now introduce a new asymptotics. Let c > 0 be a fixed number chosen arbitrarily.
For each n = 1, 2, . . ., let mn be defined by

mn = inf
k≥1

{

1

n2

k
∑

t=1

y2
t−1 ≥ c

}

, (6)

and consider the t-ratio Tmn for the sample of size mn. Here the sample size mn is deter-
mined by the squared sum of (yt) achieving a certain level. Note that n no long denotes
the sample size. Here it is used simply to define a sequence mn.

Theorem 2.1 Suppose that (yt) is generated as in (1) and (2) under Assumption 2.1, and
that (mn) is defined by (6). Then we have

Tmn →d N(0, 1) (7)

as n → ∞.

Unlike the conventional result in (5), our approach here yields the normal asymptotics given
in (7). A few important remarks are now in order.

Remarks (a) The asymptotics in (5) and (7) are derived by taking two different contours:
The former holds the sample size fixed with varying sums of squares, while the latter holds
the sum of squares fixed with varying sizes of samples. They are useful in different contexts.
The asymptotics in (5) is more relevant to the conventional approach, which evaluates the
likelihood of a realized value of the statistic against other possible realizations from the
samples of the same size. In contrast, our new approach suggests the evaluation of the
likelihood of a realized value of the statistic against other possible realizations for the
samples of the same sum of squares, and therefore, requires the asymptotics in (7). We may
deduce from (5) that, across the samples of the same size fixed at some large n, the t-ratio
has distribution close to the Dickey-Fuller distribution. On the other hand, (7) implies that
the t-ratio is approximately standard normal if we look at all realizations of the samples of
size mn, where for arbitrarily given c > 0

mn
∑

t=1

y2
t−1 ≈ n2c

with some large fixed n.

(b) For a given sample y1, . . . , yn, we may set

c =
1

n2

n
∑

t=1

y2
t−1.

Obviously, we have in this case mn = n and Tmn = Tn. The statistics Tn and Tmn would
then have identical value. Now the choice of the critical values is the choice of the contour,
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along which we would like to evaluate the likelihood of the given realization. Depending
upon which contour we choose to evaluate the likelihood of a realized value for the statistic,
the relevant null limit distribution and thus the critical value of the test would be different.
If the realized value of the statistic is to be compared with all of its possible values obtained
from the samples of the same size, the critical value from the Dickey-Fuller distribution
should be used. If, on the other hand, the realized value of the statistic is to be compared
with all possible values from the samples of the same sum of squares, the standard normal
critical value should be used.

(c) The choice of the contour would ultimately be a subjective matter. However, we
may say that it would be more appropriate to choose the contour representing the same
amount of information on the hypothesis to be tested. In this regard, the contour of the
equi-squared-sum is especially appealing for the test of a unit root. The most important and
distinguishing charactersitic of the sample path from the unit root process (in comparison
with that from the stationary process) is the presence of stochastic trend, and its magnitude
can be effectively measured by the sum of squares. Choosing the contour of the equi-squared-
sum for the unit root test thus implies that we assess the likelihood of a realized test value
against other possible realizations having the stochastic trends of the same magnitude. This
seems quite reasonable.

(d) The distinction and choice of the two contours are unimportant for the samples from
stationary time series. The stationary samples yield the same sampling distributions for
the two different contours considered here. For the stationary time series (yt),

∑n
t=1 y2

t−1/n
converges to a fixed constant as the sample size grows, due to the law of large numbers,
making the two contours identical in large samples. However, the two contours can be very
different for the samples from the unit root process. Most of all, the first contour is fixed
and nonrandom, whereas the second contour is path-dependent. As is well known,

1

n2

n
∑

t=1

y2
t−1 →d

∫ 1

0
W (r)2 dr

for the unit root process. The sum of squares, if normalized properly, would thus remain
to be random and depend upon a realized value of the underlying process.

(e) Our asymptotics also help to analyze the nonnormality of the Dickey-Fuller distri-
bution. We may clearly see from the proof of Theorem 2.1 that, for a stopping time τ such
that

∫ τ
0 W (r)2dr is constant, the distribution of

∫ τ
0 W (r) dW (r)/(

∫ τ
0 W (r)2dr)1/2 is stan-

dard normal. The nonnormality of the Dickey-Fuller distribution is due to the evaluation
of the integral over the fixed interval [0, 1], rather than the random interval [0, τ ], in the
limiting t-ratio.

(f) Lai and Siegmund (1983) derive the asymptotics comparable to (7) for the case of
iid (ut).

3 For the Gaussian random walk, we may regard the new asymptotics as those

3We were not aware of Lai and Siegmund (1983) until very recently, so we could not mention their work
in earlier versions of this paper. We are very grateful to Peter Hansen, Byungsoo So and Jim Stock for
bringing their work to our attention. Their result, however, is applicable only for the pure random walk
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Figure 3: Densities of t-ratios from Equi-Sample-Size and Equi-Squared-Sum Contours

for a sequential sampling scheme which measures time in terms of accumulated Fisher
information. Note that Fisher information about α contained in y1, . . . , yn is given by
∑n

t=1 y2
t−1 in this case.

In Figure 3, the densities for the distributions of Tn and Tmn are given and compared
with the standard normal distribution. The densities of Tn are obtained for each of the fixed
sample sizes n = 10, 25, 50 and 100, while the densities of Tmn are computed for the fixed
sum of squares given by n2c with n = 10, 25, 50, 100 and c = 0.23. From simulations, we
find that the asymptotic expected value of the stopping time τ defined by

∫ τ
0 W (r)2dr = c

is approximately unity with this choice of c. The densities, in all cases, are quite insensitive
to the choice for the value of c. Along the contour of the fixed sum of squares, the finite
sample distribution of Tmn appears to converge rather rapidly. Our normal asymptotics
thus provide very good approximations for the finite sample distributions of Tmn . Even
for the samples with moderate sizes, the finite sample distributions are indeed quite close
to standard normal. In contrast, the distributions of Tn are quite distinct from standard
normal at all sample sizes.

We now consider the local alternative

α = 1 − δ

n
(8)

model driven by iid innovations. Moreover, their approach is not readily extended to the near unit root
model and general unit root models with intercept and serially dependent innovations that we consider in
the next section.
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for some δ > 0. It is well known that

Tn →d −
(
∫ 1

0
Wδ(r)

2dr

)1/2

δ +

∫ 1

0
Wδ(r) dW (r)

(
∫ 1

0
Wδ(r)

2dr

)1/2
(9)

as n → ∞, where Wδ is the Ornstein-Uhlenbeck process given by Wδ(r) =
∫ r
0 exp[−(r −

s)δ]dW (s). In contrast to the conventional asymptotics in (9), our asymptotics yield

Theorem 2.2 Suppose that (yt) is generated as in (1) and (8) under Assumption 2.1, and
that (mn) is defined by (6). Then we have

Tmn →d −
(

c/σ2
)1/2

δ + N(0, 1) (10)

as n → ∞.

Our result in (10) establishes the new asymptotics for the t-ratio under the alternative
hypothesis of local-to-unity. Along the contour of the fixed sum of squares, we would thus
get the normal asymptotics under the local alternative, as well as under the null. Under
the alternative of local-to-unity, the t-ratio has limit normal distribution with mean shifted
by the product of the locality parameter and the square root of the level of the contour,
measured in the unit of the innovation variance. If the new contour is taken, the asymptotic
distribution under the local alternative is simply given by a parallel shift of the asymptotic
null distribution, exactly as in the standard stationary regression models. This is in sharp
contrast with the asymptotics along the conventional contour, which are given by (9).

3. Extensions

Our results in the previous section can be readily extended to more general unit root
models. Here we consider models with intercept and models driven by serially dependent
innovations. Upon appropriate modifications of the tests and contours, they yield the same
new asymptotics as those for the simple unit root model considered earlier.

3.1 Models with Intercept

Now we let (yt) be generated as
yt = µ + y0

t , (11)

where (y0
t ) follows the autoregressive process given in (1). The unit root in (y0

t ) may now
be tested in the regression

yµ
t = αyµ

t−1 + ut (12)

using (yµ
t ) given by

yµ
t = yt − y0 (13)
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or

yµ
t = yt −

1

t − 1

t−1
∑

k=1

yk, (14)

which is defined recursively for each t = 1, . . . , n. This recursive demeaning was first
proposed by So and Shin (1999) to demean positively correlated stationary AR processes,
and later used in Chang (2002) for the test of the unit root using the nonlinear instrumental
variable methodology.

Denote by T µ
n the t-ratio for the unit root hypothesis (2) in regression (12). The con-

ventional limit distribution of T µ
n is dependent upon the actual demeaning procedure that

we introduce in (13) and (14). If (yµ
t ) given in (13) is used, then the limit distribution of

T µ
n is precisely the same as that of Tn given in (5) from regression (1) without intercept.

On the other hand, if (yµ
t ) in (14) is used, then the conventional asymptotics would yield

T µ
n →d

(
∫ 1

0
W µ(r)2dr

)−1/2∫ 1

0
W µ(r) dW (r),

where

W µ(r) = W (r) − 1

r

∫ r

0
W (s)ds

as n → ∞.4

We define a new contour

mn = inf
k≥1

{

1

n2

k
∑

t=1

yµ 2
t−1 ≥ c

}

(15)

for each n = 1, 2, . . . and an arbitrarily given c > 0. Note that (mn) is defined in (15)
exactly as in (6), except that it is now based on the demeaned (yt).

Corollary 3.1 Suppose that (yt) is generated as in (11) with (y0
t ) given by (1) under

Assumption 2.1. Under the unit root hypothesis (2), we have

T µ
mn

→d N(0, 1) (16)

as n → ∞. Moreover, we have under the alternative hypothesis of local-to-unity (8)

T µ
mn

→d −
(

c/σ2
)1/2

δ + N(0, 1) (17)

as n → ∞.

Our previous results therefore also apply for the models with intercept, if a recursive de-
meaning procedure is used. For the normal asymptotics obtained in Corollary 3.1, it is

4As noted by Chang (2002), the process W
µ is well defined to be a continuous semimartingale if we set

W
µ(0) = 0. This can be readily shown by Brownian law of iterated logarithm [see, e.g., Revuz and Yor

(1994, p53)].
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important to use the contour in (15) defined with the demeaned (yt). The normal asymp-
totics would not follow if the contour (6) based on (yt) is used. Here we only consider the
models with intercept to simplify the exposition. It is, however, clear that we may allow for
other deterministic components in the model, as long as they can be removed recursively
by using only the past information and the contour is defined appropriately.

3.2 General Unit Root Models

Not surprisingly, the new asymptotics we established in the previous section are also ap-
plicable for more general unit root models driven by a serially dependent nonmartingale
difference sequence (ut). For the process (ut), we may consider two sets of assumptions.

Assumption 3.1 Let (ut) satisfy invariance principle.

Assumption 3.2 Let ut = π(L)εt =
∑∞

k=0 πkεt−k and assume that (a) (εt,Ft) is a martin-
gale difference sequence, with some filtration (Ft), such that E(ε2

t ) = σ2, (1/n)
∑n

t=1 ε2
t →p

σ2 and supt≥1 E|εt|r < K for some r ≥ 4 and constant K > 0, and that (b) π(z) 6= 0 for all
|z| ≤ 1 and

∑∞
k=0 |k|s|πk| < ∞ for some s ≥ 1.

Under Assumption 3.1, we may use the Phillips test to test for the unit root hypothesis
in the general unit root model. It is based on the modified t-statistic

T a
n =

σ̂

ω̂
Tn − ω̂2 − σ̂2

2ω̂

(

1

n2

n
∑

t=1

y2
t−1

)1/2
,

where Tn is the standard t-ratio and σ̂2 and ω̂2 are respectively any consistent estimates for
the shortrun and longrun variances of (ut). See Phillips (1987) and Stock (1994) for more
details. Under Assumption 3.2, the so-called augmented Dickey-Fuller test can be applied.
It relies on the unit root regression

yt = αyt−1 +

p−1
∑

k=1

αk4yt−k + εt (18)

augmented with the differenced lags, and tests the unit root hypothesis using the standard t-
ratio. We denote by T b

n the t-statistic for the unit root hypothesis (2) in regression (18). Said
and Dickey (1984) show that the test is applicable for general invertible ARMA processes
of unknown order if we set p = Knr with some constant K > 0 and 0 < r ≤ 1/3. More
recently, Chang and Park (2003) show that it is valid under the conditions in Assumption
3.2 as long as p → ∞ with p = o(n1/2).

As is well known, the statistics T a
n and T b

n have the same limiting distributions as Tn.
For the general unit root model, we have

T a
n , T b

n →d

(
∫ 1

0
W (r)2dr

)−1/2∫ 1

0
W (r) dW (r) (19)
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as n → ∞, respectively under Assumptions 3.1 and 3.2. This is exactly as in (5). Our new
asymptotics extend readily to these statistics, as we show in the following corollary.

Corollary 3.2 Suppose that (yt) is generated as in (1) and (mn) is defined by (6). Also, let
Assumptions 3.1 and 3.2 hold respectively for T a

mn
and T b

mn
. Under the unit root hypothesis

(2), we have
T a

mn
, T b

mn
→d N(0, 1)

as n → ∞. Moreover, we have under the alternative hypothesis of local-to-unity (8)

T a
mn

, T b
mn

→d −
(

c/ω2
)1/2

δ + N(0, 1)

as n → ∞.

The new asymptotics for the unit root tests in the general unit root models are essentially
identical to those in the simple unit root model considered in the previous section. They
are the same as the earlier ones under the null hypothesis of unit root. The asymptotics
under the alternative hypothesis of local-to-unity are also identical, except that the level of
the contour appearing in the shift parameter is now measured in the unit of the longrun
variance of the innovations.

4. Conclusion

In this paper, we develop new asymptotics for the unit root tests that are commonly used
in practical applications. Our asymptotics take a new contour given by the fixed sum of
squares, and contrast with the conventional ones which evaluate the likelihood of a realized
value of the test along the contour of the fixed sample size. We show in the paper that if
the equi-squared-sum contour is chosen the distribution theories for the tests are normal.
They have normal limiting distributions, and we may use the standard normal table for
their critical values. As is well known, their conventional asymptotics are nonstandard and
nonnormal. Our theories developed in this paper make it clear that we may legitimately
use the standard normal table for many of the commonly used unit root tests. It would
lead us not to making an invalid inference, but to exploring a new contour that has never
been uncovered.

Appendix: Proofs of Theorems

Proof of Theorem 2.1 Let Wn be defined as in (3). It is well known that Wn →d W
in the space D(R) of cadlag functions endowed with the supremum norm. Moreover, by
extending the underlying probability space if necessary, we may assume that Wn and W are
defined in the same probability space and that Wn →a.s W uniformly. Such a construction
is possible for instance by the Skorohod embedding. See Hall and Heyde (1980) for details.
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For any fixed constant c > 0, we let τn(c) be given by

σ2

∫ τn(c)

0
Wn(r)2dr = c, (20)

and define a stopping time τ(c) to be such that

σ2

∫ τ(c)

0
W (r)2dr = c. (21)

Since Wn →a.s. W uniformly, it follows from (20) and (21) that

τn(c) →a.s. τ(c)

as n → ∞. Moreover, upon noticing τn(c) = mn/n + O(n−1) a.s., we may further deduce
that

mn

n
→a.s. τ(c)

as n → ∞.
Under the null hypothesis of unit root (2), we have

Tmn = (1/σ̂)

(

mn
∑

t=1

y2
t−1

)−1/2 mn
∑

t=1

yt−1ut

=

(

∫ mn/n

0
Wn(r)2dr

)−1/2
∫ mn/n

0
Wn(r) dWn(r) + op(1)

=

(

∫ τ(c)

0
W (r)2dr

)−1/2
∫ τ(c)

0
W (r) dW (r) + op(1) (22)

as n → ∞, since Wn →a.s. W uniformly, mn/n →a.s. τ(c) and σ̂2 →p σ2 as n → ∞.
Therefore, it now suffices to show that

T =

(

∫ τ(c)

0
W (r)2dr

)−1/2
∫ τ(c)

0
W (r) dW (r) ∼ N(0, 1), (23)

due to (22).
To establish (23), we first define a continuous martingale

M(s) = σ

∫ s

0
W (r) dW (r)

and note that it has the quadratic variation given by

[M ](s) = σ2

∫ s

0
W (r)2dr.
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Therefore, we have
τ(s) = inf

r>0
{[M ]r ≥ s} ,

from which it follows that

V (s) = M(τ(s)) = σ

∫ τ(s)

0
W (r) dW (r) (24)

is the DDS Brownian motion of the martingale M . The reader is referred to, e.g., Revuz
and Yor (1994) for the DDS Brownian motion. Due to (21), (23) and (24), we now have

T =
( c

σ2

)−1/2
(

V (c)

σ

)

∼ V (1),

from which (23) follows immediately. The proof is therefore complete. �

Proof of Theorem 2.2 The proof is analogous to that of Theorem 2.1. We define a
stochastic process Wnδ by

Wnδ(r) =
1

σ
√

n
y[nr]

for r ≥ 0. Under Assumption 2.1 and the alternative of local-to-unity (8), we have Wnδ →d

Wδ uniformly in D(R), where D(R) is defined as in the proof of Theorem 2.1. This is well
known. If we define τδ(c) by

σ2

∫ τδ(c)

0
Wδ(r)

2dr = c (25)

for any fixed constant c > 0, then mn/n →a.s. τδ(c) exactly as in the proof of Theorem 2.1.
Under the alternative of local-to-unity (8), we have

Tmn = −(1/σ̂)

(

mn
∑

t=1

y2
t−1

)1/2
δ

n
+ (1/σ̂)

(

mn
∑

t=1

y2
t−1

)−1/2 mn
∑

t=1

yt−1ut

= −
(

∫ mn/n

0
Wnδ(r)

2dr

)1/2

δ +

(

∫ mn/n

0
Wnδ(r)

2dr

)−1/2
∫ mn/n

0
Wnδ(r) dWn(r)

= −
(

∫ τδ(c)

0
Wδ(r)

2dr

)1/2

δ +

(

∫ τδ(c)

0
Wδ(r)

2dr

)−1/2
∫ τδ(c)

0
Wδ(r) dW (r) + op(1) (26)

as n → ∞. We now consider the DDS Brownian motion

Vδ(s) = σ

∫ τδ(s)

0
Wδ(r) dW (r)

of the continuous martingale

Mδ(s) = σ

∫ s

0
Wδ(r) dW (r),

from which the stated result follows immediately, due to (25) and (26). �



14

Proof of Corollary 3.1 The proof is entirely analogous to those of Theorems 2.1 and
2.2. The details are therefore omitted. �

Proof of Corollary 3.2 We first consider the Phillips test. We define

Wn(r) =
1

ω
√

n

[nr]
∑

t=1

ut,

and assume Wn →a.s. W similarly as in the proof of Theorem 2.1. Moreover, let the stopping
time τ(c) be defined as

ω2

∫ τ(c)

0
W (r)2dr = c

for any fixed constant c > 0. Under the null hypothesis of unit root (2), we have

T a
mn

= (1/ω̂)

(

1

n2

mn
∑

t=1

y2
t−1

)−1/2 [

1

n

mn
∑

t=1

yt−1ut −
1

2

(

ω̂2 − σ̂2
)

]

=

(

∫ mn/n

0
Wn(r)2dr

)−1/2
∫ mn/n

0
Wn(r) dWn(r) + op(1)

=

(

∫ τ(c)

0
W (r)2dr

)−1/2
∫ τ(c)

0
W (r) dW (r) + op(1)

as n → ∞. The stated result now follows exactly as in the proof of Theorem 2.1.
Under the alternative of local-to-unity (8), we define

Wnδ(r) =
1

ω
√

n
y[nr]

and let Wnδ →a.s. W as in the proof of Theorem 2.2. Moreover, define the stopping time
τδ(c) by

ω2

∫ τδ(c)

0
Wδ(r)

2dr = c.

Then it follows that

T a
mn

= −(1/ω̂)

(

mn
∑

t=1

y2
t−1

)1/2
δ

n
+ (1/ω̂)

(

1

n2

mn
∑

t=1

y2
t−1

)−1/2 [

1

n

mn
∑

t=1

yt−1ut −
1

2

(

ω̂2 − σ̂2
)

]

= −
(

∫ mn/n

0
Wnδ(r)

2dr

)1/2

δ +

(

∫ mn/n

0
Wnδ(r)

2dr

)−1/2
∫ mn/n

0
Wnδ(r) dWn(r) + op(1)

= −
(

∫ τδ(c)

0
Wδ(r)

2dr

)1/2

δ +

(

∫ τδ(c)

0
Wδ(r)

2dr

)−1/2
∫ τδ(c)

0
Wδ(r) dW (r) + op(1)
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as n → ∞. The rest of the proof is exactly identical to the proof of Theorem 2.2. This
completes the proof for the Phillips test.

The proof of the stated result for the augmented Dickey-Fuller statistic T b
mn

is virtually
identical, given the asymptotic theories provided by Chang and Park (2002). The details
are therefore omitted to save the space. �
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