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Abstract

When n agents decide to pool their private, decreasing returns tech-

nologies, single-path methods are a natural way to share joint output be-

cause of their strong incentives properties (Friedman, 2002). They are

a non-anonymous generalization of the serial rule (Moulin and Shenker,

1992) sharing a production function along a prespeci�ed path. We show

that only one of these methods satis�es voluntary participation; its gen-

erating path is entirely determined by the n production functions. This

yields a bijection between single-path methods and distributions of prop-

erty rights on a single technology. Also, we show that these methods are

characterized by their incentives properties in the 2-agent case, but not

for n � 3.

Keywords: Autarky, incentive compatibility, joint production, serial

rule, technology pooling.

JEL classi�cation numbers: C72, D62, D71.
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1 Introduction

Several producers of a common private good decide to pool their private pro-

duction possibilities. In addition to technological contributions, each producer

makes input contributions to the cooperative. We assume that input is trans-

ferable across technologies. Two classical questions are: how to jointly utilize

their private technologies and how to share the proceeds of their cooperation

(see Israelsen [8], Sen [14], Weitzman [22])?

In a stylized version of the problem, each agent makes her privately owned

machine (her technology) available to all the group-members and can supply

labor (the input) to any machine. Practical examples include farmers pooling

their land in a cooperative; here, land is the technology and input can be labor

or seeds to be planted. Examples of such cooperatives can also be found in

the �shing sector (Townsend [21]) and in the plywood industry (Craig and Pen-

cavel [3]). A similar situation arises whenever a group of experts (e.g. lawyers,

physicians, �nancial advisors, car salesmen, etc.) who can rank their clients in

decreasing order of productivity decide to engage in a partnership; each agent�s

clientele then amounts to a decreasing-returns technology. By pooling their

clienteles, the agents can reallocate their time or resources (the input) across

the total pool of clients.

The �rst requirement is that production possibilities and input contribu-

tions be pooled e¢ ciently. When returns to scale vary, there is typically a

unique e¢ cient way to reallocate a given amount of input across the various

technologies.1 Thus, the autarkic use of the production possibilities, where

agent i only supplies input to her own technology, can be Pareto-improved. The

aggregate production function (of the individual technologies) summarizes these

production opportunities.

We assume that the individual technologies are known to the planner and ex-

hibit decreasing returns to scale. Information about the preferences of the agents

is private, potentially leaving room for misrepresentation. We design a method

to share the total output between the n agents according to their (technological

and input) contributions while insisting on two requirements: one strategic, the

other normative. First, we require that the agents�incentives to contribute in-

put be unambiguous; by incentive compatibility we mean Nash-implementability

with unique equilibrium2 . We also demand voluntary participation, i.e., every
1For instance, if machine 1 is always more productive than the others, productive e¢ ciency

requires that the (n� 1) other agents work on machine 1 instead of their own.
2 In this model the corresponding direct revelation mechanism is then group-strategyproof;
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agent should be at least as well o¤ under the pooling method as by reverting to

her own technology; we refer to this condition as autarkic individual rationality

(a term introduced by Saijo [12] in the public good context).

The contribution of this paper is twofold. We �rst examine the situation

where a single production function is to be shared when no property rights are

assigned. The serial rule (Moulin and Shenker, [11]) treats all agents equally

and hence is one interpretation of equal rights on the technology. Friedman

([5]) gives a non-anonymous generalization of the serial rule which shares the

production function, F , along a predetermined path in the input space of the

agents, �. The corresponding �single-path method� works as follows3 . Each

agent i chooses her level of input, xi. The resulting total output level, F (
P

i xi),

is shared incrementally. Output from the �rst unit of labor supply, F (1), is

shared in proportion to (�1(1); �2(1); :::; �n(1)), which can be interpreted as a

�labor responsibility� vector; agent i is �responsible� for the fraction �i(1) of

the �rst unit of society�s labor, and is rewarded accordingly.

Output from the second unit of labor, F (2)�F (1), is then shared in propor-
tion to each �i(2)� �i(1), the increment of labor �demanded�from each agent

i. We continue allocating output according to the direction of the path, �0, until

�i(t) = xi for some i; i.e. until the amount of labor �demanded�from agent i

equals the amount she chose to supply. Agent i then leaves the procedure with

her reward and the remaining agents continue to share output in proportion to

the �j�s. And so on.

Clearly, agent i�s reward depends not only on xi but also on the labor contri-

butions of other agents. We illustrate the induced game on a 3-person example,

from the point of view of player 1. Suppose � is the straight line from the origin

with direction �!w =
�
1
6 ;

1
3 ;

1
2

�
, such that �(t) = t�!w . Because w1 = 1

6 , agent

1 is entitled to �one sixth of F� in the sense that she is guaranteed 1
6F (6x1)

units of output. She will receive exactly that amount unless another agent, say

agent 3, leaves the procedure �rst (which happens if and only if x3 < 3x1 and

2x3 < 3x2). At the point where agent 3 is served, agent 1 has already provided
x3
3 units of labor and agent 2 has supplied 2x3

3 units
�
= w2

w3
x3

�
; agent 1 has

received 1
6F (2x3), one sixth of total output.

The remainder of the technology, �F = F (2x3 + �) � F (2x3), is then shared

between the remaining agents 1 and 2 in proportion to (w1; w2): agent 1 is

entitled to �one third of �F�
�

w1
w1+w2

= 1
3

�
in addition to the output she has

see below for a discussion of other, weaker interpretations of incentive compatibility.
3Friedman uses the term ��xed-path methods�.
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already secured: 16F (2x3) +
1
3
�F
�
3
�
x1 � x3

3

��
. The concavity of F ensures that

this reward is better than getting �one sixth of F�throughout. Finally, if agent

2 exits the procedure before agent 1 (i.e. if x2 < 2x1), agent 1 receives the full

remainder of F from that point on, F (x1+x2+x3)�F
�
x3 +

3
2x2

�
, in addition

to the output she has already secured.

Our �rst result is a direct generalization of Moulin and Shenker�s character-

ization of the serial rule in the two-person case (Theorem 2). They show that

the serial rule is the only anonymous and incentive compatible sharing rule.

By contrast, we drop anonymity and instead merely require that an agent con-

tributing no input be not rewarded (our zero output for zero input condition,

ZOZI ). While their result holds in the general case, ours does not extend to

more than two agents (Theorem 2).

Our second main result establishes a close relationship between the problem

of sharing a single technology and that of technology pooling for any number of

agents. Technology pooling under autarkic individual rationality and incentive

compatibility leads to a unique single-path method (Theorem 3). Its path is

completely determined by the pro�le of production functions and the require-

ment to guarantee each agent her stand-alone utility level. The intuition is

fairly simple and easily illustrated on the example above. Suppose three agents

decide to pool production functions such that f1(t) = 1
2f2(2t) =

1
3f3(3t). Then,

the labor responsibilities must be proportional to (1,2,3) at all levels t because

f 01(t) = f 02(2t) = f 03(3t): Hence, the resulting path is the line borne by these

weights, and F is the function determined by F 0(6t) = f 01(t) = f 02(2t) = f 03(3t).

The paper is organized as follows. The next section relates our work to the

existing literature. Section 3 sets up the single technology model and de�nes

the class of single-path methods. Section 4 discusses the incentives properties of

these methods. Section 5 justi�es the use of single-path methods as compelling

solutions to the issue of technology pooling and recommends a unique solution.

In Section 6 we make the comment that if technologies were private information,

this solution would be vulnerable to misrepresentations of technologies. Section

7 concludes. Most proofs can be found in the Appendix.

2 Relation to the literature

This work contributes to the large literature exploring the trade-o¤ between e¢ -

ciency and incentive compatibility in the production and distribution of private
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goods.

Our second result (Theorem 3) can be viewed as a follow-up on work by

Friedman ([5],[6]) in the sense that we provide a motivation for single-path

methods that was lacking there.

Next, a series of characterization results (de Frutos, [7], Moulin and Shenker,

[11], and Moulin, [10]) is closely related to our Theorem 2. The �rst statement

of Theorem 2 is a non-anonymous generalization of Moulin and Shenker�s char-

acterization of the serial rule4 . But our second statement suggests that many

rules outside of the class of single-path methods meet our high standards of

incentive compatibility for n � 3; their more complex path structure is similar
to the �path functions�of Sprumont ([20]). This contrasts with Moulin ([10])

who shows in the discrete framework that single-path methods are in fact char-

acterized by a incentive compatibility requirement fairly close to ours. This

discrepancy illustrates a subtle di¤erence between the discrete and continuous

versions of the model and is worthy of future research.

Also, an interesting corollary of Theorems 2 and 3 is the existence of a unique

incentive compatible (in the strongest sense) and (autarkically) individually ra-

tional pooling method in the 2-agent case (Corollary 1). This result is similar in

spirit to Barberà and Jackson�s characterization of strategyproof and individu-

ally rational allocation rules in exchange economies (in [1]). Like our solution,

their ��xed-proportion trading� rules are not �rst-best e¢ cient5 . They also

have a serial �avor as they are essentially an adaptation of Sprumont�s ([19])

uniform rationing rule, where the amount to be rationed depends on the pref-

erence pro�le. This seriality is an oriented one, depending on whether there is

excess supply or excess demand.

Recent related literature on the common production of private goods con-

siders weaker interpretations of incentive compatibility (see, e.g., Corchón and

Puy [2], Shin and Suh [17]). For instance, Corchón and Puy establish that any

continuous sharing rule admits a Pareto-e¢ cient allocation which can be Nash-

implemented. Yet, any game implementing such an outcome must have several,

non-welfare-equivalent Nash equilibria at some pro�les. Here we insist on the

uniqueness of the Nash equilibrium, a much more demanding requirement than

regular Nash-implementability.

4The question remains open whether de Frutos�result can be generalized in the same way.
5Strategyproofness and e¢ ciency are incompatible with individual rationality in exchange

and production economies (see, respectively, Serizawa [15] and Leroux [9])
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3 The single technology model

Let N = f1; :::; ng be the set of agents. Let F : R+ ! R+ be a production

function which is strictly increasing, strictly concave such that F (0) = 0. We

denote by F the class of such functions. If in addition F is continuously dif-

ferentiable, we write F 2 Fc. Each agent i provides a non-negative amount
xi of input to the common technology, and receive a non-negative quantity yi
of output such that

P
i yi = F (

P
i xi). We write x = (x1; :::; xn) and for any

i 2 N , (x0i; x�i) is the vector of inputs where the ith entry of x has been re-

placed by x0i 2 R+. A bundle is an element zi = (xi; yi) 2 R+ � R; we de�ne
an allocation, z, to be a list of n bundles, one for each agent. We denote by

ZF =
n
z 2 (R+ � R)N j

P
i yi � F (

P
i xi)

o
the set of feasible allocations un-

der F .

Each agent i can supply up to Mi units of input (with Mi possibly very

large). Her preferences over bundles are de�ned on R+�R; they are continuous,
convex, strictly increasing in yi, strictly decreasing in xi and representable by a

utility function ui. While all our results are purely ordinal, we will use utility

representations rather than the more cumbersome binary relation notation. We

adopt the convention ui(xi; yi) = �1 if xi > Mi. We denote by U the class

of preferences. A preference pro�le (or utility pro�le) is a list of n preferences,

u = (u1; :::; un) 2 UN , one per agent. For any j 2 N , we will sometimes abuse
notations and write u = (uj ; u�j).

De�nition 1 An F -sharing method (or F -sharing rule) is a mapping

� : RN+ ! RN+
x 7! (�1(x); :::; �2(x)) s.t.

P
i2N �i(x) = F

�P
i2N xi

�
that satis�es the follwing two properties:

� > Monotonicity: @�i
@xi

> 0,

� > Zero output for zero input (ZOZI): 8x�i 2 RNnfig+ �i(0; x�i) = 0.

We denote by SF the class of F -sharing rules.

If in addition F 2 Fc and � satis�es the following smoothness property, we
write � 2 ScF :
� > Smoothness: � is continuously di¤erentiable on Rn+.
A few comments are in order. Monotonicity is a normatively appealing

requirement. It states that an agent should receive strictly more output as her

input contribution increases: it gives agents an incentive to supply input. Also,
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from the point of view of fairness, it implies that every agent will receive a

positive fraction of the output resulting from her input contribution.

The normative aspect of the ZOZI property is twofold. The more obvious

one is that an agent must provide some input in order to be rewarded. The

other consequence is that an agent can always guarantee her utility level to be

no less than ui(0; 0) by choosing to supply nothing to the system (xi = 0).

Finally, we demand that sharing methods be smooth. This requirement is a

technical one. One of our proofs (Theorem 2) relies heavily on this assumption

and, while we were not able to prove our results without imposing smoothness,

we do not know whether it is a necessary condition. The same remark applies

to results in Moulin and Shenker [11] and in Shenker [16].

For any preference pro�le u 2 UN and any F -sharing method � 2 SF , we
denote by G(�;u) the game in which each agent�s strategy space is R+ and agent
i�s payo¤ is ui(xi; �i(x)) when xj is the strategy played by agent j 2 N .
We now de�ne what we mean by "sharing a technology along a path". A

path is a mapping
� : R+ ! RN+

t 7! (�1(t); :::; �n(t))

such that for all i 2 N the following two properties hold:

(a) �i is non-decreasing and di¤erentiable on R+,

(b)
P

j �j(t) = t for any t 2
h
0;
P

jMj

i
and �i(t) =Mi for any t �

P
jMj .

We denote by P the class of paths. If a path � also satis�es the following

condition (c) for every i, we write � 2 Pc.

(c) �0i(t) = 0 only if �i(t) = 0 or �i(t) =Mi.

Fix � 2 P. For any i 2 N , de�ne the mapping �i as follows:

�i : [0;Mi]! R+
xi 7! min ftj�i(t) � xig.

(1)

Because �i jumps wherever �i is �at on a non-degenerate interval, it is contin-

uous on ]0;Mi] if and only if � 2 Pc.
Given a path � 2 P, we de�ne the single-path method generated by �, de-

noted ��, as follows. Let x 2 �i[0;Mi], without loss we relabel the agents

such that �1(x1) � �2(x2) � ::: � �n(xn); i.e. such that the coordinates of x
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are met along � in the natural order. Let t � 0 be such that �(t) � x, i.e.

such that no agent�s supply level has yet been met. �� recommends that the

marginal product F 0(t) be split between the agents according to the vector of

proportions
�
�01(t); :::; �

0
n(t)

�
(recall that

P
i �

0
i(t) = 1). Once the input supply

of the �rst agent is met along the path (�i(t) � xi), we freeze her output share

and continue the sharing procedure with the remaining �active� agents. The

subprocedure shares the remainder of F along the projection of � on the sub-

space
�
s 2 Rn+js1 = x1

	
until agent 2�s supply is met. And so on. We next give

a formal de�nition.

De�nition 2 The single-path method generated by �, denoted ��, is the F -
sharing rule de�ned by:

��1 (x) =
R �1(x1)
0

F 0(t)d�1(t)

��2 (x) =
R �1(x1)
0

F 0(t)d�2(t) +
R �2(x2)
�1(x1)

F 0
�
x1 +

P
i�2 �i(t)

�
d�2(t)

...

��n(x) =
R �1(x1)
0

F 0(t)d�n(t) + :::+
R �n(xn)
�n�1(xn�1)

F 0
�Pn�1

i=1 xi + �n(t)
�
d�n(t)

(2)

for any x 2 �i[0;Mi].

A more compact notation is used by Friedman ([5], [6]): for any i 2 N ,

��i (x) =

Z 1

0

F 0 (j�(t) ^ xj) d(�i(t) ^ xi)

where j � j returns the sum of the coordinates of a vector and ^ is the compo-
nentwise minimum of two vectors.

It follows easily from the monotonicity of F and the �j�s that �
� is monotonic

(@�
�
i

@xi
> 0 for all i). Moreover, one can check (or see Friedman [5], Lemma 1) that

��i is strictly concave in xi. Because each function �j takes on the value zero at

zero, the sharing rule �� satis�es the ZOZI condition. Hence, �� 2 SF . Finally,
by inspecting formula (2) at the points x such that �i(xi) = �j(xj) and those

where xi = 0, one can check that �
� 2 ScF if F 2 Fc and � 2 Pc. However, if

� =2 PnPc, �� is not smooth.
When no confusion is possible, we will use the term "�-rule" instead of the

longer "single-path method". We next illustrate the de�nition of �-rules with

two examples:

Example 1: Incremental sharing. (n = 2) This method gives agent 1 full

9



access to F ; once agent 1 is served, agent 2 can use F (x1 + �) at will. The
corresponding path is

�I : t 7!
(
(t; 0) if t �M1 < +1
(M1; t�M1) if M1 � t �M1 +M2

i.e., �I is a parametrization of the horizontal axis up to x1 = M1. Output is

awarded as follows: (
��

I

1 (x) = F (x1)

��
I

2 (x) = F (x1 + x2)� F (x1)

Example 2: Weighted serial rule. AssumeM1 =M2 = +16 . Let �1; :::; �n >

0 and consider the path �S : t 7! (�1t; :::; �nt). Let x 2 RN+ and assume without
loss that x1

�1
� x2

�2
� ::: � xn

�n
. Expression (2) then yields:

��
S

i (x) =
�i
�i
F (xi)�

i�1X
k=1

�i�k
�k�k+1

F (xk) for all i = 1; :::; n,

where �k =
Pn

j=k �j , and x
k = x1 + ::: + xk�1 +

�k

�k
xk. As a particular case,

the usual serial rule assigns identical weight to each agent.

4 Incentives properties of single-path methods

The family of �-rules was introduced in Friedman [5] as a non-anonymous gen-

eralization of the serial rule retaining the latter�s strong incentive properties.

Theorem 1 Let � be a �-rule, the following statements are true:
i) G(�;u) has a unique Nash equilibrium,

ii) every Nash equilibrium of G(�;u) is strong.

Proof. It is shown in Friedman [5] that for any production function F 2 F ,
any path � 2 P and any preference pro�le u 2 UN , the game induced by ��

satis�es a more demanding equilibrium property called O-solvability.

It follows from a standard result of the implementation literature (see Theo-

rem 7.2.3 in Dasgupta et al. [4]) that the associated direct revelation mechanism

is group-strategyproof.

6Although M1 and M2 were de�ned as real numbers, the de�nition of the weighted serial
rule readily extends to the case where they are in�nite.
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Moulin and Shenker ([11]) established that the serial rule could be char-

acterized by the equilibrium properties of Theorem 1 along with Anonymity

(xi = xj =) �i(x) = �j(x)). Concerning the natural question of whether the

former properties alone characterize the class of smooth single-path methods,

the result turns out to be true for the 2-agent case, but not for n > 2.

Theorem 2 I. Assume n = 2 and F 2 Fc. The following statements are

equivalent for any � 2 ScF :
i) G(�;u) has a unique Nash equilibrium,

ii) every Nash equilibrium of G(�;u) is strong,

iii) � is a single-path method: 9� 2 Pc s.t. � � ��.

II. Statement I does not hold if n > 2.

Proof. The proof of statement I can be found in Appendix A.1. The method-
ology of the proof is related to that of Theorem 2 in Moulin and Shenker [11]

and makes use of the acyclicity of strategyproof sharing rules (see Satterthwaite

and Sonnenschein [13])

Proof of II. Assume n = 3, F 2 Fc and let � 2 Pc. Consider an F -sharing
rule � that coincides with �� until one of the agents is served, say agent i,

but then shares the remainder of F between the remaining two agents along

a strictly increasing subpath,  (i; xi), depending on the identity of the �rst-

served agent and her input supply level. Note that  (i; xi) may di¤er from the

projection of � onto the plane
�
s 2 Rn+jsi = xi

	
for some pair (i; xi). It is clear

that agent i has the same unique dominant strategy under � and under ��. A

straightforward application of Theorem 1 yields that the remaining agents also

have a unique dominant strategy regardless of  . Hence, � satis�es the provisos

i) and ii) of Theorem 2; also, � 2 ScF (left to the reader). Yet, � is not a single-
path method. Note that when n = 2, the type of methods just described cannot

be distinguished from single-path methods.

Remark 1 In the discrete version of our model, Moulin ([10]) establishes that
"incremental sharing rules" (the discrete equivalent of single-path methods) are

characterized by similar strategic properties for any number of agents. Inter-

estingly, the continuous framework allows for a much richer class of incentive

compatible rules.

We show on a straighforward example why some of these more complex

rules do not meet our incentive compatibility requirement in the discrete setting.
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Consider a technology given by the discrete increments @F : 4; 2; 1; 0 (i.e. F (1) =

4, F (2) = 4 + 2,...) to be shared between 3 agents, each of whom can supply

0 or 1 unit of input. Suppose that the path structure used to share F yields

the following priority orderings: 1! 2 ! 3 if x1 = 1 and 1! 3 ! 2 if x1 = 0.

If preferences are such that agent 1 is indi¤erent between bundles (1,4) and

(0,0), and if agent 2 prefers (1,2) to (0,0), then agent 1 can help out agent 3 by

deciding not to work, thus giving her access to the bundle (1,2) instead of (1,1).

The above rule is immune to coalitional deviations in a weak sense: at least

one agent in the deviating coalition does not strictly bene�t (agent 1). Yet, not

every Nash equilibrium of the supply game is strong due to agent 1�s indi¤erence

between two bundles. Such indi¤erences are ruled out by the speci�cations of

the continuous model.

The path structures described in the proof of statement II are what Spru-

mont calls "path functions" in [20], though his use of these path functions

is ultimately quite di¤erent from ours. A natural question is to ask whether

sharing rules generated by these path structures exhaust the class of incentive

compatible methods (in the sense of provisos i) and ii)).

5 Pooling private technologies

Consider a situation where each agent privately owns a technology, fi 2 F ,
which she decides to contribute to a cooperative along with an amount of input

xi 2 [0;Mi]. One can think of the individual technologies as being machines and

input being labor time. Labor is transferable, meaning that agents are able to

work on machines other than their own. The manager of the cooperative (the

planner) allocates the labor time of the workers across the various machines;

e.g., if x1 = 3, agent 1 may be asked to spend, say, two units of input on

machine 1 and one unit on machine 4. The resulting total output is distributed

between the agents according to their labor (the xi�s) and technological (the

fi�s) contributions. Technologies are known to the planner, but the preferences

of the agents are private information.

De�ne F � to be the aggregated production function resulting from the e¢ -
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cient usage of the combined individual technologies:

8t 2 R+ F �(t) = max
(x1; :::; xn) 2 RN+P

i xi = t

nX
i=1

fi(xi). (3)

Notice that because the fi�s belong to F , F � must also belong to F . Also, if all
the fi�s belong to Fc, so does F � (the reader can check that the converse is not
true). We call f = (f1; :::; fn) 2 FN the technology pro�le.

Thus, the pooling framework is tantamount to the previous context of shar-

ing a single technology. Here, however, autarkic individual rationality is a con-

cern: no agent should be better o¤ by using her private technology on her own.

This voluntary participation requirement will end up determining uniquely the

single-path method to use.

De�nition 3 An f -pooling method is an F �-sharing rule � such that for any
preference pro�le u and any Nash equilibrium x� of G(�;u) the following holds:

ui (x
�
i ; �i(x

�)) � sai(ui) � max fui(xi; yi)jyi � fi(xi)g 8i 2 N . (4)

We say that � pools f and we denote by Sf the class of f-pooling methods. If
moreover � is smooth, i.e. if � 2 ScF� , we write � 2 Scf .

De�ne by �� the mapping assigning to each t � 0 the unique solution vector
of (3); notice that �� is a path. The following theorem motivates the use of

single-path methods.

Theorem 3 ��
�
is the unique single-path method which pools f .

The following important corollary follows immediately from Theorems 2 and

3.

Corollary 1 Assume n = 2 and f 2 (Fc)N . ��
�
is the unique smooth and

incentive compatible (in the sense of provisos i) and ii)) f-pooling method.

The following comments concerning �� will prove useful. Because �� is the

unique solution of expression (3), it follows that

F �0(t) = f 0i(�
�
i (t)) (5)

13



whenever ��i (t) > 0 (technology i is in use). I.e., �
�
i (t) is the level of input that

can be used on technology i before its productivity falls below F �0(t). Hence,

for a given t > 0, the larger ��i (t), the more productive technology i is.

We now give some intuition as to why ��
�
not only satis�es AIR but also

improves upon autarky. As long as all agents are active (t � minj ��j (xj)), ��
�

shares the marginal product F �0(t) according to the vector of ratios
�
��01 (t); :::; �

�0
n (t)

�
.

Hence, assuming for clarity that ��1(x1) is the smallest of the �
�
j (xj)�s, then

��
�

1 (x) =

Z ��1(x1)

0

F �0(t)��0(t)dt = f1(x1)

and agent 1 receives her stand-alone level of output. Now, for ��1(x1) � t �
minj 6=1 �

�
j (xj), �

�� shares the marginal output F �0(t) between agents 2,...,n ac-

cording to the ratios
�
��02 (t); :::; �

�0
n (t)

�
� 1P

j>1 �
�0
j (t)

. Clearly, for any i 6= 1,
��0i (t)P
j>1 �

�0
j (t)

� ��0i (t) and agent i receives no less (typically more) than her stand-

alone share of output. And so on. Improvement upon autarky obtains by

integration. In words, when an agent leaves the procedure what is left of her

technology is shared between the remaining agents in proportion to their tech-

nological contributions to F �. The formal proof of Theorem 3 can be found in

Appendix A.2.

Remark 2 Among the rules generated by path stuctures as in Sprumont [20],
all those (and only those) whose main path is �� are f-pooling methods, but their

subpaths may be arbitrary. Thus, these rules may lack an internal consistency

of sorts, unlike ��
�
.

Theorem 3 has an interesting converse interpretation. Given a production

function F �; to any path �� corresponds a unique decomposition of F � into a

"virtual" production pro�le, f , such that ��
�
is the unique single-path method

pooling f .

Theorem 4 For any F � 2 F and any �� 2 P, there exists a unique technology
pro�le f decomposing F � in the sense of (3) such that ��

�
pools f . For any

i 2 N , fi is given by
fi(xi) =

Z xi

0

F �0(��i (t))dt

for all 0 � xi �Mi; where �
�
i is de�ned relative to �

�
i as in expression (1).

Theorems 3 and 4 together establish a striking bijection between the family

of �-rules and the possible distribution of property rights on F �.
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Proof. Immediate from Theorem 3. Let F � 2 F , �� 2 P and f 2 FN

decomposing F � in the sense of (3) such that ��
�
pools f . For any i 2 N ,

expression (5) holds almost everywhere. I.e.,

f 0i(t) = F �0(��i (t)) almost everywhere.

The result follows from integrating between 0 and xi (recall fi(0) = 0).

To illustrate Theorem 4, we provide the virtual production pro�les corre-

sponding to examples of Section 3.

Example 1. ��
I

gives priority to agent 1. It is equivalent to pooling the

production pro�le where agent 2�s technology is useless compared to that of

agent 1 on [0,M1 +M2].

Example 2. Agents contribute to F � in proportion to the �i�s: fi(t) =

�iF
�( t�i ).

6 Manipulation via misrepresentation of tech-

nology

Throughout the paper we assumed the private technologies to be known to

the planner while the possibility of strategic manipulation stemmed only from

private information about the agents�preferences. We now examine the case

where agents can also misrepresent their own production possibilities.7 We im-

pose the following feasibility condition on the reports of the agents�production

possibilities: each agent must be �solvent�(see Shin and Suh [18]); i.e., no agent

can exaggerate her production possibilities, or else such a lie would easily be

revealed by asking the agent to produce more than she actually can. We show

with a 3-person example that ��
�
is vulnerable to such misrepresentation.

For ease of exposition we will assume that agents have linear preferences

with �1 = 2, �2 = 1 and �3 < 1 the respective slope of their indi¤erence curves

in the (x; y)-plane. Because �1 > �2 > �3, agent 1 will leave the procedure �rst,

followed by agent 2 and, later, by agent 3. Suppose the production function

left over by agent 1 when leaving the procedure is �f1(t) = 2t � t2

2 . Also, let

f2(t) = f3(t) = 3t � t2

2 . The example is better visualized in the marginal-

product space: write �h1(�) = 2� � for � 2 [0; 2] and h2(�) = h3(�) = 3� � for
7 In a di¤erent setting, Shin and Suh[18] allowed for misrepresentations of technologies.
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� 2 [0; 3].8 Recall that once agent 1 has left (i.e. for � < �1 = 2), �
�� shares �h1

according to the ratios of h2 and h3. Hence, agent 2�s opportunity set is de�ned

by
~h2(�) = h2(�) +

h2
h2 + h3

(�)� �h1(�) for � < 2.

The reader can check that agent 2�s bundle is then x�2 =
5
2 and y

�
2 =

19
4 .

If agent 2 reports

g2(�) =

8><>:
3-� if � 2 [0; 1]
5��
2 if � 2 [1; 2]

3��
2 if � 2 (2; 3]

instead of h2, her bundle is now x02 =
5
2 and y

0
2 =

20
27 ln

�
5
8

�
+ 55

9 � 5:763 > y�2

(left to the reader). Clearly, (x02; y
0
2) is preferred to (x

�
2; y

�
2).

Note that this example can easily be modi�ed so that preferences (resp.

production functions) be made strictly convex (resp. strictly concave).

Remark 3 Another type of misreport is one where agents downplay their mar-
ginal product, f 0i , instead of fi. It is clear from the construction of �� that a

misreport of that sort cannot be bene�cial.

7 Concluding comment

This work contributes to the large literature on the sharing of a single technology

between a �nite number of agents. This topic was mostly examined in the

cost sharing context. Here, we considered the surplus sharing representation as

it seemed more relevant to the question of technology pooling. Yet, one can

easily transpose our results to the context of cost sharing: if ci and fi are dual

representations of the same technology (ci(yi) = xi () yi = fi(xi)), it will

also be true of the corresponding aggregate functions (C�(y) = x () y =

F �(x)). The optimal path, ��, that emerged from this paper has a natural

cost-sharing counterpart,  �, given by

 �i (y) = fi(�
�
i (x)) where x = C�(y).

8These functions are obtained by the transformation hi(�) =
�
f 0i
��1

(�).
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A Proofs

A.1 Proof of Theorem 2

Notation: We say that a matrix [�i;j ] has a cycle (i1; i2; i3; :::; iL) if the ik�s form

a non-repeating sequence with �iL;i1 6= 0 and �ik;ik+1 6= 0 for all 1 � k � L� 1.
A matrix which has no cycles of length greater than 1 is called acyclic. A square

acyclic matrix must have an element j such that �i;j = 0 for all i 6= j; we call

such an element a tail element. Fix F 2 Fc, we say that a mechanism � 2 ScF
is acyclic at a point x 2 RN+ if the Jacobian matrix of �, @�i@xj

, is acyclic at that

point. Notice that if element j is a tail element of the Jacobian matrix of � at

a point x, then
@�j
@xj

(x) = F 0(jxj). (6)

We are given an F -sharing rule � in ScF satisfying one of the properties (i)
or (ii) in the statement of Theorem 2. We will show that � must be a �-rule.

We start the proof by restating two lemmas from the proof of Theorem 2 in

[11]. Their proofs still hold in our setting, and we will only state these lemmas.

Lemma 1 (Lemma 5 in [11]) n 2 N. Consider � 2 ScF . If every Nash equilib-
rium is a strong equilibrium, then � is acyclic at all x 2 RN+ .

Lemma 2 (Lemma 6 in [11]) n 2 N. Consider � 2 ScF . If there is at most
one Nash equilibrium of the game G(F; �;u) for every pro�le u 2 UN , then � is
acyclic at all x 2 RN+ .

The heart of the proof consists in establishing the following lemma.

Lemma 3 n = 2. Consider an F -sharing rule � 2 ScF . Such a rule is a �-rule
if and only if the matrix @�i

@xj
is acyclic for all x 2 R2+.

The �only if�part follows directly from the de�ning formula of �-rules, where

it is clear that @�i
@xj
(x) = 0 if and only if �j(xj) � �i(xi) and i 6= j.

Now to the proof of the �if�part. For notational simplicity, we de�ne SW

(resp. NE) to be the subset of R2+ where element 1 (resp. element 2) is a

tail element of the Jacobian matrix of �: @�2
@x1

= 0 (resp. @�1
@x2

= 0). We write

D = SW \ NE, D is the subset of R2+ on which the matrix
@�i
@xj

is diagonal.

We de�ne also SW � = SWnD and NE� = NEnD; by continuity of the partial
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derivatives of � and acyclicity, SW � and NE� are open in R2+ while SW and

NE are closed9 .

The rest of the proof is divided into six steps. We show that the set D is

the image of a path � 2 Pc and deduce that � must be the �xed path method
generated by �. The statements of most steps will consist of two symmetrical

statements (one per agent), we shall only establish one of them as the other

follows by symmetry.

Step 1 (i) R+ � f0g � SW and f0g � R+ � NE.

(ii) D is nonempty and closed.

(iii) Let a = (a1; a2) 2 R2+, then

a 2 SW � =) (a1 + �; a2) 2 SW � for any � � 0, and

a 2 NE� =) (a1; a2 + �) 2 NE� for any � � 0.

(i). From ZOZI: �2(x1; 0) = 0 for any x1 � 0, therefore @�2
@x1
(x1; 0) = 0

for any x1 � 0. (ii). The non-emptiness of D follows from continuity of the

partial derivatives and acyclicity: any continuous curve joining the vertical axis

(� NE) to the horizontal axis (� SW ) must contain a point in D. Also, D is

closed as the intersection of two closed sets.

(iii). Let a = (a1; a2) 2 SW � and assume there exists �a1 > a1 such

that (�a1; a2) 2 NE. Because SW � is open, let ]a�1 ; a
+
1 [ be the largest inter-

val containing a1 on which (x1; a2) 2 SW �; note that it is non-empty. Because

(0; a2) 2 NE (from (i)) and (�a1; a2) 2 NE, it follows that 0 � a�1 < a+1 � �a1.
Also, by continuity of the partials of �, (a�1 ; a2) 2 D and (a+1 ; a2) 2 D.

SW � being open, there exists a neighborhood of
�
(x1; a2)jx1 2]a�1 ; a+1 [

	
which is included in SW �. On this neighborhood, @�2

@x1
= 0; i.e., �2 is in-

dependent of x1. Therefore, the expression
�2(x1;x2+h)��2(x1;x2)

h is also inde-

pendent of x1 on this neighborhood; therefore
@�2
@x2

is independent of x1 on�
(x1; a2)jx1 2]a�1 ; a+1 [

	
. Hence @�2

@x2
(a�1 ; a2) =

@�2
@x2
(a+1 ; a2). Because j = 2 is a

tail element of the Jacobian matrix of � at (a�1 ; a2) and (a
+
1 ; a2), it follows from

(6) that @�2
@x2
(a�1 ; a2) = F 0(a�1 + a2) and

@�2
@x2
(a+1 ; a2) = F 0(a+1 + a2). Hence,

F 0(a�1 + a2) = F 0(a+1 + a2) contradicting the strict concavity of F .

We introduce some terminology. We say that a subset A � R2 is NW-
comprehensive (resp. SE-comprehensive) if R2+ \ (A+ R� � R+) � A (resp.

R2+ \ (A+ R+ � R�) � A).

9Closedness and openness are de�ned in the relative topology on R+.
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Step 2 SW � and SW are SE-comprehensive; NE� andNE are NW-comprehensive.

Let a = (a1; a2) 2 SW � and x = (x1; x2) such that x1 � a1 and x2 � a2. If

(x1; x2) 2 NE�, then we would have (x1; a2) 2 SW � \NE� from the previous

step, which is clearly impossible. Hence x 2 SW . Therefore �2 is independent
of x1 in the region south-east to a. It follows again (see Step 1) that

@�2
@x2

is also

independent of x1 on that domain.

Assume there exists b = (b1; b2) 2 NE with b1 � a1 and b2 � a2. The case

b2 = a2 has been covered in the previous step, so we will assume b2 < a2 from

now on. Assume b1 > a1. From the preceding paragraph, b 2 SW , therefore b 2
D. However, note that it follows from Step 1, (iii), that (x1; b2) 2 NE for any

x1 2 [a1; b1]; hence, (x1; b2) 2 NE\SW = D for any x1 2 [a1; b1]. In particular,
(a1; b2) 2 D. Therefore, from the previous paragraph: @�2

@x2
(a1; b2) =

@�2
@x2
(b1; b2).

By (6), F 0(a1 + b2) = F 0(b1 + b2), contradicting the strict concavity of F . If

b1 = a1, the result follows from the openness of SW �: there exists " > 0 such

that (x1; a2) 2 SW � for any x1 2 [a1�"; a1]. We repeat the previous argument.
We proved that SW � is SE-comprehensive, a direct consequence is the NW-

comprehensiveness of NE. The rest of the claim can be proved symmetrically.

Step 3 For any (a1; a2) 2 D,

a1 = 0 =) (0; x2) 2 D 8x2 2 [0; a2]
a2 = 0 =) (x1; 0) 2 D 8x1 2 [0; a1]

(5.a)

a2 > 0 =) (x1; a2) 2 SW � 8x1 > a1

a1 > 0 =) (a1; x2) 2 NE� 8x2 > a2
(5.b)

a1 > 0 =) (a1; x2) =2 D 8x2 6= a2

a2 > 0 =) (x1; a2) =2 D 8x1 6= a1
(5.c)

(5.a). Assume (0; a2) 2 D and let x2 2 [0; a2]. From Step 1 (i), (0; x2) 2
NE, and from Step 1 (iii) it must be that (0; x2) =2 NE�.
(5.b). Assume a2 > 0 and assume there exists b1 > a1 such that (b1; a2) 2

NE; then by Step 2, (b1; a2) 2 D. It follows from the SE-comprehensiveness

of SW that for all x2 < a2 and all x1 2 [a1; b1], (x1; x2) 2 SW . On that

domain, �2 is independent of x1, therefore
@�2
@x2

is independent of x1 also. It

follows that @�2
@x2
(a1; a2) =

@�2
@x2
(b1; a2), which implies F 0(a1 + a2) = F 0(b1 + a2),

in contradiction with the strict concavity of F .
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(5.c): Assume a1 > 0. We only need to check (a1; x2) =2 D for any x2 < a2 as

the case x2 > a2 is covered by (5.b). Assume there exists b2 2 [0; a2[ such that
(a1; b2) 2 D. Because a1 > 0, applying (5.b) to (a1; b2) yields (a1; a2) 2 NE�,
a contradiction. Therefore (5.c) holds.

Step 4 9i 2 f1; 2g 8xi � 0 9xj � 0 with j 6= i such that (x1; x2) 2 D.

Assume the statement is not true. Then, there exists x1 � 0 such that for any
� � 0, (x1; �) =2 D. From Step 1, (x1; 0) 2 SW , therefore by smoothness and

acyclicity of �, it must be that (x1; �) 2 SW for all � � 0. Similarly, there exists
x2 � 0 such that (�; x2) 2 NE for any � � 0. Hence, (x1; x2) 2 SW \NE = D,

contradicting our assumption.

Without loss of generality, we will assume for the rest of the proof that for

any x1 � 0 there exists x2 � 0 such that (x1; x2) 2 D. From Step 3, x2 is

unique for any x1 > 0.

Step 5 D is the graph of a continuous increasing path of R2+.

De�ne P (x1) = max fx2 2 R+j(x1; x2) 2 Dg for all x1 � 0. It follows from
Step 2 that P is non-decreasing and strictly increasing on P�1(R++). Also, the
graph of the restriction of P to R++ is D\]0;+1[�R+. Because the latter set
is closed in ]0;+1[�R+ (as the intersection of SW and NE), P is continuous

on R++.
De�ne l2 = limx1#0 P (x1); we claim that l2 = P (0). By closedness of D,

(0; l2) 2 D. It follows that l2 � P (0) otherwise the very de�nition of P would

be contradicted. Now, if P (0) > 0, we show that l2 � P (0). If l2 < P (0), by

continuity of P on R++ there exists x1 > 0 such that P (x1) < P (0), contradict-

ing the fact that P is non-decreasing: Hence l2 = P (0) and P is continuous at

zero.

Therefore P is continuous on R+. It follows that

D = f(0; x2)jx2 2 [0; P (0)]g [ f(x1; P (x1)jx1 � 0g .

De�ne the function


 : t 7!
(
(0; t) if t � P (0),

(�; P (�)) s.t. �+ P (�) = t otherwise.

and write �(t) = 
(t) ^ (M1;M2) for all t � 0. By continuity and strict

monotonicity of P , � is a well-de�ned path .
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Step 6 � is the single-path method generated by �.

At any point x = (x1; x2) on D, it follows from the de�nition of D that
@�1
@x1
(x) = @�2

@x2
(x) = F 0(jxj). Thus, for any point x = (x1; x2) 2 D, taking the

integral along � from the origin to x yields:

�i(x) =

Z �i(xi)

0

@�1
@x1

(�(t))d�i(t) =

Z �i(xi)

0

F 0(t)d�i(t).

Now that � is de�ned on D, it can easily be extended to all of [0;M1]� [0;M2]

upon noticing that one agent receives all of the surplus after leaving D: it is the

unique tail element of the Jacobian matrix of � at x. I.e., for any x = (x1; x2) 2
[0;M1]� [0;M2] (and, without loss, we assume �1(x1) � �2(x2))

�1(x) =

Z �1(x1)

0

F 0(t)d�1(t) and �2(x) =

Z �2(x2)

0

F 0(t)d�2(t)+F (x1+x2)�F (�1(x1),

completing the proof of Theorem 2.

A.2 Proof of Theorem 3

Before proving Theorem 3, we present a lemma establishing that under any

�xed path method, ��, any positive level of output, xi, can be guaranteed

at equilibrium by some preference u�i for agent i. Its proof can be found in

Appendix A.3.

Lemma 4 Let � 2 P, i 2 N . For any xi > 0, there exists a preference u�i 2 U
such that the following holds:

8u�i 2 UNni x�i = xi;

where x� denotes the unique Nash equilibrium of G(��;u�i ; u�i).

Now to the proof of Theorem 3. Let � 2 P such that �� pools f . For the

rest of the proof we will write F instead of F � as no confusion is possible.

Fix x 2 �i[0;Mi] such that �
�
i (xi) = ��j (xj) for all i; j 2 N ; i.e. x is a point

on the graph of ��. From Lemma 4, there exists a preference pro�le u 2 UN

such that x is the unique Nash equilibrium of G(��;u). It follows that �� pools

f only if for any i 2 N and any xi > 0 the following holds:Z �i(xi)

0

F 0(t)d�i(t) �
Z xi

0

f 0i(t)dt:
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By (5) and the de�nitions of �i and �
�
i , this transforms intoZ xi

0

F 0(�i(t))dt �
Z xi

0

F 0(��i (t))dt (7)

for all i 2 N and all xi > 0. Let i 2 N and de�ne Hi(xi) =
R xi
0
F 0(�i(t))dt for

any xi � 0; Hi is strictly increasing and strictly concave. Hence,

Hi(xi) � Hi(�i � ��i (xi)) +H 0
i(�i � ��i (xi)) � (xi � �i � ��i (xi))

i.e. Hi(xi) � Hi(�i � ��i (xi)) + F 0(��i (xi)) � (xi � �i � ��i (xi)) (8)

with equality if and only if xi = �i � ��i (xi). It follows from equations (7) and

(8) that

R xi
0
F 0(��i (t))dt �

R �i���i (xi)
0

F 0(�i(t))dt+ F
0(��i (xi)) � (xi � �i � ��i (xi))

()
R xi
0
F 0(��i (t))dt �

R ��i (xi)
0

F 0(t)d�i(t) + F
0(��i (xi)) � (xi � �i � ��i (xi))

()
R xi
0
F 0(��i (t))dt � �

R ��i (xi)
0

�i(t)F
00(t)du+ F 0(��i (xi)) � xi

the last expression is obtained by integrating by parts. Rearranging yields:Z ��i (xi)

0

�i(t)F
00(t)dt � F 0(��i (xi)) � xi �

Z xi

0

F 0(��i (t))dt.

Recall that ��i (xi) = ��j (xj) for all i 2 N ; and write z = ��i (xi) for any i.

Summing up over all i 2 N and using the fact that
P

i �i(t) = t for any t � 0
and

P
i xi =

P
��i (z) = z, we get:

R z
0
tF 00(t)dt � F 0(z) � z �

Pn
i=1

R ��i (z)
0

F 0(��i (t))dt

()
R z
0
tF 00(t)dt � F 0(z) � z �

Pn
i=1

R z
0
F 0(t)d��i (t)

From
P

i �
�
i (t) = t and integrating by parts again, this yields an equality. There-

fore, equation (7) must be an equality for all i 2 N . The choice of j and xj
being arbitrary, it follows that �i(xi) = ��i (xi) for all xi 2 [0;Mi] and for all

i 2 N . That is to say that �i � ��i for all i 2 N , proving the theorem.

Remark 4 In the de�nition of an f-pooling method, we could replace the vol-
untary participation requirement with the following weaker one and Theorem 3

would still hold:

for any pro�le u 2 UN and any Nash equilibrium x� of G(�;u) the following
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holds:

�i(x
�) � fi(x

�
i ) 8i 2 N .

From the strict monotonicity of preferences, this requirement is clearly weaker

than expression (4).

A.3 Proof of Lemma 4

Notation: We �x a production function F 2 F , a path � 2 P and a preference
pro�le u 2 UN . As no confusion may arise, we shall write � instead of ��.
We denote by F 0� (resp. F

0
+) the left (resp. right) derivative of F . Similarly,

@�

@� (resp.
@+

@� ) is the left-derivative (resp. right-derivative) operator. Also, we

write:

(i) �(x1; :::; xn) = (�1(x1); �2(x2); :::; �n(xn)) for any x 2 �i2N [0;Mi],

(ii) (t1; t2; :::; ti�1; ti �(n�i)) is the vector of RN+ with the last (n�i) coordinates
equal to ti,

(iii) for any (t1; :::; tn) 2 RN+ , �(t1; :::; tn) = (�1(t1); �2(t2); :::; �n(tn)) with a

slight abuse of notation.

Let i 2 N and xi > 0. Consider a preference (utility) u�i which is quasi-linear

with respect to yi such that its indi¤erence curves are piecewise linear with a

single kink at (xi; yi) for any yi 2 R. Set the slope of these indi¤erence curves
to be no greater than F 0�(�i(xi)) before xi and no smaller than F

0
+(xi) after xi;

where �before xi�(resp. �after xi�) stands for �at any point of R+�R with �rst
coordinate smaller (resp. greater) than xi�.

We show below that the former quantity is the smallest variation in output

that agent i can obtain via � by deviating in�nitesimally from xi: it corresponds

to the case where she is the �rst one served along the path (i.e., the agent with

smallest �j(xj)). On the other hand, F 0+(xi) is the largest variation in output

obtainable via � at xi by deviating marginally from xi; it corresponds to the

case where she receives all the output up to F (xi) (�j(xj) = 0 for all j 6= i).

Indeed, let x�i 2 RNni+ ; then, from the de�nition of �, and keeping in mind

that j�j returns the sum of the coordinates of a vector and ^ is the componentwise
minimum of two vectors,

@�

@� �i(�; x�i) = F 0_ (j(�; x�i) ^ � (�i(�) � n) j) and @+

@� �i(�; x�i) = F 0+ (j(�; x�i) ^ � (�i(�) � n) j) .
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As the ith component of both vectors x and �(�i(xi) � n) is equal to xi, the
concavity of F yields F 0+ (jx ^ � (�i(xi) � n) j) � F 0+(xi). Moreover, the concavity

of F also yields F 0� (jx ^ � (�i(xi) � n) j) � F 0� (j� (�i(xi) � n) j); notice that this
last term equals F 0�(�i(xi)). It follows from these two facts that:

@�

@�
�i(�; x�i)

����
�=xi

� F 0�(�i(xi)) and
@+

@�
�i(�; x�i)

����
�=xi

� F 0+(xi) .

Hence, for any x�i 2 RNni+ , the slope of �i(�; x�i) at � = xi lies between

F 0�(�i(xi)) and F
0
+(xi). It follows from the strict concavity of �i(�; x�i) that xi

maximizes u�i (�; �i(�; x�i)) on R
Nni
+ for any x�i 2 RNni+ , completing the proof

of the lemma.
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