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Abstract

In a production economy where a single private good is produced via a non-linear concave technology, no direct

mechanism satisfies strategy-proofness and efficiency if the preference domain contains the class of linear

preferences.
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1. Introduction

The trade-off between efficiency and strategy-proofness has been studied in great detail in the case of

the distribution and exchange of private goods. These concepts together lead to decidedly unfair

allocations of resources. Originating from a conjecture in Hurwicz (1972), this result was first proved in

the two-agent case (e.g. Kato and Ohseto, 2002; Ju, 2003; Schummer, 1997; Sprumont, 1995; Zhou,

1991) examining various domain restrictions. Recently, Serizawa (2002) formally established this

negative result for an arbitrary number of agents.

We study the same trade-off for simple production economies where a single private good is produced

via a concave technology. Maniquet and Sprumont (1999) show that strategy-proofness and efficiency

can coexist in a linear production model on the domain of classical economic preferences, even in
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combination with anonymity. They call the resulting unique solution the equal budget free choice

mechanism: every agent obtains the bundle she would choose if operating the technology alone.

We show that this positive result does not survive if the single technology is concave but not linear

(though not necessarily strictly concave). Then strategy-proofness and efficiency are incompatible on the

domain of linear preferences. Because strategy-proofness is a stronger property on larger domains, our

result extends to any domain containing the class of linear preferences.

Shenker (1992) considers a cost-sharing model that includes ours as a special case. He states that if

the technology exhibits decreasing returns to scale, any incentive compatible sharing rule is of the serial

type. This would imply our result as serial-like methods are not first-best efficient. Yet, our result

improves upon his statement on the strategy-proofness and efficiency trade-off in three respects. First of

all, Shenker imposes smoothness conditions on the technology and on the allocation rule, which we do

not. Secondly, his additional conditions on the technology amount in our setting to strict concavity of the

production function, which we do not require. Lastly, and more importantly, his incentive compatibility

criterion is much stronger than strategy-proofness: implementability in Nash equilibrium strategies is in

fact even stronger than group strategy-proofness.
2. The model and theorem

Let N={1, . . ., n} be the set of agents. Let F be a strictly increasing, concave (though not

necessarily strictly concave) non-linear function of R+ to itself such that F(0) = 0. A bundle is an

element zi = (xi, yi)aR+�R, and an allocation is a list of n bundles, z= (z1, . . ., zn), one for each

agent. The set of feasible allocations is denoted by

Z ¼ zaðRþ � RÞNjX
i

yi VF
X
i

xi

 !( )
:

For any subset SpN, we write xs ¼
P

ias xi and ys ¼
P

ias yi:
Each agent is endowed with a preference, Ri, over Rþ � R which is strictly monotonic: strictly

increasing in yi and strictly decreasing in xi. We denote by R0 the class of preferences. A preference

profile is a list of n preferences, R= (R1, . . ., Rn). We sometimes write R = (Rj, R� j) for some jaN. Let

LoR0 be the class of linear preferences. Each preference LaL can be identified with a number laRþþ
that corresponds to the slope of its indifference curves in the (x, y)-plane. The corresponding utility for

agent i is ui(xi, yi) = yi� lxi.

For any subset ApRþ � R and any preference relation RiaR, we define mðA; RiÞ ¼ fziaAAbz Vi
aA ziRizVig to be the set of maximal elements of A according to Ri. For any preference profile RaRN,

we denote by

PEðRÞufza ZjbzVa Z½zVi Rizi biaNZzVi Iizi biaN �

the set of Pareto-efficient allocations.
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Let RpR0 , a direct allocation mechanism (or mechanism) l : RN ! Z associates with each

preference profile a feasible allocation. We are interested in the following axioms to be verified by a

mechanism l:

Pareto efficiency (PE) bRaRN ; lðRÞaPEðRÞ:
Strategy-proofness (SP) bRaRNbiaNbRViaR; liðRÞRiliðRVi ; R�iÞ:

Theorem. Let LpRpR0. No mechanism l:RN! Z satisfies SP and PE.

As in Maniquet and Sprumont (1999) we determine the shape of the agents option sets, i.e. the sets of

attainable bundles given the reports of others. We proceed by contradiction, assuming that a mechanism

l satisfies SP and PE to later show that the shapes of the option sets generated by l are not feasible;

namely, budget balance is violated.

We start the proof with two lemmas. Lemma 1 states a general property of option sets and can be

found in Maniquet and Sprumont (1999). Loosely speaking, Lemma 2 states that if a function f is

concave and if a function g has the same slope as f for every value of t in its domain, then g coincides

with f up to a positive constant. First, a definition: a strictly increasing subset of Rþ � R is a set ho
Rþ � R such that for all ðxi; yiÞ; ðxVi ; yVi Þah; xi > xViZyi > yVi .

Lemma 1. Let RpR0. A mechanism l : RN ! Z satisfies SP if and only if for every iaN, there exists a

correspondence Oi : R
Nqfig ! Rþ � R, such that for every RaRN,

(i) liðRÞamðOiðR�iÞ; RiÞ,
(ii) OiðR�iÞis a strictly increasing subset of R+�R.
Lemma 2. Let f: Rþ ! R be an increasing concave function and let g: D ! R with DpRþ. Let lmz 0

and xm = supðargmaxtaD gðtÞ � lmtÞ. Then, if

bla�0; lm½; arg max
taRþ

ð f ðtÞ � ltÞtarg max
taD

ðgðtÞ � ltÞ p t; ð1Þ

(with the convention that arg max taR+
( f(t)� lt)={ +l} p t if l < limt!lf V(t)), there exists aaR such

that g and f + a coincide on D \ ½xm; þl�.

Proof. Define, for any la]0, lm[,

wðlÞ ¼ max
tz0

f ðtÞ � lt and hðlÞ ¼ max
taD

gðtÞ � lt

Letting x(l ) be a solution of maxtz 0 f (t )� lt, writing w(l ) = f (x(l ))� lx(l ) yields that the derivative of w
at l equals wV(l ) = xV(l )( f V(x(l ))� l)� x(l ) with either f V(x (l )) = l (in general) or x V(l ) = 0 (at a kink in

the graph of f ). I.e., wV(l) =� x for some xa arg maxtz 0 f (t )� lt. From the concavity of f, arg maxtz 0

f (t)� lt is single-valued everywhere except on a countable subset of values of l, corresponding to the

linear parts of f (if any). Similarly, the derivative of h at l equals hV(l ) =� x for some xaarg maxtaD

g(t )� lt for any la]0, lm[.
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From (1), wV and hV must coincide almost everywhere on ]0, lm[. Hence,w and h coincide up to a

constant on ]0, lm[. Therefore f and g coincide up to a constant on D\[xm, +l]. n

We now tackle the proof of the theorem. For the sake of contradiction let l:LN! Z satisfy SP and PE.

For any LaLN denote the corresponding vector of slopes (l1, . . ., ln) and write l(L) = (xi, yi)iaN. Define l =

minjaN lj and J = arg minjaN lj. Denote by F V(resp. F V_) the derivative (resp. left-derivative) of F.

Because F is non-linear, we can assume

FVð0Þ > l > lim
t!þl

FV ðtÞ: ð2Þ

Step 1

xi > 0 only if iaJ ; ðaÞ

xN ¼ xJa arg maxðFðtÞ � ltÞ ðbÞ and;

yN ¼ FðxN Þ: ðcÞ

8>>>><
>>>>:

ð3Þ

Condition (a) follows from trade efficiency: any agent i for which li > l and xi >0 would gladly pay
liþl

2

units of output in order to provide one less unit of input; any agent jaJ would accept to trade with i. (b)
follows from (a) and production efficiency. Condition (c) states that all the output is allocated.

Fix iaN and L� iaLN\{i} until Step 5. We apply Lemma 1 and write Oi(L� i) the option set of agent i.

Define l�i =minj p i lj and x̂i =max(arg max (F(t)� l�i t)). Notice that x̂i is finite because l�i >limt!l

F V(t) (from (2)). For any LiaL, denote by liaR+ + the corresponding slope. We write l(Li; L� i) = (xi(li),

yi(li))iaN.

Steps 2–4 are devoted to the description of the shape of Oi(L� i).

Step 2

OiðL�iÞ \ ð½0; x̂i� � RÞpfðx; yÞa½0; x̂i� � Rjy ¼ ai þ l�i xg for some aiaR:

Let li > l
�
i , condition (3.a) requires xi(li) = 0; denote ai = yi(li). We claim that zi (lVi)=(0, ai) for all lVi > l�i

because of SP. Indeed, assume there existed some l Vi > l
�
i such that zi(lVi)=(0, aVi) with aVi, p ai. If aVi >ai,

agent i could benefit from reporting lVi at (Li, L� i); if the inequality were reversed, agent i could benefit

from reporting li at (LVi, L� i).

Now if lI = li
�, xi(li

�)a½0; x̂i� by condition (3.b); we show that SP requires yi(li
�) = ai + li

� xi(li
�).

Assume yi(li
�)>ai + li

� xi(li
�) = 0, then yi(li

�)>ai and agent i can benefit from reporting li
� when her true

preference is in fact liV>li
�. If xi(li

�)>0, let li* ¼ yiðl�i Þ�ai
xiðl�i Þ

> l�i ; agent i could benefit from reporting li
�

instead of liVa�l�i ; li*½. Therefore yi(li
�) V ai + li

� xi(li
�). Similarly, yi(li

�)z ai + li
� xi(li

�).
Also, for any li < li

�, xiðliÞzx̂i ; and if there exists some liV< li
� for which xiðliVÞ ¼ x̂i , the same

reasoning as above yields yiðliVÞ ¼ ai þ l�i x̂i. Step 2 has been proved.

For the next step, we use the following notation: for any kaR, define B(k) ={(xi, yi)aR+�Rjyi =
F(xi) + k}.
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Step 3

OiðL�iÞ \ ð½x̂i;þl½�RÞoBðbiÞ for some bi a R.

Let x be the real-valued function whose graph is Oi(L� i) and D its domain. We wish to apply Lemma

2 where F plays the role of f, x the role of g and where lm = li
�. We need to check that for any 0 < li < li

�,

t p arg max
taD

xðtÞ � litparg max
tz0

FðtÞ � lit:

Let 0 < li < li
� write li(L)=(xi, yi). From Lemma 1 (xi, yi)am (Oi(L� i), Li); therefore, by the definition

of x, xiaarg maxtaDx(t)� lit. However, J={i} because li < li
�; condition (3.b) yields xiaarg maxtz 0

F(t)– lit. We can apply Lemma 2 and conclude that x and F coincide up to a constant on ½x̂i;þl½.

Step 4

bi ¼ ai þ l�i x̂i � Fðx̂iÞ

By concavity of F and by definition of x̂i, F is strictly concave at x̂i. Therefore, limlzl�
i
(arg max (F(t)

lt)) = x̂i, and hence limlzl�
i
xiðlÞ ¼ x̂i. Steps 2 and 3 yield the result.

Now that the shape of Oi(L� i) has been determined, we show that it is an implausible one. Note that

ai is actually a function of L– i; from now on we write ai(L– i). For any LaLN let ln� 1
* denote the

second smallest entry of the corresponding vector of slopes (l1, . . ., ln)aR+ +
n . Also, for any laR+ +,

define h(l) =max(F(t)– lt).

Step 5

For any LaLN ;
P

aiðL�iÞ ¼ hðl�n�1Þ.

Consider LaLN and the corresponding (l1, . . ., ln)aR+
N. Recall that J= arg minjaN lj; clearly J p t. Step

1 requires xi = 0 and yi = ai(L� i) for all igJ. If jJj = 1, say J={ j}, then yi = aj(L� j) + ln � 1
* x̂j+F(xj)�F(x̂j).

By efficiency:

yN ¼ FðxN Þ;

i:e:
X

aiðL�iÞ þ l�n�1x̂j þ FðxjÞ � Fðx̂jÞ ¼ FðxjÞ;

i:e:
X

aiðL�iÞ þ hðl�n�1Þ by construction of x̂j:

Now suppose jJjz 2, then l�n�1 ¼ l
¯
. Moreover, for any jaJ, xjz 0, yj = aj(L� j) + ln� 1

* xj and xJa arg

max F(t)– ln� 1
* t). Once again the result follows from efficiency:

yN ¼ FðxN Þ;

i:e:
X

aiðL�iÞ þ l�n�1xJ ¼ FðxJ Þ;

i:e:
X

aiðL�iÞ ¼ hðl�n�1Þ:
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Upon noticing that h is strictly decreasing on � l
¯
; FVð0Þ½, a slight variation of a standard argument

in the literature on Clarke–Grove mechanisms (omitted for brevity but available upon request) yields

a contradiction: (l1, . . ., ln)ih(ln� 1
* ) cannot be decomposed into n functions depending only on

n� 1 variables.

Remark . We strongly suspect that our proof technique successfully applies to the many-inputs-one-

output case without many conceptual modifications.
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