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Abstract

The paper introduces a novel approach to testing for unit roots in panels. Fol-
lowing Chang and Park (2004), the approach takes a new contour that is drawn
along the line given by the equi-squared-sum instead of the traditional one given
by the equi-sample-size. As we show in the paper, the distributions of the unit
root tests based on nonlinear IV t-ratios (which includes the Dickey-Fuller test
as a special case) are asymptotically normal along the new contour. The normal
asymptotics hold under both the null of a unit root and the local-to-unity alter-
native. Moreover, they are applicable also for the models with intercept, as long
as is used the demeaning method relying only on the past information. Subse-
quently, we demonstrate that this startling finding may be exploited to invent
tools and methodologies for the effective inferences in panel unit root models. In
particular, our theory implies that the individual tests may be regarded asymp-
totically as normal samples if they are computed using the samples having the
same sum of squares across all cross-sectional units, which may be obtained
through the standard bootstrap method. Consequently, we may conveniently
use various functionals of the individual tests to do valid inferences in panels.
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1. Introduction

Inference in nonstationary panels has recently drawn much attention as more panel datasets
covering long time spans became available. In particular, the unit root tests in panels have
been frequently used by numerous authors to investigate many important economic inter-
relationships among countries or regions, which may imply convergence, divergence or parity
of some sets of economic variables. The growth convergence and the purchasing power parity
of exchange rates are prime examples, and routinely examined by the unit root tests applied
to the time series observations across the countries or regions under investigation. The unit
root tests that are applicable for the panel data have been developed by many authors
including Quah (1994), Levin, Lin and Chu (2002), Im, Pesaran and Shin (2003), Maddala
and Wu (1999), Choi (2001a, 2001b), Chang (2002, 2004), Chang and Song (2002), Moon
and Perron (2001), Phillips and Sul (2001), Bai and Ng (2004) and Pesaran (2003). See,
e.g., Banerjee (1999), Phillips and Moon (2000), Baltagi and Kao (2001) and Pedroni and
Urbain (2004) for surveys on the recent development of the unit root tests in panels.

All of the existing panel unit root tests combine some transformations of the individual
unit root test statistics obtained across cross-sectional units. Quite naturally, under the
assumption of cross-sectional independence, the appropriately transformed and standard-
ized combinations of individual tests are well expected to be approximately normal as the
number of cross sections N gets large. Indeed, virtually all the panel unit root tests rely
on normal N -limit theory, whose validity requires appropriate normalizations of individual
tests, as well as asymptotic cross-sectional independence. It is therefore fair to say that a
good panel test is the one which efficiently normalizes the individual tests and effectively
deals with cross-sectional dependency. In this paper, we concentrate more on efficient nor-
malization of the individual tests. The problem of cross-sectional dependency was first
addressed in Chang (2002), and dealt with by using the methodology based on nonlinear
instrumental variable estimation. Subsequent authors introduced common factors in their
models to allow for cross-sectional dependency.

The efficient normalization of the individual tests is much more difficult than one might
think. As is well known, the individual unit root tests have null distributions that are
nonstandard and nonnormal. Their time T -asymptotics yield distributions commonly rep-
resented by various functionals of Brownian motions, and in particular, known to be asym-
metric and skewed. See, e.g., Fuller (1996) for the tabulations of them. Consequently, the
standardization through the mean and variance adjustment or the p-value transformation,
which are two most frequently used methods for normalization, often works poorly even
when T is relatively large. Worse, the errors made in the normalizations for individual tests
are accumulated as N of them are combined to compute the panel unit root test. Obviously,
the problem gets worse as N increases. We require, however, that N tend to infinity to
obtain the normal N -asymptotics. This is a serious dilemma. It is well known that all
the existing panel unit root tests suffer from rather serious size distortions when N is large
compared to T .

To overcome this difficulty, we take a totally different method in this paper: A novel
approach based on a new contour to achieve efficient normalization of the individual tests.
Following Chang and Park (2004), our approach takes the contour that is drawn along the
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line given by the equi-squared-sum instead of the traditional one given by the equi-sample-
size. In the paper, we extend their results for the OLS based t-ratio to the general nonlinear
IV t-ratios, which are based on the instruments given by the nonlinear transformations of
the lagged levels of the time series to be tested. The nonlinear IV t-ratios were considered
earlier by Chang (2002) and Phillips, Park and Chang (2004) along the conventional equi-
sample-size contour. More precisely, we show in this paper that the limiting distributions
of the general nonlinear IV t-ratios are standard normal on the new contour that is given
by the fixed sum of squared IV’s. Our results would therefore include those of Chang and
Park (2004) as a special case. As in Chang and Park (2004), our analysis extends to the
models with roots local-to-unity, and also to the models with intercept if the demeaning is
done recursively using only the past information.

The new asymptotics we derive along the contour of the equi-squared-sum have very
important and far-reaching implications for inference in nonstationary panels. For the
independent panels, it would imply that the individual unit root tests behave asymptotically
as if they were independent and identically distributed standard normals, if we observe their
values along the contour of the equi-squared-sum. That is, if we set the sum of squares to
be the same across all cross-sectional units, the resulting individual unit root tests can be
regarded as standard normal samples. This rather startling result would certainly give us a
great opportunity to do effective inferences in nonstationary panels. For instance, we may
now use the order statistics such as the minimum or maximum to test the null hypothesis
that all (some) cross-sections have unit roots against the alternative that some (all) do not.
Under the equi-squared-sum scheme, the individual tests have normal T -asymptotics for
each N , regardless of being small or large, or letting it be fixed or tend to infinity. We may
indeed rely on standard normal distribution theory for both T , N or their joint asymptotics
if we simply aggregate the individual test statistics along the new contour.

For many of the practical applications, the panels are observed along the equi-sample-size
contour. There are cases where we have unbalanced panels, which have differing numbers
of time series observations across cross-sectional units. In most cases, however, all the
cross-sectional units have the same time series dimension. To implement our tests based
on the equi-squared-sum asymptotics to such panels, we may need to generate additional
observations for some cross-sections (which have deficient sums of squared variations), or
discard a part of the available observations for other cross-sections (which have overly
sufficient sums of squared variations). The generation of the additional data may simply
be done using the standard bootstrap procedure for the unit root models. The procedure
creates the pseudo-data whose distributions are asymptotically identical to the original
data, and have the required level of squared variations. Using the pseudo-data or discarding
some portions of the real data may adversely affect the performances of the tests. They
may distort, at least to some degrees, the finite sample sizes and lower the powers of the
tests. Our extensive simulation studies, however, show that the prices we have to pay
here to reach the new contour are relatively small compared to the efficiency gain from the
normal asymptotics of the individual tests. The tests based on the equi-squared-sum indeed
perform significantly better than other existing tests.

There is one special case where two contours become identical. This is when the usual
sign function is used as the instrument generating function. The resulting IV estima-
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tor, which is often called the Cauchy estimator, has the fixed sum of squared IV’s given
by the sample size for its all possible realizations. The Cauchy t-ratio therefore has the
standard normal T -asymptotics, along the contours of both the equi-squared-sum and the
equi-sample-size. This is rather important. As we discussed above, to do inference on a
fixed size data along the contour of the equi-squared-sum necessarily requires that we should
either rely on the bootstrapped pseudo-data or do not fully utilize the observed data. The
Cauchy estimator is an exception here. For the Cauchy estimator, neither bootstrapping
nor discarding the data is necessary. As Phillips, Park and Chang (2004) point out earlier,
the Cauchy estimator is sub-optimal and expected to have powers lower than the OLS esti-
mator. However, our simulation study makes it clear that the sub-optimality of the Cauchy
estimator quickly becomes unimportant as the number of the cross-sectional units increases
in panels. In most cases, the Cauchy t-ratio performs at least as good as the OLS t-ratio
using the generated or partially discarded samples with the same sum of squares.

The rest of the paper is organized as follows. In Section 2, we derive the main results of
the paper for the nonlinear IV unit root test. There we introduce the unit root model, the
instrument generating functions and the test statistic, and develop new asymptotics for the
nonlinear IV t-ratios along the contour of the fixed sum of squared IV’s. In particular, the
asymptotics for the nonlinear IV t-ratios are shown to be normal along the new contour.
Section 3 presents a method of reaching the equi-squared-sum contour by bootstrap for
samples with a fixed size. The asymptotics for the IV t-ratios computed using the extended
samples are also given. Section 4 extends our main results into more general models, which
have intercepts and higher order dynamics. It is shown that our main results continue to
hold for such general models. Section 5 demonstrates that our normal asymptotics along
the new equi-squared-sum contour may be exploited to construct tools and methodologies
for effective inferences in nonstationary panels. Finite sample performances of the newly
proposed tests are evaluated via a set of simulations in Section 6. The concluding remarks
are given in Section 7, and the mathematical proofs are collected in Appendix.

A word on notation. As usual, →d and →a.s. are used to signify respectively the conver-
gence in distribution and the almost sure convergence, and 4 denotes the usual difference
operator.

2. New Contour Asymptotics for Nonlinear IV t-Ratios

In this section, we develop the new asymptotics for the nonlinear IV t-ratios along the
contour of the fixed sum of squared IV’s. To effectively deliver the main idea, we consider the
simple AR(1) model here. Our theories will be extended later to more general AR(p) models
and the models with intercept. All the models considered in this section are univariate. The
panel models will be considered later in subsequent sections. The model we consider here
is given by

4yt = βyt−1 + εt, (1)

where
β = 0 (2)
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and (εt) are martingale differences satisfying the usual conditions for the unit root model
as in, e.g., Chang and Park (2002). In particular, we assume that an invariance principle
holds for (εt), i.e., if we let

WT (r) =
1√
T

[Tr]
∑

t=1

εt

for r ∈ R, then
WT →d W, (3)

where W is Brownian motion with variance σ2. The assumption for (εt) made here will be
maintained throughout the paper.

The unit root hypothesis (2) may be tested using various methods. Here we consider
the test based on the nonlinear IV methodology introduced recently by Chang (2002) and
Phillips, Park and Chang (2004). The nonlinear IV estimator of β is defined by

β̂T =

(

T
∑

t=1

yt−1F (yt−1)

)−1 T
∑

t=1

F (yt−1)4yt, (4)

which uses F (yt−1) as an instrument constructed from some instrument generating function
(IGF) F : R → R. Therefore, if we let

s(β̂T ) = σ

(

T
∑

t=1

yt−1F (yt−1)

)−1( T
∑

t=1

F (yt−1)
2

)1/2

be the standard error of β̂T , the IV t-ratio can be written as

R(T ) =
β̂T

s(β̂T )
. (5)

Obviously, σ is unknown and we should use its consistent estimate to practically implement
the IV t-ratio RT .2 The replacement of σ by any of its consistent estimates, however, does
not affect our subsequent asymptotic analysis of the IV t-ratio. Note that the IV t-ratio
R(T ) reduces to

(1/σ)

(

T
∑

t=1

F (yt−1)
2

)−1/2 T
∑

t=1

F (yt−1)εt

under the null hypothesis of a unit root.
In addition to the unit root null hypothesis given by (2), we also consider in the paper

the local-to-unity alternative

β = − δ

T
(6)

2Consistent estimates of the error variance can be easily obtained either from the OLS residuals or more
generally from the IV residuals satisfying the validity conditions in Phillips, Park and Chang (2004).
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to investigate the power of the unit root tests under the near unit root models. It is well
known that the asymptotics for the near unit root models involve the Ornstein-Uhlenbeck
process given by

Wδ(r) =

∫ r

0
e−δ(r−s)dW (s), (7)

where δ is the locality parameter in (6) and W is the limit Brownian motion given in (3).
For the asymptotics of the near unit root models in general, see, e.g., Stock (1994). The
Ornstein-Uhlenbeck process Wδ in (7), as well as the limit Brownian motion W in (3), will
appear frequently in our subsequent asymptotic results.

As shown earlier by Phillips, Park and Chang (2004), the asymptotic behavior of the IV
t-ratio depends crucially on the type of the instrument generating function F , in particular
on whether it is integrable or asymptotically homogeneous. Here we mainly consider the IV
t-ratio based on asymptotically homogeneous IGF. The IV t-ratio with integrable IGF is
thoroughly explored in Chang (2002) for the test of unit roots in panels with cross-sectional
dependency. An asymptotically homogeneous function F may be written as

F (λx) = κ(λ)H(x) + o(κ(λ))

for large λ uniformly in x ∈ R over any compact interval, where we call κ the asymptotic
order and H the limit homogeneous function of F . The reader is referred to Park (2004)
for more precise definitions of asymptotically homogeneous functions.

The following lemma presents the asymptotic distributions of the IV t-ratio under the
unit root null and the local-to-unity alternative along the conventional contour.

Lemma 2.1 Under the null hypothesis (2) of a unit root, we have

R(T ) →d
1

σ

(∫ 1

0
H(W (r))2dr

)−1/2∫ 1

0
H(W (r)) dW (r)

as T → ∞. Moreover, under the local-to-unity alternative (6), we have

R(T ) →d −δA + B,

where

A =

∫ 1

0
Wδ(r)H(Wδ(r)) dr

σ

(∫ 1

0
H(Wδ(r))

2dr

)1/2
, B =

∫ 1

0
H(Wδ(r)) dW (r)

σ

(∫ 1

0
H(Wδ(r))

2dr

)1/2

as T → ∞.

The limiting null distribution of the IV t-ratio in Lemma 2.1 has already been derived by
Phillips, Park and Chang (2004). It is included here for completeness. The limit distribution
of the IV t-ratio with an asymptotically homogeneous IGF is generally nonnormal.



6

The asymptotics for the IV t-ratio under the local-to-unity alternatives in Lemma 2.1
are newly developed here. Interestingly, the IV t-ratios defined with asymptotically homo-
geneous IGF’s generally have nontrivial discriminatory powers against the local-to-unity
alternatives, which shrink towards the null at the rate T −1. To see this, notice first that

∫ 1

0
Wδ(r)H(Wδ(r)) dr =

∫ ∞

−∞

xH(x)Lδ(1, x) dx,

where Lδ(r, x) is the local time of Wδ at time r and spatial point x. This follows directly
from the application of the well known occupation times formula. See Revez and Yor (1994)
for formal definitions of the local time and the occupation times formula. As a consequence,
the IV t-ratio has nontrivial powers a.s. under the local alternatives as long as

(i) xH(x) ≥ 0 for all x ∈ R, and
(ii) xH(x) > 0 for all x in some neighborhood of the origin.

These will be referred to as the IGF validity conditions. Recall that Lδ(1, ·) is nonzero a.s.
in some neighborhood of the origin, since Wδ starts at the origin.

It is rather remarkable that all the IV t-ratios with valid asymptotically homogeneous
IGF’s have nontrivial discriminatory powers in the T −1-neighborhood of the null. For the
IV estimator β̂T defined in (4) with the IGF F that has asymptotic order κ and limit
homogeneous function H, we have under the null β = 0

√
Tκ(

√
T ) β̂T →d

(∫ 1

0
W (r)H(W (r)) dr

)−1 ∫ 1

0
H(W (r)) dW (r)

as shown in Phillips, Park and Chang (2004), and, in particular, it follows that

β̂T = Op

(

1√
Tκ(

√
T )

)

.

The convergence rate for β̂T is therefore dependent upon the asymptotic order κ of the IGF
F . Any IV t-ratio with a valid asymptotically homogenous IGF, however, has nontrivial
discriminating powers against the T−1-local alternatives, regardless of the asymptotic order
of the IGF.

Of course, the OLS estimator belongs to the class of the IV estimators considered here.
It is easy to see that the OLS estimator is an IV estimator with the instrument generating
function F (x) = x, i.e., the identity function. Phillips, Park and Chang (2004) show that
the OLS estimator is indeed the most efficient IV estimator, and therefore the usual t-ratio
based on the OLS estimator is expected to be most powerful. Along the conventional equi-
sample-size contour, the usual OLS based t-ratio has the limiting null distribution that is
often referred to as the Dickey-Fuller distribution.

Now we derive the asymptotics along the new contour given by the equi-squared-sum
of the IV’s. For this, we define

ST = inf
K≥1

{

1

Tκ2(
√

T )

K
∑

t=1

F (yt−1)
2 ≥ c

}

(8)
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for some fixed constant c ∈ R. For each T , ST is the stopping time for which the sum of
squares of IV’s reaches the level c Tκ2(

√
T ). As shown in Park and Phillips (1999), we have

1

Tκ2(
√

T )

[T ·]
∑

t=1

F (yt−1)
2 →d

∫ ·

0
H(W (r))2dr

as T → ∞. Therefore, if we let τ(c) be the stopping time defined by

∫ τ(c)

0
H(W (r))2dr = c,

then we may expect ST /T →d τ(c) as T → ∞, jointly with the invariance principle (3).

Theorem 2.2 Under the null hypothesis (2) of a unit root, we have

R(ST ) →d N(0, 1)

as T → ∞. Moreover, under the local-to-unity alternative (6), we have

R(ST ) →d −δA◦ + B◦,

where

A◦ =
1√
c σ

∫ τ(c)

0
Wδ(r)H(Wδ(r)) dr

B◦ =
1√
c σ

∫ τ(c)

0
H(Wδ(r)) dW (r) ∼ N(0, 1)

as T → ∞.

The asymptotics for the IV t-ratio along the contour given by the same sum of squared IV’s
extend the results in Chang and Park (2004) developed for the usual t-ratio based on the
OLS estimator. Of course, our results in Theorem 2.2 reduce to theirs if we set F (x) = x.
Under the null hypothesis of the unit root, the IV t-ratio has the normal asymptotics of the
nonlinear IV t-ratios along the new contour of equi-squared-sum of IV’s. This is in sharp
contrast with the nonstandard and nonnormal asymptotics along the conventional equi-
sample-size contour given in Lemma 2.1. Under the local alternatives, both asymptotics
provide the IV t-ratios some nontrivial powers as long as they use IGF’s satisfying the
validity conditions introduced above.

A special case of particular interest arises if we set

F (x) = sgn (x). (9)

The resulting IV estimator, called the Cauchy estimator, was investigated earlier by So and
Shin (1999b). This is an interesting example where the two contours coincide. Obviously,
we have F (yt−1)

2 ≡ 1 for all t, and κ(λ) = 1 for F given in (9). With the only conformable
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value c = 1, we thus have in this case that ST = T . The contours of the equi-sample-
size and the equi-squared-sum of the IV’s therefore become identical for any realization of
the samples. Consequently, both the conventional approach and our new approach here
yield the same normal asymptotics for the t-ratio constructed from the Cauchy estimator.
Needless to say, we would have the same results for any IV estimator with asymptotically
homogeneous F having the sign function as the limit homogeneous function. Note that for
all in this class of IV estimators, we have x sgn(x) = |x|, and therefore, the IGF validity
conditions are satisfied. This in turn implies that the IV t-ratios constructed from the
IV estimators in this class would all have nontrivial powers against the local alternatives
shrinking towards unity at the rate T−1.

3. Reaching the Contour by Bootstrap

Now we discuss the method of reaching the equi-squared-sum contour by bootstrap. This
method will be crucial in the construction of the panel unit root tests to be introduced in
Section 5. For a fixed sample size T , the contour given by the equi-squared-sum of IV’s
may not be attainable. That is, there may be cases with ST > T , where ST is the stopping
time introduced in (8). In fact, for all instrument generating functions other than the sign
function given in (9), there is nonzero probability that such cases arise for any value of
c > 0. To utilize our new asymptotics within the fixed T framework, we therefore need to
extend our samples. Here we consider the bootstrap method to achieve this goal. Of course,
one may use other resampling methods for this purpose.

The bootstrap method we propose here is simple and straightforward, and can be done
following the steps we suggest below. We suppose that T time series observations, y1, . . . , yT ,
are available, and for a given c > 0, we have T < ST . The case would arise whenever
(T/κ2(

√
T ))−1

∑T
t=1 F (yt−1)

2 < c, i.e., the normalized sum of squares of the IV’s does not
reach the preset level c > 0.

Step 1: Obtain the fitted values (ε̂t) of the innovations (εt) in (1).

Step 2: Draw the bootstrap samples (ε∗t ) from the fitted residuals (ε̂t), after
centering them by subtracting their sample mean, i.e., from (ε̂t − T−1

∑T
t=1 ε̂t).

Step 3: Set

y∗t = yT +

t
∑

k=T+1

ε∗t

for t = T + 1, . . ., and generate the extended sample (y+
t ) as

y+
t =

{

yt if t ≤ T
y∗t if t ≥ T + 1

Define the stopping time S+
T similarly as in (8) using the extended sample (y+

t ).

It is quite clear that the extended time series (y+
t ), t = 1, . . . , S+

T , behave similarly as the
original full sample (yt), t = 1, . . . , ST , especially when T is large. Note that the bootstrap
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samples used to obtain (y∗
t ), t = T + 1, . . . , S+

T , for extending the given sample are drawn
from the empirical distribution of the innovations, which converges in distribution to their
true underlying distribution as T increases.

On the proposed bootstrap procedure, there are several issues that should be addressed
here. First, we may use any IV estimator (including of course the OLS estimator) to estimate
the parameter β in Step 1. It is also allowed to set β = 0 and use the first differences of (yt)
as the fitted residulas (ε̂t) in this step. In fact, neither the choice of the IV estimator nor
the imposition (or non-imposition) of the unit root restriction affects any of our asymptotic
results established in the paper. Second, note that we deliverately impose the unit root in
our generation of the extended data (y∗

t ) from the bootstrap samples (ε∗t ) in Step 3. This
is important and crucial for the validity of the unit root testing considered in the paper.
Indeed, it is well known that the bootstrap for the unit root models is generally inconsistent
if the presence of unit root is not imposed in generating bootstrap samples. See Basawa et
al. (1991).

Throughout the paper, we denote by (y+
t ) the sample of size S+

T extended by the boot-
strap procedure introduced above. By convention, we continue to use the same notation
when ST ≤ T , in which case we have S+

T ≡ ST and y+
t ≡ yt for all t = 1, . . . ST . Moreover,

we signify by R(S+
T ) the IV t-ratio computed from (y+

t ) for the sample of size S+
T . Once

again, we have R(ST ) ≡ R(S+
T ) if ST ≤ T . Now we present the asymptotics for the ex-

tended IV t-ratio R(S+
T ) constructed from the extended sample (y+

t ). We first define the
limit processes apprearing in our new limit theory. Corresponding to the BM W defined in
(3), we define W + for the extended sample by

W+(r) =

{

W (r) if r ≤ 1
W (1) + W ∗(r − 1) if r > 1

, (10)

where W ∗ is a BM independent of W (r) for r ∈ [0, 1]. It is easy to see that W + is a BM
itself. Moreover, in place of the Ornstein-Uhlenbeck process Wδ introduced in (7), we let
W+

δ be the process given by

W+
δ (r) =

{

Wδ(r) if r ≤ 1
Wδ(1) + W ∗(r − 1) if r > 1

. (11)

Again, the BM W ∗ is independent of Wδ(r) for r ∈ [0, 1], since it is independent of W (r)
which generates Wδ(r) for r ∈ [0, 1]. One may easily note that W +

δ is an Ornstein-Uhlenbeck
process driven by the Brownian motion W up to the time unity, and then becomes the
process having Brownian increments independent of the driving Brownian motion W after-
wards.

We may now deduce that

Corollary 3.1 Under the null hypothesis (2) of a unit root, we have

R(S+
T ) →d N(0, 1)

as T → ∞. Moreover, under the local-to-unity alternative (6), we have

R(S+
T ) →d −δA+ + B+,
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where

A+ =
1√
c σ

∫ 1∧τ(c)

0
Wδ(r)H(Wδ(r)) dr

B+ =
1√
c σ

∫ τ(c)

0
H(W+

δ (r)) dW +(r) ∼ N(0, 1)

as T → ∞.

It is now clearly seen from Corollary 3.1 that the IV t-ratio R(S+
T ) obtained using the

extended sample has the standard normal limiting distribution, exactly as for the original
IV t-ratio R(ST ) defined on the new contour. Moreover, it can be readily deduced from
Corollary 3.1 that R(S+

T ) has nontrivial powers against the local-to-unity alternatives.
The powers of the extended IV t-ratio R(S+

T ), however, will be smaller than the original
IV t-ratio R(ST ) defined on the new contour, if T < ST and the contour is indeed attained
via the extension of the sample by the bootstrap. This can be well expected, since the
extended bootstrap samples are obtained under the null hypothesis of the unit root. This
reduction in the power of R(S+

T ) relative to R(ST ) can be easily seen from our results in
Theorem 2.2 and Corollary 3.1. Note that 1 < τ(c) in this case, and we have xH(x) ≥ 0.
Consequently, it follows that A◦ ≥ A+, which implies that R(ST ) has a greater mean shift
effect than R(S+

T ) under the local-to-unity alternatives. It is therefore unambiguous that
the former is more powerful than the latter under the local-to-unity alternatives. Note
however that the test R(ST ) is infeasible as it requires more data than are available.

On the other hand, it is not possible to unambiguously compare the extended IV t-ratio
R(S+

T ) on the new contour with the fixed sample IV t-ratio R(T ) defined on the conventional
contour in terms of the powers against the local-to-unity alternatives. Recall that both tests
utilize the given samples of size T , so they are both feasible in the usual cases with fixed
T . Thus comparing the two may shed light on the effect of attaining the new contour by
bootstrap. Their asymptotics under the local-to-unity alternatives, which are respectively
given in Lemma 2.1 and Corollary 3.1, show that none of them indeed dominates the other.
To see this, let T < ST and 1 < τ(c). Then it necessarily follows that A ≥ A+, and this
implies that R(T ) has a greater mean shift effect than R(S+

T ) incurred by the presence
of the locality parameter δ. However, the additional terms B and B+ independent of δ
render the comparison in the opposite direction. While B+ is the standard normal and
in particular distributed symmetrically, B has a nonstandard distribution that is skewed
to the left towards the alternative distributions. This would obviously affect the powers of
R(T ) adversely, compared to R(S+

T ). The local power comparison between R(S+
T ) and R(T )

would therefore be ultimately dependent upon the magnitude of the locality parameter δ.
It is likely that the former is more powerful if δ is small, while the comparison may be
reversed as δ takes a larger value.
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4. Extensions to General Models

All our previous results may be easily and naturally extended to more general unit root
models and the models with intercept under some simple and obvious modifications.3 We
now consider the model

yt = µ + y◦t , (12)

where (y◦t ) follows an AR(p) process specified as

4y◦t = βy◦t−1 +

p−1
∑

k=1

αk4y◦t−k + εt (13)

We let β = 0 and (εt) be martingale differences as in (1). The model given in (12) will
subsequently be referred to simply as the model with intercept. Throughout the paper, we
assume that the standard assumptions imposed on the unit root models hold for the AR
process in (13). The reader is referred to, for instance, Chang and Park (2002), for the
detailed conditions that we require here.

The unit root hypothesis β = 0 for the general models introduced in (12) and (13) can
be tested in the regression

4yt = βỹt−1 +

p−1
∑

k=1

αk4yt−k + εt, (14)

where (ỹt) is given by
ỹt = yt − y1 (15)

or

ỹt = yt −
1

t

t
∑

k=1

yk. (16)

Note that (ỹt)’s in (15) and (16) both are invariant with respect to the intercept term
µ introduced in (12). The demeaning procedures in (15) and (16) rely only on the past
observations, and this is crucial for our testing procedures developed in the paper. Roughly,
they allow the demeaned series to weakly converge to martingales, which is necessary for
our normal asymptotic theories to hold.

The nonlinear IV t-ratio can be easily defined for regression (14), where we use

(F (ỹt−1),4yt−1, . . . ,4yt−p+1)
′

as the instruments. Here either (ỹt) defined in (15) or the one given in (16) may be used.
Of course, the IV t-ratio for β in regression (14) can be defined similarly as in (5). The

3The models with linear time trend can also be dealt with, once we come up with a recursive detrending
scheme which ensures the martingale property of the detrended data. The implementation of our methodol-
ogy is then rather straightforward, given our results for the models with intercept obtained in this section.
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reader is referred to Chang (2002), for the explicit formula for the IV t-ratio in this general
case. Naturally, the new contour is given by

S̃T = inf
K≥1

{

1

Tκ2(
√

T )

K
∑

t=1

F (ỹt−1)
2 ≥ c

}

(17)

for some fixed constant c ∈ R, similarly as in (8).
In what follows, we denote by R̃(T ) and R(S̃T ) the IV t-ratios for β in regression (14)

respectively on the conventional contour with fixed sample size and along the new contour
given by (17). Also, we let

α(1) = 1 −
p−1
∑

k=1

αk,

where (αk) are the AR coefficients in our model (13), and define Brownian motion V by

V (r) = α(1)−1W (r) (18)

and the corresponding Ornstein-Uhlenbeck process Vδ by

Vδ(r) =

∫ r

0
e−δ(r−s)dV (s) (19)

similarly as in (7).

Corollary 4.1 Suppose that the demeaning procedure in (15) is used. We have under
the null hypothesis (2) of a unit root,

R̃(T ) →d
1

σ

(
∫ 1

0
H(V (r))2dr

)−1/2∫ 1

0
H(V (r)) dW (r)

R(S̃T ) →d N(0, 1)

as T → ∞, and under the local-to-unity alternative (6)

R̃(T ) →d −δÃ + B̃

R(S̃T ) →d −δÃ◦ + B̃◦

as T → ∞, where (Ã, B̃) and (Ã◦, B̃◦) are defined similarly as (A,B) and (A◦, B◦), given
respectively in Lemma 2.1 and Theorem 2.2, only with Wδ replaced by Vδ. As earlier, B̃◦

is distributed as standard normal.

We now define the stochastic processes Ṽ and Ṽδ by

Ṽ (r) = V (r) − 1

r

∫ s

0
V (s) ds (20)

Ṽδ(r) = Vδ(r) −
1

r

∫ s

0
Vδ(s) ds (21)
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for r ∈ (0,∞) and let Ṽ (0) = Ṽδ(0) = 0. Then Ṽ and Ṽδ become well defined continuous
stochastic processes on [0,∞).4 The limit theories for the IV t-ratios under the recursive
demeaning scheme (16) are represented by the processes Ṽ and Ṽδ, respectively for the null
and the alternative limit distributions. We have

Corollary 4.2 Suppose that the demeaning procedure in (16) is used. We have under
the null hypothesis (2) of a unit root,

R̃(T ) →d
1

σ

(
∫ 1

0
H(Ṽ (r))2dr

)−1/2∫ 1

0
H(Ṽ (r)) dW (r)

R(S̃T ) →d N(0, 1)

as T → ∞, and under the local-to-unity alternative (6),

R̃(T ) →d −δÃ + B̃

R(S̃T ) →d −δÃ◦ + B̃◦

as T → ∞, where (Ã, B̃) and (Ã◦, B̃◦) are defined similarly as (A,B) and (A◦, B◦), given
respectively in Lemma 2.1 and Theorem 2.2, but now with Wδ replaced by Ṽδ. As earlier,
B̃◦ is distributed as standard normal.

Our results in Corollaries 4.1 and 4.2 imply that all our previous results essentially carry
through more general models we introduce in (12) and (13). In particular, the distribution
theories along the new contour are normal, if the demeaning procedure given in (15) or (16)
is used.

The bootstrap procedure to attain the contour for the fixed sum of squared IV’s can
also be easily developed for the general models we consider here.

Step 1: Fit regression (14) and obtain the parameter estimates β̂ and (α̂k) and
the fitted values (ε̂t) of the innovations (εt) in (13).

Step 2: Draw the bootstrap samples (ε∗t ) from the centered fitted residuals
(ε̂t − T−1

∑T
t=1 ε̂t).

Step 3: Construct the bootstrap sample (4y∗
t ) for t = T +1, . . . using the regres-

sion model (14) with the estimated parameters β̂ and (α̂k), and the bootstrap
samples (ε∗t ) for the innovations.

Step 4: Set

ỹ∗t = ỹT +

t
∑

k=T+1

4y∗t

for t = T + 1, . . ., and generate the extended sample (ỹ+
t ) as

ỹ+
t =

{

ỹt if t ≤ T
ỹ∗t if t ≥ T + 1

Define the stopping time S̃+
T similarly as in (8) using the extended sample (ỹ+

t ).

4See Chang and Park (2004).
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As we mentioned earlier in Section 3, we may use OLS or any other IV estimator to esti-
mate the model parameters and the fitted residuals in Step 1. Moreover, we may or may
not impose the unit root restriction β = 0 in this step. Similarly, it does not affect our
subsequent results whether or not we impose the restriction β = 0 in Step 3 to obtain
the bootstrap samples (4y∗

t ). In our simulations reported in Section 6 below, we use the
simple OLS method to obtain the fitted residuals. For the parameter estimates, we rely on
the restricted OLS, i.e., we let β = 0 and estimate the other parameters (αk) by the OLS
method. The unit root is thus imposed for the parameter estimation in Steps 1 and 3 in
the simulations conducted in the paper.

We now denote by R(S̃+
T ) the IV t-ratio computed from the extended sample (y+

t ). Also,
we let V + and V +

δ be defined similarly as in (10) and (11) from V, Vδ and V ∗, which is the
Brownian motion independent of V and has the same variance as V . Moreover, we signify
by Ṽ +

δ the process that is given by Ṽδ, defined in (21), up to time unity and becomes V ∗

thereafter. Then we have

Corollary 4.3 Under the hypothesis (2) of a unit root, we have

R(S̃+
T ) →d N(0, 1)

as T → ∞. Moreover, we have under the local-to-unity alternative (6) that

R(S̃+
T ) →d −δÃ+ + B̃+

as T → ∞. If the demeaning procedure in (15) is used, then (Ã+, B̃+) are defined as
(A+, B+) given in Corollary 3.1, with Wδ and W+

δ replaced by Vδ and V +
δ , respectively. On

the other hand, if the demeaning procedure in (16) is used, then (Ã+, B̃+) are defined as
(A+, B+) with Wδ and W+

δ replaced by Ṽδ and Ṽ +
δ , respectively.

Once again, the limit theories for the IV t-ratio for the extended samples in more general
models given by (12) and (13) are virtually identical to the results for the simple model (1)
considered in Section 2.

If we let the AR order p in (14) increase as the sample size gets large, the unit root test
that we consider here is valid for more general processes than the AR(p) model in (13). This
is now well known. It was first noted by Said and Dickey (1984), who show that the test
based on the standard t-ratio is valid for general invertible ARMA models of unknown orders
if we increase the order p of the fitted autoregression by p = c T k with some constant c > 0
and the rate of expansion k ∈ (0, 1/3]. More recently, Chang and Park (2002) show that
the procedure is indeed valid for more general linear processes with minimal summability
conditions on their coefficients and under much weaker condition p = o(T 1/2) on the rate
of increase for the fitted AR orders. It can be shown that the result by Chang and Park
(2002) continue to hold for the tests based on the nonlinear IV’s along the new contour.
Therefore, our result here is applicable for a broad range of time series models.
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5. Panel Unit Root Tests

We now consider a panel unit root model given by

yit = µi + y◦it (22)

and

4y◦it = βy◦i,t−1 +

pi−1
∑

k=1

αik4y◦i,t−k + εit (23)

with
βi = 0 (24)

for i = 1, . . . , N and t = 1, . . . , T . As usual, the index i denotes individual cross-sectional
units, such as individuals, households, industries or countries, and the index t denotes time
periods. Note that we allow for heterogeneous individual effects and shortrun dynamics
here. For each cross-section i = 1, . . . , N , the model given by (22) and (23) is precisely
what we introduced in (12) and (13). As before, we assume that the error terms (εit) are
martingale differences. Moreover, for the moment, we let (εit) be uncorrelated across cross-
sectional units. We make this simplifying assumption to concentrate better on important
aspects of our new methodology. The cross-sectional dependency can be allowed and easily
dealt with in our framework. This will be discussed later in more detail along with other
issues in panel unit root tests.

Given all our results established in earlier sections, it is rather straightforward to develop
the unit root test for testing the hypothesis (24) in our panel model given by (22) and (23).
We consider the regression

4yit = βiỹi,t−1 +

pi−1
∑

k=1

αik4yi,t−k + εit, (25)

which corresponds to the regression given in (14) for each cross-section i = 1, . . . , N . To
introduce the approach relying on the new contour, we then let for each i = 1, . . . , N , as in
(17), Si ≥ 1 be such that

Si = inf
K≥1

{

1

Tκ2(
√

T )

K
∑

t=1

F (ỹi,t−1)
2 ≥ c

}

(26)

for some fixed constant c > 0, consider the nonlinear IV t-ratio R(Si) for the sample of
size Si. Here the sample size Si is determined by the squared sum of the lagged instrument
F (ỹi,t−1) achieving a certain level. Note that Si is also given as a function of T , but its
dependency on T is suppressed for expositional brevity. Of course, we may have to resort to
the bootstrap method to achieve the given contour, in which case we consider the individual
IV t-ratios computed using the extended sample (y+

it ) that can be constructed following the
steps outlined in Section 4, for each cross-section i = 1, . . . , N . We will denote the test
computed from the extended sample by R(S+

i ) analogously as in Section 4.
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Under the null hypothesis (24), it follows immediately from Corollaries 4.2 and 4.3 that

R(Si), R(S+
i ) →d N(0, 1) (27)

as T → ∞, for all i = 1, . . . , N . Here we have standard normal limit theory for the
individual IV t-ratios from all cross-sections. Furthermore, it is quite obvious that they
become independent across i = 1, . . . , N , since we assume that the innovations are cross-
sectionaly uncorrelated. The normal asymptotics here rely on T → ∞, and therefore require
the time series dimension T to be large. The asymptotic normality and independence of
the individual IV t-ratios are indeed what make them an efficient basis for constructing our
panel unit root tests, as we shall see below.

Now suppose we are interested in testing whether the series (yit) generated as in (22)
and (23) has a unit root in all cross-sections i = 1, . . . , N , against the alternative that
(yit) are stationary in all cross-section i. The null hypothesis is therefore formulated as
H0 : βi = 0 for all i, and tested against the stationarity alternative H1 : βi < 0 for all
i. The test statistic we first consider for testing the panel unit root hypothesis is a simple
average of the individual IV t-ratio statistics, R(Si) or R(S+

i ), for testing βi = 0 computed
from the regression (25) for each cross-sectional unit i = 1, . . . , N . The tests are defined as

R̄ =
1√
N

N
∑

i=1

R(Si), R̄+ =
1√
N

N
∑

i=1

R(S+
i ). (28)

We note that no additional standardizations are applied to the individual tests R(Si) and
R(S+

i ) in forming the average panel tests R̄ and R̄+. This is because the individual IV
t-tests, R(Si) and R(S+

i ), themselves are already standard normal asymptotically, not re-
quiring any further normalization. This is in sharp contrast to all the existing panel unit
root tests, which require some sort of additional standardizations, such as mean and vari-
ance adjustments or p-value transformations, to derive standard limit theories. Our panel
unit root tests, R̄ and R̄+, have standard normal limit theories, which follow immediately
from (27).

Theorem 5.1 Under the hypothesis (24) of unit roots, we have

R̄, R̄+ →d N(0, 1)

as T → ∞ for all N ≥ 1.

Our normal limit theory here is derived using T -asymptotics only, and the factor N −1/2 in
the definition of the test statistic R̄ or R̄+ in (28) is used just as a normalization factor, since
the test, R̄ or R̄+, is based on the sum of N asymptotically independent random variables.
This implies that the dimension of the cross-sectional units N may take any value, small as
well as large.

Our methodology has some important advantages over the existing tests. In our ap-
proach, the individual IV t-ratios are normal and independent across individual units as
long as T tends to infinity. This gives us the flexibility to fully investigate the presence
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of the unit roots in panels using the order statistics. For instance, we may use the mini-
mum of R(Si) or R(S+

i ) across i to test the null hypothesis H0 : βi = 0 for all i against
the alternative H1 : βi < 0 for some i. More interestingly, we may test the compos-
ite null hypothesis H0 : βi = 0 for 1 ≤ i ≤ M with 0 < M ≤ N , against the alter-
native H1 : βi < 0 for all i, by using the maximum of R(Si) or R(S+

i ) across i. Let
MR̄ = max1≤i≤N R(Si), MR̄+ = max1≤i≤N R(S+

i ), and also define mR̄ = min1≤i≤N R(Si)
and mR̄+ = min1≤i≤N R(S+

i ). Since R(Si) and R(S+
i ) are in the limit nothing but inde-

pendent standard normal random variates, the limit theories for these order statistics can
be easily obtained as in Chang and Song (2002). For a λ-level test, the critical values for
the maximum statistics, MR̄ and MR̄+, are given by Φ−1(λ1/M ) and those for the minimum
statistics, mR̄ and mR̄+, by Φ−1(1 − (1 − λ)1/N ), where Φ−1 is the inverse cummulative
distribution function of a standard normal random variable. See Chang and Song (2002) for
more details. Moreover, our normal asymptotics for the individual tests make it much easier
to deal with the cross-sectional dependencies, which are known to be extremely difficult to
control using the conventional approaches relying on nonnormal T -asymptotics.

The normal limit theory is also obtained for the existing panel unit root tests, such as
the pooled OLS test by Levin, Lin and Chu (2002) and the group mean t-bar statistic by Im,
Pesaran and Shin (2003); however, their tests involve the mean and variance adjustments
for the individual tests. Moreover, their theories are applicable only for large N , and also
require cross-sectional independence. More recently, several authors have made serious
attempt to allow for cross-sectional dependencies. Chang (2004) allows for dependencies of
unrestricted form, but her bootstrap procedure requires the dimension of time series T to be
substantially larger than that of the cross-section N , which is restrictive for many practical
applications. On the other hand, the procedures by Choi (2001b), Phillips and Sul (2001),
Moon and Perron (2001) and Bai and Ng (2004) allow for cross-sectional dependencies, but
for those in some specific forms driven by common factors. Finally, Chang (2002) and Chang
and Song (2002) uses the nonlinear IV approach to invent the tests for panel unit roots that
are valid in the presence of arbitrary cross-sectional correlations among the innovations.
Their limit theories are also normal.

Our framework is flexible enough to accommodate virtually all ingredients of previous
researches. The nonlinear IV methods with integrable IGF’s explored in Chang (2002) can
be implemented here to deal with cross-sectional correlations among innovations in arbitrary
forms. Moreover, the factor models for the cross-sectional dependencies employed in Choi
(2001b), Phillips and Sul (2001), Moon and Perron (2001), and Bai and Ng (2002) can also
be used together with our novel approach here. Once the cross-section dependency is dealt
with by using one of the methods listed above, our panel tests continue to yield normal
asymptotics without having to require the mean and variance adjustments or any other
transformations for the individual tests. We actually investigated through simulations the
performances of our tests for the panel models with cross-sectional dependency generated
by common factors. It appears that the tests perform quite well in finite samples even for
the panels with strong cross-section dependencies generated by common factors, once they
are removed using a defactoring method such as the orthogonalization procedure suggested
by Phillips and Sul (2001). This is true for the panels with various combinations of time
and cross-sectional dimensions.
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6. Simulations and Guidelines for Practical Implementations

We evaluate the finite sample performance of the panel unit root test R̄+ defined in (28)
for testing the joint unit root hypotheses, which is the average of individual IV t-ratios
computed along the new contour. We also examine the performance of the maximum
statistics MR̄+ for testing the composite null hypothesis that only some cross-sections have
unit roots. For the simulations we consider two instrument generating functions, F (x) = x
and sgn(x), and use the resulting IV estimators, namely the OLS and Cauchy estimators,
to construct our panel unit root tests. As discussed earlier, the individual Cauchy t-ratios
are always on the equi-squared-sum contour, which is also the equi-sample-size contour,
without any sample adjustment. However, we need to adjust the given sample size for each
individual cross-section to ensure that the individual OLS t-ratios are on the equi-squared
sum contour. We will discuss this issue of reaching the contour for the OLS t-ratios in more
detail later, along with some other issues that may arise in the practical implementations
of our new procedure.

We specify the simulation model as

yit = µi + y◦it

and let the stochastic component y◦
it be generated as

4y◦it = βiy
◦
i,t−1 + uit, (29)

where

uit = ρiui,t−1 + vit

vit = πiwt + εit

and |ρi| < 1, (wt) and (εit) are independent and identically distributed random sequences.
Under our specification, the stochastic component (y◦

it) of (yit) has a unit root when βi = 0.
Our simulation model is simple, yet it is general enough to consider various important

aspects of panel models that would affect the finite sample performance of the panel unit
root tests. Our model allows for the individual fixed effects parametrized as (µi), the het-
erogeneous serial correlation structures given by the autoregressive coefficients (ρi), and the
presence of a common factor (wt) generating cross-sectional dependency with the hetero-
geneous factor loading coefficients (πi). The factor structure has been routinely used to
generate cross-sectional dependency, see Bai and Ng (2004), Moon and Perron (2001) and
Phillips and Sul (2001). We consider the following two cases:

Cases Specifications

(a) Independent Case πi = 0
(b) Dependent Case
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The above cases are considered to demonstrate that our methodology really works as the
theory predicts, i.e., that along the new contour the individual tests can be regarded as
independent standard normals and our average panel unit root tests R̄+ and the maximum
tests MR̄+ are distributed approximately as standard normal and functional of cummulative
standard normal distribution function, respectively. The independent case looks at the
independent panels with no common factor, and the dependent case explores the general
panels with cross-sectional dependency generated by the common factor.

The simulation results are reported in Tables 1–4. All the reported simulation results
are based on 10,000 iterations. Panels with dimensions N = 10, 50, 100, 200 and T =
25, 50, 100 are considered for the average statistics in Tables 1 and 2. A larger sample size
T = 200 is also considered for the maximum statistics in Tables 3 and 4. For both the
independent and dependent cases, (εit) are generated as independent standard normals,
and the autoregressive coefficients (ρi) are randomly drawn from the uniform distribution
with support [0.2, 0.4]. For the dependent case, the common factor (wt) is generated from
the standard normal distribution and the factor loading coefficients (πi) on the common
factor are also randomly drawn from the uniform distribution with support [1, 4], providing
ample heterogeneity among the individual responsiveness to the common factor.

For the unit root null hypothesis, we set the coefficients βi = 0 for all i = 1, . . . , N , and
investigate the finite sample sizes relative to the nominal 1%, 5% and 10% test sizes. To
examine the rejection probabilities and the size-adjusted powers, we consider the station-
ary alternatives with (βi) generated randomly from the uniform distribution with support
[−0.05, 0]. We consider the t-ratios based on the OLS and the Cauchy estimators along
the new contour, and call the panel unit root tests based on the OLS t-ratios the CP tests
and those based on the Cauchy t-ratios the Cauchy tests. For comparison purpose in the
independent models, we also consider the usual average t-ratio test along the conventional
contour with the mean and variance corrections as done by Im, Pesaran and Shin (2003),
which we denote by IPS. For the dependent case, the CP and Cauchy tests are compared
with the Fisher-type test along the conventional contour suggested by Phillips and Sul
(2001), which we denote by the PS test.

To implement the panel unit root test CP based on the OLS t-ratios, we need to adjust
the given samples in all cross-sections so that they all have the same sum of squares of
the lagged levels of the instrument, which is simply (yi,t−1) in this case. To this end, we
fix the contour across all the cross-sections at the sum of squares of (yi,t−1) given by cT 2

with c = 3.5, 2.5, 1.5, 0.5, respectively for the sample sizes T = 25, 50, 100, 200. We are
therefore fixing the sum of squares at the preset level cT 2 for all N cross-sections in the
panel samples generated from each of the 10,000 iterations we carry out. This is to enforce
the same contour for all N cross-sections in 10,000 realized panel samples in our simulations.
The given data are then adjusted to be on the equi-squared-sum contour according to the
given levels of sum of squares.5 For those cross-sections with the sum of squares greater

5In the simulations, the equi-squared-sum contour is defined by fixing the sum of squares of the lagged
level yi,t−1 after purging away the effects of short-run dynamics, i.e.,

y
p
i,t−1 = yi,t−1 −

(

T
∑

t=1

yi,t−1x
′

it

)(

T
∑

t=1

xitx
′

it

)−1

xit
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than the required level, some of the given observations are discarded, while for those units
with deficient sum of squares, the bootstrapped data are added to extend the given sample
until the target sum of squares is reached following the steps outlined in Section 4. Once
all of the cross-sections reach the equi-squared-sum contour, the t-ratios based on the least
squares estimators are computed for each individual units along the new contour. For the
dependent panels, we first defactor the data6, and adjust the samples in the individual
cross-sections to be on the equi-squared-sum contour as described above. We then compute
the OLS t-tests along the new contour to construct our panel unit root tests.

For the implementation of the CP test to an actual panel data set, we may simply
calculate the sum of squares for each cross-section, and fix the contour at the maximum of
those individual sum of squares. We may then reach the contour by extending the samples
using our bootstrap procedure for all individual units until their sum of squares reach the
maximum. This is quite natural and clear. There is, however, one issue that needs to be
addressed here. Unlike the simulations, we only have one realized panel sample when we
work with a real data set. This means we are carrying out the bootstrap procedure only
once for each cross-section. The generated bootstrap samples for the sample extensions will
therefore be dependent on the random numbers drawn from the uniform distribution that
we use to create the indexes for resampling. Consequently the resulting test will be affected
by the randomness, producing different test results for different seeds used in the random
number generator. The dependence of our procedure on the random numbers is mitigated
in simulation exercises as we go through numerous iterations. When implemented to an
actual data set, however, the randomness of our CP test will remain. To deal with such
arbitrariness, we may try several seed numbers for the uniform random number generator
and see if the test results are robust. Or, we may take a fixed set of uniform random
numbers that I would provide, and use it as an input of our test procedure to ensure that
we obtain the same result whenever the procedure is applied for the same data set. Then
there will be no more arbitrariness in our testing procedure.

On the other hand, the implementation of the Cauchy panel test is strightforward, both
in the simulations and for actual data, since there is no need for sample adjustments to be
on the new contour. As mentioned earlier, the Cauchy t-ratios present a rare case where
the equi-squared-sum and the conventional equi-sample-size contour coincide. Hence, we
may just use the entire data given, as we normally do, to compute the Cauchy t-ratios for
each cross-section, and combine them with the normalization N−1/2 as in (28). For the
dependent panels, defactor the data first to remove the cross-section dependency and then
compute the individual Cauchy tests for all cross-sections to construct the Cauchy panel
test as described above.

Table 1 presents for the independent case the performance of the averaged t-ratios based
on the OLS and Cauchy estimators along the new equi-squared-sum contour, and the average
t-test along the conventional contour with the mean and varaince modifications considered
in Im, Pesaran and Shin (2003). We may summarize our findings here as follows. First, both
the OLS and Cauchy based average t-ratio statistics along the new contour have very good

where xit = (4yi,t−1, . . . ,4yi,t−p+1)
′. Of course we may just use the sum of squares of the lagged level

yi,t−1 to define the contour, as suggested in the paper. They are asymptotically equivalent.
6We used the defactoring procedure suggested by Phillips and Sul (2001).
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finite sample sizes for all nominal test sizes and for all sample sizes considered here. Second,
the Cauchy based average t-ratio statistic is more powerful than the OLS counterpart along
the new contour, especially for the cases with smaller N and T . The reason that the OLS
based CP test turned out to be less powerful than the Cauchy test is that we are either
discarding some of the given observations or relying on the bootstrapped data to be able to
take the new equi-squared-sum contour. One might have well expected that the OLS based
test would be more powerful, since the OLS estimator is more efficient than the Cauchy
estimator. As our simulation results indicate, however, the relative efficiency of the OLS
estimator over the Cauchy estimator is not large enough to pay off the cost of adjusting
the sample for the OLS t-ratios to be on the new contour. The required data adjustment
to be on the new contour can be costly in terms of power in panels with small cross-section
and time series dimensions. However, the difference in the discriminatory powers between
the two tests vanishes as both N and T increase. Third, the IPS test suffers from the
size distortions which are increasing with N , especially when T is small. See the case with
N = 200 and T = 25, for instance. This indicates that the normalizations taken for the IPS
test via the mean and variance modifications are indeed quite poor when T is small even for
the independent panels. Worse these errors in normalizations accumulate as N increases,
leading to the serious size distortions as we observe here.

Table 2 presents the simulation results for the dependent case. In general, our observa-
tions on the average t-ratios based on the OLS and Cauchy estimators for the independent
case continue to apply for this case. Again, both CP and Cauchy tests along the new con-
tour perform well in terms of the sizes, approximating very closely the nominal test sizes
for all the sample sizes considered here. The Cauchy test again has higher discriminatory
powers compared to the OLS based CP test in smaller panels. The powers of the both tests
are in general smaller in the dependent panels compared to their powers in the independent
panels. The Fisher-type test along the conventional contour by Phillips and Sul (2001)
performs quite well in terms of the finite sample sizes. However, its discriminatory powers
are extremely low, and worse it does not improve even when the sample size gets large.

Tables 3 and 4 report the finite sample performances of the maximum statistics for
the independent and dependent cases, respectively. The CP and Cauchy maximum tests
are respectively the maximums of the individual OLS and Cauchy t-ratios along the new
contour. The IPS and PS tests are not considered here since they are not valid for testing
the composite null hypothesis that we consider here. Overall the maximum tests have stable
finite sample sizes and good power properties, although their performances are not as good
as those of the average tests reported in Tables 1 and 2. Their finite sample performances,
however, do improve as the sample size gets large. The CP maximum test in general has
better sizes than the Cauchy maximum test, which tends to under-reject when N is larger
than T . The Cauchy maximum test, however, continues to be more powerful than the
OLS counterpart, and the superiority of the Cauchy maximum test is more evident in the
dependent case as can be seen from Table 4.
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7. Conclusion

In this paper, we develop the new asymptotics for the unit root test based on the nonlinear
IV t-ratio. It relies on the limit theories along the new contour given by the same sum of
squared IV’s, in contrast to the conventional contour given by the same sample size. In
particular, we show in the paper that the asymptotics along the contour of the equi-squared-
sum of IV’s generally yield the normal asymptotics. Subsequently, we demonstrate that this
finding may be exploited to invent tools and methodologies for the effective inferences in
nonstationary panels. In the panel context, our theory implies that the individual tests
behave asymptotically as normal when they are computed simply along the equi-squared-
sum contour across the individual units. Consequently, we may use various functionals of
those individual tests to do inference in nonstationary panels. Here we only concentrate on
the panel unit root models. This is just for expositional simplicity, which was intended to
deliver the main contents of the proposed methodology more clearly. Quite obviously, we
may use essentially the same approach to develop the corresponding methods of inference
that are applicable for cointegrated panels.

Appendix: Mathematical Proofs

Proof of Lemma 2.1 The limit theory under the null is derived in Phillips, Park and
Chang (2004). For the limit theory under that local-to-unity alternative specified in (6), let

WδT = T−1/2y[Tr]

where [x] denotes the largest integer not exceeding x ≥ 0. It follows that

WδT (r) →d Wδ(r),

where Wδ is defined in (7), uniformly in D(R) as T → ∞, which implies H(WδT ) →d H(Wδ)
uniformly in D(R) as well. This is well known.

Under the local-to-unity alternative β = −δ/T , we have

R(T ) =
1

σ

(

T
∑

t=1

F (yt−1)
2

)−1/2(

− δ

T

T
∑

t=1

F (yt−1)yt−1 +

T
∑

t=1

F (yt−1)εt

)

= − δ

σ

(

1

Tκ(
√

T )2

T
∑

t=1

F (yt−1)
2

)−1/2
1

T

1√
Tκ(

√
T )

T
∑

t=1

F (yt−1)yt−1

+
1

σ

(

1

Tκ(
√

T )2

T
∑

t=1

F (yt−1)
2

)−1/2
1√

Tκ(
√

T )

T
∑

t=1

F (yt−1)εt

= − δ

σ

(
∫ 1

0
H(WδT (r))2dr

)−1/2 ∫ 1

0
H(WδT (r))WδT (r)dr

+
1

σ

(∫ 1

0
H(WδT (r))2dr

)−1/2 ∫ 1

0
H(WδT (r)) dWT (r)
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→d − δ

σ

(
∫ 1

0
H(Wδ(r))

2dr

)−1/2 ∫ 1

0
H(Wδ(r))Wδ(r)dr

+
1

σ

(∫ 1

0
H(Wδ(r))

2dr

)−1/2 ∫ 1

0
H(Wδ(r)) dW (r) (30)

as T → ∞, and this proves the stated result.

Proof of Theorem 2.2 Assume (2). Define WT (r) = T−1/2y[Tr]. It is well known
that WT →d W in the space D(R) of cadlag functions endowed with the supremum norm.
Moreover, by extending the underlying probability space if necessary, we may always find
from the same probability space a distributionally equivalent copy of WT , say W ′

T , such
that W ′

T →a.s W uniformly. Since we are interested only in the distributional results, we
may assume WT and W are defined in the same probability space and that WT →a.s W
uniformly. Such a construction is possible for instance by the Skorohod embedding. For
more formal discussions on this, see Hall and Heyde (1980).

For any fixed constant c > 0, we define τ
T
(c) as

∫ τ
T

(c)

0
H(WT (r))2dr = c

and define a stopping time τ(c) to be such that
∫ τ(c)

0
H(W (r))2dr = c.

Then we have
τ

T
(c) →a.s. τ(c)

as T → ∞, since H(WT ) →a.s. H(W ) uniformly. Note also that τ
T
(c) = ST /T + O(T−1)

a.s., from which we may further deduce that

ST

T
→a.s. τ(c)

as T → ∞.
Under the null hypothesis of unit root β = 0, we have

R(ST ) =
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σ

(

ST
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F (yt−1)
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)−1/2 ST
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F (yt−1)εt

=
1
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√

T )2
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)−1/2
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√
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(

∫ ST /T

0
H(WT (r))2dr

)−1/2
∫ ST /T

0
H(WT (r)) dWT (r)

=

(

∫ τ(c)

0
H(W (r))2dr

)−1/2
1

σ

∫ τ(c)

0
H(W (r)) dW (r) + o(1) a.s. (31)
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as T → ∞, since H(WT ) →a.s. H(W ) uniformly and ST /T →a.s. τ(c) as T → ∞. However,
the process U defined by

U(s) =
1

σ

∫ τ(s)

0
H(W (r)) dW (r)

is the DDS Brownian motion of the martingale M

M(s) =
1

σ

∫ s

0
H(W (r)) dW (r),

and therefore,

(

∫ τ(c)

0
H(W (r))2dr

)−1/2
1

σ

∫ τ(c)

0
H(W (r)) dW (r) = c−1/2U(c) ∼ N(0, 1) (32)

for any given c > 0. The reader is referred to, e.g., Revuz and Yor (1994) for the DDS
Brownian motion. The stated result now follows readily from (31) and (32).

Next, assume (6). If we define τδ(c) by

∫ τδ(c)

0
H(Wδ(r))

2dr = c (33)

for a given fixed c > 0, then ST /T →a.s. τδ(c) exactly as in the proof for the null distribution
given above.

Under the alternative of local-to-unity β = −δ/T , we have
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)

= − δ
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)−1/2
1
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∑
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+
1

σ

(

ST
∑
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F (yt−1)
2

)−1/2 ST
∑
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F (yt−1)εt

= − δ

σ

(

∫ ST /T

0
H(WδT (r))2dr

)−1/2
∫ ST /T

0
H(WδT (r))WδT (r)dr

+
1

σ

(

∫ ST /T

0
H(WδT (r))2dr

)−1/2
∫ ST /T

0
H(WδT (r)) dWT (r)

= − δ

σ

(

∫ τ(c)

0
H(Wδ(r))

2dr

)−1/2
∫ τ(c)

0
H(Wδ(r))Wδ(r)dr

+

(

∫ τ(c)

0
H(Wδ(r))

2dr

)−1/2
1

σ

∫ τ(c)

0
H(Wδ(r)) dW (r) + o(1) a.s. (34)
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as T → ∞. We now consider the DDS Brownian motion

Uδ(s) =
1

σ

∫ τδ(s)

0
H(Wδ(r)) dW (r)

of the martingale

Mδ(s) =
1

σ

∫ s

0
H(Wδ(r)) dW (r),

from which the stated result follows immediately, due to (33) and (34).

Proof of Corollary 3.1 Denote by W the limit Brownian motion appearing in the
invariance principle introduced in (3). If we let

W ∗
T (r) =

1√
T

[Tr]
∑

t=1

ε∗t ,

for r ≥ 0, then we have
W ∗

T →d∗ W ∗ a.s. (35)

as T → ∞. The reader is referred to Park (2003) for more details on the bootstrap invariance
principle. Since the limit distribution is not dependent upon the realization of the sample,
we may deduce that W ∗ is independent of W .

The first part on the null limit distribution follows exactly as in the proof for the first part
of Theorem 2.2. We let W +

T (r) = T−1/2y+
[Tr]. As before we have W +

T →a.s. W+ uniformly,

where the process W + is defined in (10), and this in turn implies H(W +
T ) →a.s. H(W+)

uniformly as well. We also define τT (c) for a fixed constant c as

∫ τT (c)

0
H(W+

T (r))2dr = c,

and define a stopping time τ(c) as

∫ τ(c)

0
H(W+(r))2dr = c.

Similarly as in the proof of Theorem 2.2, it follows that τT (c) →a.s. τ(c), which implies
S+

T /T →a.s. τ(c), since τT (c) = S+
T /T + O(T−1). The rest of the proof now follows exactly

as in the proof of the first part of Theorem 2.2.
For the second part, the extended samples behave like near unit root processes up to

T , and then like the processes with exact unit root thereafter. For more detailed discussion
on the bootstrap theory for the near unit root processes, see Park (2004). When S+

T ≤ T ,
S+

T = ST and the limit theory under the local-to-unity alternative follows exactly as in the
proof for the second part of Theorem 2.2. Hence, we consider the case S+

T > T . We let
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W+
δT (r) = T−1/2y+

[Tr]. We then have W +
δT →a.s. W+

δ and H(W +
T ) →a.s. H(W+

δ ) uniformly,

where W +
δ is defined in (11). Here we define τT (c) for a fixed constant c as

∫ τT (c)

0
H(W+

δT (r))2dr = c,

and define a stopping time τ(c) as

∫ τ(c)

0
H(W+

δ (r))2dr = c.

We also have S+
T /T →a.s. τ(c), since τT (c) →a.s. τ(c) and τT (c) = S+

T /T + O(T−1) hold
here.

Notice that

4y+
t =







4yt = − δ

T
yt−1 + εt if t ≤ T

4y∗t = ε∗t if t ≥ T + 1
.

Then we have
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S+

T
∑

t=T+1

F (y∗t−1)ε
∗
t

and

1√
Tκ(

√
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√
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1√
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√
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+
1√

Tκ(
√

T )
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T
∑

t=T+1

F (y∗t−1)ε
∗
t

= −δ

∫ 1

0
H(WδT (r))WδT (r)dr +

∫ 1

0
H(WδT (r))dWT (r) +

∫ S+

T
/T

1
H(W ∗

T (r))dW ∗
T (r)

= −δ

∫ 1

0
H(Wδ(r))Wδ(r)dr +

∫ 1

0
H(Wδ(r))dW +

∫ τ(c)

1
H(W ∗(r))dW ∗(r) + o(1) a.s.

= −δ

∫ 1

0
H(Wδ(r))Wδ(r)dr +

∫ τ(c)

0
H(W+

δ (r))dW +(r)

due to the bootstrap invariance principle given in (35) and the definitions of the extended
Brownian motions W + and W+

δ provided in (10) and (11).
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We may then easily deduce that under β = −δ/T and S+
T > T ,

R(S+
T ) =

1

σ





S+

T
∑

t=1

F (y+
t−1)

2





−1/2
S+

T
∑

t=1

F (y+
t−1)4y+

t

= − δ

σ

(

∫ τ(c)

0
H(W+

δ (r))2dr

)−1/2
∫ 1

0
H(Wδ(r))Wδ(r)dr

+
1

σ

(

∫ τ(c)

0
H(W+

δ (r))2dr

)−1/2
∫ τ(c)

0
H(W+

δ (r)) dW +(r) + o(1) a.s.

as T → ∞. The stated result is now immediate.

Proof of Corollary 4.1 The nonlinear IV t-ratio R̃(T ) for testing β = 0 in the regression
(14) can be written as

R̃(T ) = (1/σ)Q
−1/2
T PT (36)

where

PT =

T
∑

t=1

F (ỹt−1)4yt −
(

T
∑

t=1

F (ỹt−1)x
′
t

)(

T
∑

t=1

xtx
′
t

)−1( T
∑

t=1

xt4yt

)

QT =

T
∑

t=1

F (ỹt−1)
2 −

(

T
∑

t=1

F (ỹt−1)x
′
t

)(

T
∑

t=1

xtx
′
t

)−1( T
∑

t=1

xtF (ỹt−1)

)

and xt = (4yt−1, . . . ,4yt−p+1)
′.

Under the demeaning scheme (15), 4yt = 4y◦t and ỹt−1 = y◦t−1, and thus the regression
(14) becomes exactly as the regression given in (13). Let x◦

t = (4y◦t−1, . . . ,4y◦t−p+1)
′, and

define P ◦
1T and Q◦

1T exactly the same as PT and QT , but with 4y◦t , y◦t−1 and x◦
t in the

places of 4yt, ỹt−1 and xt. Then under the demeaning scheme (15), we have

PT = P ◦
T , QT = Q◦

T (37)

and the IV t-ratio R̃(T ) can now be written equivalently as R̃(T ) = (1/σ)Q
◦−1/2
T P ◦

T .
To derive the limit theory, let

ut =

p−1
∑

k=1

αk4y◦t−k + εt

and suppose that α(z) = 1 −∑p−1
k=1 αkz

k and (εt) satisty the standard conditions routinely
imposed in unit root models, such as those in Chang and Park (2002). Then the following
invariance principle holds:

1√
T

[Tr]
∑

t=1

ut →d V (r)
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where the limit BM V is defined in (18). Assume y◦
1 = 0 for simplicity. Under the null of

unit root β = 0, we have 4y◦
t = ut, which implies

T−1/2y◦[Tr] = T−1/2

[Tr]
∑

t=1

ut →d V (r)

as T → ∞, and

1

κ(
√

T )
√

T

T
∑

t=1

F (y◦t−1)4y◦t =
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√
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T

T
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∫ 1

0
H(V (r))dV (r) (38)

1

κ2(
√

T )T

T
∑

t=1

F (y◦t−1)
2 →d

∫ 1

0
H(V (r))2dr (39)

Also under the null, 4y◦
t−k = ut−k, implying

∑T
t=1 F (y◦t−1)4y◦t−k = Op(κ(

√
T )T 1/2) and

∑T
t=1 4y◦t−k4y◦t =

∑T
t=1 ut−kut = Op(

√
T ), for each k=1, . . . , p−1, and

∑T
t=1 4y◦t−k4y◦t−` =

∑T
t=1 ut−kut−` = Op(T ), for all k, `=1, . . . , p −1. We may now deduce that

T
∑
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F (y◦t−1)x
◦′
t = Op(κ(

√
T )

√
T ),

T
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t=1

x◦
t x

◦′
t = Op(T ),

T
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√
T ) (40)

which in turn implies
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2 + Op(T

−1)

The null limit distributions of R̃(T ) and R(S̃T ) can now be derived as in Lemma 2.1 and
Theorem 2.2 using the results given in (38) and (39) due to (36) and (37).

Under the local-to-unity alternative β = −δ/T ,

T−1/2y◦[Tr] →d Vδ(r)

the Ornstein-Ulenbeck process defined in (19), and

4y◦t = −(δ/T )y◦t−1 + ut

Then it follows that
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= − δ
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∑
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◦
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1

κ(
√

T )
√

T

T
∑

t=1

F (y◦t−1)ut

→d −δ

∫ 1

0
H(Vδ(r))Vδ(r)dr +

∫ 1

0
H(Vδ(r))dV (r) (41)
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and

1

κ2(
√

T )T

T
∑

t=1

F (y◦t−1)
2 →d

∫ 1

0
H(Vδ(r))

2dr (42)

With β = −δ/T , we have

4y◦t−k4y◦t = − δ2

T 2
y◦t−k−1y

◦
t−1 −

δ

T
y◦t−k−1ut −

δ

T
y◦t−1ut−k + ut−kut

4y◦t−k4y◦t−` = − δ2

T 2
y◦t−k−1y

◦
t−`−1 −

δ

T
y◦t−k−1ut−` −

δ

T
y◦t−`−1ut−k + ut−kut−`

for k, ` = 1, . . . , p − 1, implying

T
∑

t=1

4y◦t−k4y◦t = Op(1) + Op(1) + Op(
√

T ) + Op(
√

T ) = Op(
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T
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4y◦t−k4y◦t−` = Op(1) + Op(
√

T ) + Op(
√

T ) + Op(T ) = Op(T )

Hence the results in (40) on the stochastic orders of the component sample moments in
P ◦

T and Q◦
T also hold under the local-to-unity alternative. The stated limit theories for the

tests R̃(T ) and R(S̃T ) under β = −δ/T then follow just as in Lemma 2.1 and Theorem 2.2
due to (36), (37), (41) and (42).

Proof of Corollary 4.2 With the demeaning scheme (16),

ỹt = ỹ◦t = y◦t −
1

t

t
∑

k=1

y◦k

and the regression (14) can be rewritten as

4y◦t = βỹ◦t−1 +

p−1
∑

k=1

αk4y◦t−k + εt,

since 4yt−s = 4y◦t−s, for s = 0, 1, . . . , p − 1, and ỹt−1 = ỹ◦t−1. As in the proof of Corollary
4.1, we may also define P ◦

T and Q◦
T analogously as PT and QT , but now with ỹ◦

t−1 in the
place of ỹt−1. The IV t-ratio from the regression (14) under the demeaning scheme (16) can

be also written as R̃(T ) = (1/σ)Q
◦−1/2
T P ◦

T .
To derive the limit theories, note that

T−1/2ỹ◦[Tr] →d















V (r) − 1

r

∫ r

0
V (s)ds = Ṽ (r), when β = 0

Vδ(r) −
1

r

∫ r

0
Vδ(s)ds = Ṽδ(r), when β = −δ/T
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as T → ∞, using the notations Ṽ and Ṽδ introduced in (20) and (21). Similarly as before,
we have under the null β = 0,

1

κ(
√

T )
√

T

T
∑

t=1

F (ỹ◦t−1)4y◦t =
1

κ(
√

T )
√

T

T
∑

t=1

F (ỹ◦t−1)ut →d

∫ 1

0
H(Ṽδ(r))dV (r) (43)

and under the local-to-unity alternative β = −δ/T ,

1

κ(
√

T )
√

T

T
∑

t=1

F (ỹ◦t−1)4y◦t

= − δ

κ(
√

T )T 3/2

T
∑

t=1

F (ỹ◦t−1)y
◦
t−1 +

1

κ(
√

T )
√

T

T
∑

t=1

F (ỹ◦t−1)ut

→d −δ

∫ 1

0
H(Ṽδ(r))Vδ(r)dr +

∫ 1

0
H(Ṽδ(r))dV (r) (44)

Finally,
T
∑

t=1

F (ỹ◦t−1)x
◦
t = Op(κ(

√
T )

√
T )

since
∑T

t=1 F (ỹ◦t−1)4y◦t−k = Op(κ(
√

T )
√

T ), for all k = 1, . . . , p − 1, both under the null
and the alternative. The rest of the proof is essentially identical to that of Corollary 4.1,
given the results in Lemma 2.1 and in equations (43) and (44) above.

Proof of Corollary 4.3 The proof is immediate from our earlier results in Corollary 3.1
and the proofs of Corollaries 4.1 and 4.2.

Proof of Theorem 5.1 The proof follows directly from our earlier results in Corollaries
4.2 and 4.3, and the details are omitted.
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Table 1: Average t-Tests Along the Conventional and New Contours: Independent Case

Constant only Sizes Rejection Probabilities Size-Adjusted Powers

T N Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 IPS 0.025 0.097 0.165 0.052 0.168 0.271 0.022 0.098 0.174
CP 0.010 0.056 0.106 0.032 0.129 0.219 0.031 0.117 0.208

Cauchy 0.014 0.054 0.106 0.076 0.230 0.359 0.058 0.214 0.346

50 IPS 0.046 0.143 0.232 0.169 0.391 0.529 0.054 0.182 0.305
CP 0.013 0.064 0.119 0.089 0.259 0.394 0.074 0.227 0.352

Cauchy 0.015 0.060 0.114 0.275 0.533 0.677 0.207 0.500 0.646

100 IPS 0.069 0.194 0.296 0.345 0.601 0.729 0.090 0.274 0.435
CP 0.015 0.067 0.128 0.195 0.438 0.579 0.146 0.375 0.525

Cauchy 0.014 0.057 0.111 0.566 0.807 0.895 0.516 0.790 0.885

200 IPS 0.111 0.272 0.387 0.652 0.851 0.917 0.225 0.474 0.624
CP 0.017 0.071 0.141 0.403 0.673 0.793 0.312 0.596 0.735

Cauchy 0.012 0.052 0.105 0.884 0.969 0.987 0.860 0.968 0.987

50 10 IPS 0.014 0.066 0.124 0.040 0.150 0.255 0.030 0.115 0.216
CP 0.010 0.049 0.102 0.042 0.157 0.263 0.042 0.158 0.258

Cauchy 0.013 0.053 0.103 0.107 0.306 0.465 0.088 0.295 0.458

50 IPS 0.021 0.081 0.152 0.182 0.423 0.571 0.110 0.325 0.461
CP 0.012 0.058 0.112 0.186 0.441 0.590 0.169 0.415 0.565

Cauchy 0.011 0.054 0.101 0.634 0.863 0.931 0.620 0.850 0.931

100 IPS 0.026 0.105 0.184 0.447 0.724 0.839 0.289 0.579 0.714
CP 0.012 0.060 0.119 0.489 0.745 0.851 0.449 0.717 0.821

Cauchy 0.012 0.053 0.101 0.974 0.997 0.999 0.970 0.997 0.999

200 IPS 0.040 0.124 0.208 0.811 0.944 0.977 0.594 0.847 0.926
CP 0.015 0.066 0.125 0.838 0.954 0.981 0.813 0.937 0.971

Cauchy 0.011 0.050 0.097 1.000 1.000 1.000 1.000 1.000 1.000

100 10 IPS 0.012 0.058 0.110 0.110 0.332 0.496 0.100 0.299 0.471
CP 0.012 0.053 0.103 0.112 0.305 0.449 0.099 0.294 0.443

Cauchy 0.009 0.051 0.101 0.508 0.797 0.898 0.515 0.792 0.897

50 IPS 0.013 0.065 0.123 0.565 0.829 0.914 0.505 0.787 0.892
CP 0.013 0.058 0.114 0.710 0.901 0.955 0.664 0.885 0.948

Cauchy 0.011 0.053 0.104 0.999 1.000 1.000 0.999 1.000 1.000

100 IPS 0.016 0.071 0.133 0.939 0.991 0.997 0.901 0.984 0.995
CP 0.012 0.058 0.113 0.951 0.992 0.997 0.941 0.990 0.996

Cauchy 0.010 0.048 0.094 1.000 1.000 1.000 1.000 1.000 1.000

200 IPS 0.017 0.076 0.147 1.000 1.000 1.000 0.999 1.000 1.000
CP 0.013 0.065 0.122 1.000 1.000 1.000 1.000 1.000 1.000

Cauchy 0.010 0.048 0.101 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2: Average t-Tests: Dependent Case

Constant only Sizes Rejection Probabilities Size-Adjusted Powers

T N Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 PS 0.012 0.052 0.102 0.007 0.037 0.073 0.006 0.035 0.072
CP 0.008 0.046 0.096 0.019 0.083 0.155 0.023 0.090 0.160

Cauchy 0.010 0.049 0.099 0.038 0.137 0.235 0.036 0.141 0.237

50 PS 0.013 0.055 0.106 0.020 0.061 0.112 0.017 0.056 0.106
CP 0.012 0.057 0.109 0.046 0.160 0.267 0.043 0.146 0.250

Cauchy 0.012 0.051 0.098 0.117 0.285 0.396 0.105 0.281 0.398

100 PS 0.012 0.055 0.102 0.020 0.056 0.092 0.018 0.052 0.090
CP 0.016 0.064 0.117 0.106 0.276 0.400 0.079 0.237 0.365

Cauchy 0.010 0.048 0.093 0.261 0.472 0.591 0.260 0.481 0.606

200 PS 0.017 0.055 0.105 0.030 0.064 0.097 0.022 0.059 0.094
CP 0.017 0.064 0.120 0.210 0.415 0.544 0.156 0.374 0.503

Cauchy 0.013 0.049 0.091 0.491 0.672 0.748 0.453 0.673 0.758

50 10 PS 0.011 0.053 0.103 0.015 0.059 0.110 0.013 0.056 0.108
CP 0.008 0.043 0.093 0.022 0.096 0.175 0.027 0.108 0.188

Cauchy 0.007 0.043 0.088 0.040 0.149 0.256 0.050 0.162 0.279

50 PS 0.013 0.058 0.110 0.033 0.086 0.134 0.027 0.079 0.125
CP 0.010 0.054 0.106 0.102 0.271 0.388 0.100 0.254 0.376

Cauchy 0.010 0.050 0.094 0.277 0.493 0.596 0.272 0.494 0.605

100 PS 0.014 0.059 0.115 0.075 0.137 0.190 0.067 0.129 0.177
CP 0.012 0.058 0.112 0.236 0.437 0.547 0.216 0.416 0.530

Cauchy 0.010 0.050 0.094 0.519 0.654 0.717 0.517 0.654 0.723

200 PS 0.018 0.075 0.133 0.113 0.171 0.211 0.095 0.151 0.189
CP 0.013 0.061 0.117 0.488 0.641 0.703 0.467 0.622 0.687

Cauchy 0.010 0.044 0.087 0.703 0.763 0.792 0.703 0.768 0.799

100 10 PS 0.010 0.052 0.108 0.052 0.121 0.180 0.051 0.118 0.171
CP 0.008 0.041 0.088 0.034 0.119 0.201 0.039 0.136 0.218

Cauchy 0.007 0.043 0.089 0.089 0.234 0.339 0.106 0.255 0.357

50 PS 0.014 0.061 0.117 0.069 0.128 0.176 0.059 0.115 0.165
CP 0.011 0.055 0.106 0.370 0.553 0.632 0.367 0.541 0.624

Cauchy 0.010 0.046 0.094 0.594 0.705 0.753 0.596 0.711 0.755

100 PS 0.014 0.063 0.122 0.127 0.193 0.237 0.120 0.182 0.224
CP 0.012 0.058 0.109 0.538 0.647 0.695 0.528 0.636 0.688

Cauchy 0.010 0.049 0.097 0.695 0.752 0.778 0.696 0.752 0.779

200 PS 0.023 0.081 0.142 0.081 0.122 0.148 0.066 0.104 0.130
CP 0.014 0.063 0.117 0.799 0.847 0.867 0.788 0.840 0.862

Cauchy 0.010 0.048 0.096 0.873 0.896 0.909 0.873 0.897 0.910
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Table 3: Maximum Tests Along the New Contour: Independent Case

Constant only Sizes Rejection Probabilities Size-Adjusted Powers

T N Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 CP 0.011 0.051 0.108 0.024 0.103 0.187 0.020 0.099 0.179
Cauchy 0.008 0.037 0.076 0.049 0.169 0.272 0.059 0.209 0.318

50 CP 0.012 0.057 0.119 0.038 0.136 0.225 0.035 0.124 0.201
Cauchy 0.005 0.029 0.061 0.066 0.184 0.278 0.104 0.247 0.371

100 CP 0.013 0.061 0.122 0.057 0.172 0.270 0.048 0.148 0.238
Cauchy 0.003 0.023 0.052 0.083 0.213 0.314 0.137 0.306 0.419

200 CP 0.016 0.074 0.136 0.072 0.200 0.305 0.052 0.150 0.245
Cauchy 0.003 0.017 0.044 0.098 0.237 0.336 0.198 0.351 0.453

50 10 CP 0.009 0.050 0.102 0.033 0.126 0.227 0.036 0.126 0.224
Cauchy 0.009 0.043 0.088 0.085 0.258 0.385 0.088 0.277 0.414

50 CP 0.010 0.054 0.103 0.072 0.207 0.318 0.068 0.196 0.313
Cauchy 0.007 0.038 0.077 0.199 0.387 0.503 0.232 0.428 0.551

100 CP 0.016 0.064 0.122 0.114 0.271 0.388 0.089 0.235 0.348
Cauchy 0.006 0.031 0.069 0.284 0.469 0.569 0.340 0.525 0.620

200 CP 0.012 0.060 0.110 0.157 0.331 0.450 0.139 0.304 0.428
Cauchy 0.006 0.029 0.061 0.357 0.529 0.626 0.423 0.596 0.694

100 10 CP 0.008 0.047 0.095 0.070 0.203 0.314 0.081 0.210 0.322
Cauchy 0.008 0.044 0.092 0.255 0.453 0.559 0.268 0.471 0.574

50 CP 0.011 0.053 0.105 0.240 0.438 0.561 0.234 0.427 0.555
Cauchy 0.008 0.044 0.086 0.623 0.770 0.832 0.634 0.785 0.844

100 CP 0.012 0.054 0.102 0.267 0.468 0.579 0.252 0.457 0.575
Cauchy 0.007 0.043 0.088 0.621 0.758 0.815 0.646 0.771 0.825

200 CP 0.009 0.044 0.086 0.406 0.588 0.683 0.413 0.603 0.705
Cauchy 0.008 0.040 0.080 0.780 0.867 0.902 0.793 0.879 0.914

200 10 CP 0.009 0.048 0.098 0.319 0.547 0.662 0.331 0.553 0.667
Cauchy 0.009 0.044 0.088 0.528 0.743 0.828 0.548 0.756 0.842

50 CP 0.008 0.042 0.086 0.501 0.664 0.743 0.525 0.684 0.762
Cauchy 0.009 0.050 0.095 0.745 0.854 0.899 0.756 0.854 0.901

100 CP 0.006 0.041 0.077 0.551 0.690 0.758 0.583 0.714 0.780
Cauchy 0.009 0.047 0.091 0.748 0.840 0.876 0.753 0.844 0.881

200 CP 0.006 0.030 0.068 0.646 0.764 0.820 0.688 0.797 0.846
Cauchy 0.007 0.042 0.085 0.857 0.912 0.935 0.866 0.919 0.940
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Table 4: Maximum Tests Along the New Contour: Dependent Case

Constant only Sizes Rejection Probabilities Size-Adjusted Powers

T N Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 CP 0.015 0.065 0.123 0.026 0.104 0.186 0.016 0.080 0.153
Cauchy 0.013 0.055 0.100 0.050 0.151 0.247 0.036 0.141 0.248

50 CP 0.012 0.059 0.119 0.031 0.106 0.184 0.026 0.092 0.159
Cauchy 0.005 0.027 0.056 0.042 0.117 0.190 0.063 0.174 0.270

100 CP 0.014 0.061 0.119 0.040 0.135 0.218 0.031 0.120 0.190
Cauchy 0.003 0.022 0.048 0.051 0.134 0.211 0.096 0.214 0.309

200 CP 0.015 0.063 0.120 0.049 0.144 0.232 0.033 0.118 0.207
Cauchy 0.003 0.018 0.042 0.052 0.144 0.228 0.107 0.251 0.344

50 10 CP 0.015 0.073 0.131 0.035 0.128 0.219 0.026 0.092 0.169
Cauchy 0.014 0.059 0.108 0.070 0.200 0.296 0.056 0.179 0.286

50 CP 0.014 0.057 0.112 0.055 0.166 0.263 0.043 0.149 0.246
Cauchy 0.006 0.036 0.076 0.139 0.285 0.382 0.157 0.327 0.425

100 CP 0.013 0.058 0.114 0.077 0.188 0.280 0.065 0.173 0.259
Cauchy 0.005 0.031 0.067 0.190 0.335 0.424 0.232 0.386 0.483

200 CP 0.013 0.059 0.110 0.110 0.239 0.330 0.097 0.224 0.312
Cauchy 0.005 0.026 0.058 0.274 0.415 0.496 0.323 0.479 0.556

100 10 CP 0.016 0.072 0.132 0.050 0.145 0.217 0.039 0.113 0.183
Cauchy 0.014 0.061 0.118 0.137 0.274 0.357 0.110 0.251 0.334

50 CP 0.013 0.057 0.104 0.154 0.304 0.391 0.140 0.291 0.382
Cauchy 0.010 0.043 0.086 0.439 0.573 0.641 0.440 0.586 0.655

100 CP 0.011 0.048 0.095 0.181 0.314 0.399 0.174 0.317 0.406
Cauchy 0.007 0.039 0.081 0.485 0.588 0.646 0.505 0.606 0.661

200 CP 0.009 0.041 0.082 0.299 0.452 0.534 0.304 0.474 0.559
Cauchy 0.008 0.042 0.079 0.674 0.753 0.792 0.683 0.765 0.806

200 10 CP 0.015 0.068 0.124 0.166 0.309 0.397 0.145 0.273 0.363
Cauchy 0.016 0.063 0.118 0.318 0.519 0.620 0.273 0.480 0.591

50 CP 0.010 0.049 0.093 0.225 0.336 0.399 0.224 0.338 0.407
Cauchy 0.011 0.048 0.092 0.572 0.673 0.720 0.565 0.676 0.726

100 CP 0.006 0.035 0.072 0.282 0.379 0.436 0.307 0.401 0.467
Cauchy 0.009 0.045 0.090 0.618 0.693 0.730 0.623 0.699 0.734

200 CP 0.006 0.031 0.063 0.370 0.459 0.514 0.390 0.496 0.553
Cauchy 0.009 0.047 0.090 0.754 0.802 0.830 0.755 0.806 0.834


