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Abstract

In this paper we establish the strong approximations for the nonlinear transfor-
mations of integrated time series. Both the asymptotically homogeneous and
integrable transformations are considered, and the explicit rates for the conver-
gence to their limit distributions are obtained under mild regularity conditions
that are satisfied by virtually all nonlinear models used in practical applica-
tions. The first order asymptotics are also derived under the conditions that are
significantly weaker than those required by earlier works.
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1. Introduction

The asymptotics for the nonlinear transformations of integrated time series were developed
earlier by Park and Phillips (1999) (which will be referred to as PP henceafter). Their
work laid a ground for many of the subsequent researches on the nonlinear models involving
integrated time series. They include Park and Phillips (2001) and Chang, Park and Phillips
(2001) for nonlinear regressions, Park and Phillips (2000) for binary choice models, Chang
and Park (2001) for index models, and Chang (2002) and Phillips, Park and Chang (2001)
for the unit root tests using nonlinear IV tests. Given that many of the important macroe-
conomic and financial time series exhibit nonstationary characteristics, this line of research
would certainly be very helpful in performing inference based on nonlinear econometric
models. Recently, de Jong (2002a, 2002b) extended some of the results in PP.

In this paper, we consider the strong approximations for the nonlinear transformations
of integrated time series. For the standardized sample moments of the nonlinear trans-
formations of integrated time series, we provide the exact rates of convergence to their
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limiting distributions. Our results here may thus be seen as the refinements of those in
PP. The transformations we investigate in this paper include the asymptotically homoge-
neous functions and integrable functions, and we assume that the integrated time series are
generated by the linear processes with iid innovations. These assumptions are largely com-
parable to those in PP. However, we impose much less stringent regularity conditions for
the transformation functions compared with those used in PP. In particular, our regulaity
conditions for the asymptotically homogeneous functions explicitly allow for the logarithms
and reciprocals that have poles at the origin. Moreover, our first order asymptotics for the
integrable transformations do not require any regularity condition on the transformation
function except for Riemann-integrability.

The strong approximations developed in this paper have some important potential ap-
plications. First, they make it possible to establish the asymptotic theories for the non-
parametric and semiparametric methods used to analyze the models with integrated time
series. The methods often require the dimension of the model increase as the sample size,
such as in the series estimation like wavelets, and in such cases the strong approximations
show us how fast we may expand the model without changing the first order asymptotics.
Second, they can be used to establish the theory of bootstrap refinements for the nonlinear
models with integrated time series. For the refiement theory of bootstrap, it is necessary to
consider the lower order terms and on this regard our strong approximations provide some
useful informations. Third, they are useful to statistically analyze the models involving time
series with asymptotic unit roots, i.e., roots approaching unity as the sample size increases.
The asymptotic analysis of the nonlinear models with such time series require the strong
approximations that we develop in this paper.

The rest of the paper is orginized as follows. In Section 2, we introduce the assump-
tions, and some preliminary notions and results that are necessary to develop and inter-
pret our subsequent developments. The main results on the asymptotics for the nonlinear
transformations of integrated time series are given in Section 3. There both the fist or-
der asymptotics and the strong approximations for the asymptotically homogeneous and
the integrable transformations are presented. The concluding remark follows in Section
4. All the mathematical proofs of the theorems in the paper are presented in Section 5.
A word on notation. The standard notations such as a.s., →p, →d, op and Op are used
frequently without any specific reference. As usual, R denotes the real line and =d signifies
the distributional equivalence. Throughout the paper, the integral and integrability of a
transformation on R are interpreted to be the Riemann-integral and Riemann-integrability,
respectively.

2. Assumptions and Preliminaries

Consider an integrated time series (xt) generated by

xt = xt−1 + wt (1)
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where we set x0 = Op(1) and assume that (wt) satisfies an invariance principle. More
specifically, we construct the stochastic process Wn by

Wn(r) =
1√
n

[nr]∑
t=1

wt (2)

and assume

2.1 Assumption Wn →d W as n →∞.

where W is the standard Brownian motion. Throughout the paper, we let the longrun
variance of (wt) be unity, i.e., limn→∞E (

∑n
t=1 wt)

2 /n = 1 as n → ∞. This is just for
simplicity in exposition. The value of the longrun variance of (wt) only has an unimportant
scaling effect in our subsequent analyses. It is well known that the invariance principle
in Assumption 2.1 holds for a wide class of weakly dependent and possibly heterogeneous
processes.

To obtain the strong approximations for the nonlinear transformations of integrated
time series, we need more explicitly data generating processes. For this purpose, we let (wt)
in (1) follow the linear process

wt = ϕ(L)εt =
∞∑

k=0

ϕkεt−k (3)

where (εt) is a sequence of i.i.d. random variables with mean zero, and ϕ(1) 6= 0. For (wt)
generated by (3), the following assumptions will be made frequently in the paper.

2.2 Assumption
∑∞

k=0 k|ϕk| < ∞ and E|εt|p < ∞ for some p > 2.

2.3 Assumption The distribution of (εt) is absolutely continuous with respect to the
Lebesque measure, and has characteristic function φ for which limt→∞ tδφ(t) = 0 for some
δ > 0.

As mentioned above, we let ϕ(1) = 1 and E ε2
t = 1 so that the longrun variance of (wt)

becomes unity.
The stochastic process Wn defined in (2) takes values in D[0, 1], the set of cadlag func-

tions on the interval [0, 1]. Invoking an invariance principle in Assumption 2.1, we have
Wn →d W , which is to be interpreted as the weak convergence in the probability measures
on D[0, 1]. In our context, it is more convenient, and so is assumed, to endow D[0, 1] with the
uniform topology rather than the usual Skorohod topology [see Billingsley (1968), pp. 150-
152]. By virtue of the so-called Skorohod representation theorem [e.g., Pollard(1984), pp. 71-
72], it is indeed possible to construct Wn and W on a common probabiity space, up to the
distributional equivalence, so that Wn →a.s. W uniformly on [0, 1]. Moreover, using strong
approximation methods in Csörgő and Horváth (1993, p4) and Akonom (1993), specific rate
for the convergence for Wn to W can be obtained under Assumption 2.2.
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2.4 Lemma Under Assumption 2.2,

sup
0≤r≤1

|Wn(r)−W (r)| = op

(
n−1/2+1/p

)
as n →∞.

For our development of the strong approximations, we assume that the stochastic process
Wn in (2) is defined up to the distributional equivalence, rather than directly from the
partial sum of (wt), so that the strong invariance principle in Lemma 2.4 holds.

In this paper, we consider the strong approximations of the sample moments of nonlinear
transformations of (xt). In particular, we let T be a transformation on R and derive an
explicit order for the convergence of

n∑
t=1

T (xt)

to its limiting distribution, after an appropriate standardization is made. The limiting
distributions of such sample moments were obtained earlier by Park and Phillips (1999),
which studied the first order asymptotics for the nonlinear transformations of integrated
time series. For the transformation function T , we look at integrable and asymptotically
homogeneous functions. These are the transformation functions that were investigated
by Park and Phillips (1999). Here and elsewhere in the paper, we assume T is real-valued.
This is just to simplify the exposition. All our subsequent results hold also for vector-valued
functions, only with some trivial notational modifications.

We first define

2.5 Definition Write
T (λx) = κ(λ)S(x) + R(x, λ)

We say that T : R → R is asymptotically homogeneous if
(a) S is locally integrable, and
(b) |R(x, λ)| ≤ c ν(λ) Q(x) for all λ sufficiently large and for all x over any compact set
K, where c is a constant which may depend upon K, (κ−1ν)(λ) → 0 as λ → ∞, and Q is
locally integrable.
We call κ the asymptotic order and S the limit homogeneous function of T .

2.6 Remark (a) The conditions for the asymptotically homogeneous functions in Defini-
tion 2.5 are significantly weaker than those used by Park and Phillips (1999). In particular,
the logarithmic function T (x) = log |x| and the power function T (x) = |x|k with−1 < k < 0,
which have poles at the origin, are allowed here. They are satisfied for all the asymptotically
homogeneous functions considered in Park and Phillips (2001).

(b) Many of the transformations used in practical nonlinear analyses can be written
as the sums of asymptotically homogeneous and integrable transformations. The examples
include the shifted integrable or distribution function-like transformations such as T (x) =
1 + e−x2

and T (x) = ex/(1 + ex). For such transformations, we may of course apply
our results for the asymptotically homogeneous and integrable transformations term by
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term. For the first order asymptotics, the effects of the integrable transformations become
negligible compared to those of the asymptotically homogeneous transformations. The
integrable components in the transformations can therefore be ignored to obtain the first
order asymptotics. This will be explained in detail later with some concrete examples. See
the part (c) of Remark 3.4.

A function is said to be locally integrable if it is integrable over any compact subset of
R. To obtain the strong approximations for asymptotically homogeneous transformations,
we need to consider the class of locally integrable functions that satisfy a certain set of
regularity conditions.

2.7 Definition We say that T : R\{0} → R is regularly locally integrable if it is locally
integrable and, for any ε > 0 sufficiently small, it satisfies:
(a) for |x| < ε, T (x) is dominated by a constant multiple of |x|a for some a > −1, and
(b) for |x| ≥ ε, T (x) is locally Lipschitz with Lipschitz constant bounded by a constant
multiple of (1 + εb) for some b.

2.8 Remark (a) The regularly locally integrable functions are allowed to have pole-type
discontinuities at the origin. Of course, we may similarly consider the functions that have
the same type of discontinuities elsewhere. We consider the functions having discontinuities
at the origin here, since they are the ones that appear frequently in our analysis of the
asymptotically homogeneous transformations.

(b) The power functions T (x) = |x|k are regularly locally integrable as long as k > −1.
For such functions, we have a = k and b = k − 1. For k > −1, the power-log functions
T (x) = |x|k log |x| are also regularly locally integrable with a = k + ε and b = k − 1 + ε for
any ε > 0.

For our developments of the strong approximations of integrable transformations, we
need to define

2.9 Definition We say that T : R → R is regularly integrable if
(a) T is piecewise Lipschitz, and
(b)

∫∞
−∞ |x|

q|T (x)|dx < ∞ for some q ≥ (p− 2)/6 for p introduced in Assumption 2.1.

For an integrable transformation, we require that the tail decrease at a faster rate as p →∞,
i.e., as higher moments exist for the innovations. Our approximation becomes more precise
as p → ∞, and, for such an improved approximaion, the tail should vanish accordingly at
a faster rate.

Our subsequent asymptotics relies on the local time of the limit Brownian motion W .
The local time L of W is defined as

L(t, s) = lim
ε→0

1
2ε

∫ t

0
1{|W (r)− s| < ε} dr
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The reader is referred to Chung and Williams (1990) for an introduction to the local time.
Roughly, it denotes the time spent by the process in the vicinity of a spatial point s over
the time interval [0, t]. It is well known that the Brownian local time L is continuous a.s.
with respect to both parameters t and s. The local time yields the occupation time formula∫ t

0
T (W (r)) dr =

∫ ∞
−∞

T (s)L(t, s) ds

for any locally integrable T : R → R. The formula allows us to represent the integral of any
locally integrable transformation of Brownian motion as the integral of the function itself
spatially weighted by the local time.

3. Main Results

3.1 Asymptotics for Asymptotically Homogeneous Transformations

To obtain the strong approximations for the asymptotically homogeneous transformations,
we first note that

3.1 Lemma Let Assumption 2.1 hold, and let T : R → R be locally integrable. Then

1
n

n∑
t=1

T

(
xt√
n

)
→d

∫ 1

0
T (W (r)) dr

as n →∞.

Moreover, if we let
∆n = sup

0≤r≤1
|Wn(r)−W (r)| (4)

so that ∆n = op(n−1/2+1/p), due to Lemma 2.3, then we have

3.2 Theorem Let Assumption 2.2 hold, and let T : R → R be strongly locally integrable.
Then ∫ 1

0
T (Wn(r)) dr =

∫ 1

0
T (W (r)) dr + Op

(
c1+a
n

)
+ Op

(
(1 + cb

n)∆n

)
as n →∞, for any sequence (cn) such that cn ≥ ∆n a.s. and cn →p 0.

The actual order of magnitude for the approximation error involved in the result of Theorem
3.2 depends upon the values of a and b. For a ≥ 0 and b ≥ 0, we may choose cn = ∆n to
show that the error is of order Op(∆n). If −1 < a < 0 and a ≤ b, then the same choice of
cn gives the optimal rate Op(∆1+a

n ). Finally, when a > −1, a > b and b < 0, the optimal
choice of cn reduces to cn = ∆1/(1+a−b)

n , which yields the error of order Op(∆
(1+a)/(1+a−b)
n ).
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3.3 Remark (a) For T (x) = |x|k with k > −1, we have a = k and b = k − 1 as noted
earlier. If k ≥ 1, we may choose cn = ∆n to deduce that the approximation error is of order
op(n−1/2+1/p). For the case of −1 < k < 1, the optimal choice of cn becomes cn = ∆1/2

n , in
which case the order of the approximation error reduces to op(n−(p−2)(k+1)/4p). Note that
it approaches to op(1) as k → −1.

(b) For T (x) = log |x|, a can be any positive number arbitrarily small and b = −1. The
optimal choice of cn in this case is given by cn = ∆1/2−ε

n for ε > 0 arbitrarily small. The
resulting approximation error becomes op(n−1/2+1/p+ε) for an abitrarily small ε > 0.

(c) For T (x) = 1{x ≥ 0}, we have a = 0 and b = ∞. In this case, we may choose
cn = ∆n so that the approximation error becomes of order op(n−1/2+1/p).

The asymptotics for the asymptotically homogeneous transformations now follow readily
from Lemma 3.1 and Theorem 3.2. To obtain the first order asymptotics, we simply observe
that

1
nκ(

√
n)

n∑
t=1

T (xt) =
1
n

n∑
t=1

S

(
xt√
n

)
+ Op

(
(κ−1ν)(

√
n)
)

holds for any asymptotically homogeneous function T introduced in Definition 2.5. For any
asymptotically homogeneous function T , we therefore have

1
nκ(

√
n)

n∑
t=1

T (xt) =
1
n

n∑
t=1

S

(
xt√
n

)
+ op(1) →d

∫ 1

0
S(W (r)) dr

due to Lemma 3.1.
We may also easily obtain from Theorem 3.2 the strong approximations for the asymp-

totically homogeneous transformations if the transformation function has a regularly locally
integrable limit homogeneous function. If an asymptotically homogeneous function T has
the regularly locally integrable limit homogeneous function S, then we have

1
nκ(

√
n)

n∑
t=1

T (xt) =
1
n

n∑
t=1

S

(
xt√
n

)
+Op

(
(κ−1ν)(

√
n)
)

=d

∫ 1

0
S(Wn(r)) dr+Op

(
(κ−1ν)(

√
n)
)

=
∫ 1

0
S(W (r)) dr+Op

(
c1+a
n

)
+Op

(
(1+cb

n)∆n

)
+Op

(
(κ−1ν)(

√
n)
)

for all n sufficiently large.

3.4 Remark (a) For the logarithmic function T (x) = log |x|, we may apply Theorem 3.2
and the part (b) of Remark 3.3 to get

1
n log n

n∑
t=1

log |xt| =
1
2

+ Op((log n)−1)
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for all n sufficiently large.
(b) Our results here can also be used to derive the asymptotics for the transformations

that can be written as the sums of the asymptotically homogeneous and integrable transfor-
mations. Consider, for an example, the logistic function given by T (x) = ex/(1+ex), which
can be written as T = S+R, where S(x) = 1{x ≥ 0} and R(x) = ex/(1+ex)−1{x ≥ 0}. Let
Assumptions 2.2 and 2.3 hold. Clearly, R is integrable, and we have

∑n
t=1 R(xt) = Op(

√
n),

as will be shown later in Corollary 3.7. Therefore, it follows from Theorem 3.2 and the part
(c) of Remark 3.3 that

1
n

n∑
t=1

exp(xt)
1 + exp(xt)

=d

∫ 1

0
1{W (r) ≥ 0} dr + op(n−1/2+1/p)

for all large n.

3.2 Asymptotics for Integrable Transformations

Now we consider the asymptotics for the integrable transformations. First, we show that

3.5 Theorem Let Assumptions 2.2 and 2.3 hold, and let T : R → R be strongly inte-
grable. Then we have as n →∞

√
n

∫ 1

0
T (
√

nWn(r))dr =
√

n

∫ 1

0
T (
√

nW (r))dr + op

(
n−1/6+1/3p+ε

)
for any ε > 0.

For the strongly integrable function T , it therefore follows that

1√
n

n∑
t=1

T (xt) =d

√
n

∫ 1

0
T (
√

nWn(r))dr

=
√

n

∫ 1

0
T (
√

nW (r))dr + op

(
n−1/6+1/3p+ε

)
However, we have

√
n

∫ 1

0
T (
√

nW (r))dr =
√

n

∫ ∞
−∞

T (
√

ns)L(1, s)ds (5)

=
∫ ∞
−∞

T (s)L
(

1,
s√
n

)
ds

= L(1, 0)
∫ ∞
−∞

T (x)dx + O(n−1/4) a.s. (6)

by the the successive applications of the occupation times formula and change of variables
for integrals, and using the fact

L(1, cn) = L(1, 0) + O(c1/2
n ) a.s.
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as cn → 0. Consequently, we have

1√
n

n∑
t=1

T (xt) =d L(1, 0)
∫ ∞
−∞

T (x)dx + op

(
n−1/6+1/3p+ε

)
(7)

for all large n, which provides the strong approximations for the integrable transformations.

3.6 Remark (a) Our strong approximation for the integrable transformation in (7) may
be viewed as an extension of Borodin (1989, Theorem 3.1, pp. 40-41)’s result on pure
random walks to general integrated processes driven by linear processes. For random walks
with iid innovations, he showed that

1√
n

n∑
t=1

T (xt) =d L(1, 0)
∫ ∞
−∞

T (x)dx + Op(n−1/4)

He allows for the innovations to have a discrete distribution, as long as it has the char-
acteristic function ϕ such that |ϕ(t)| = 1 if and only if t is a multiple of 2π. His result
requires that the innovations have finite third moment. Moreover, T should be bounded,
square integrable and

∫∞
−∞ |x|

1/2+ε|T (x)| dx < ∞ for the innovations having a continuous
distribution, and

∑
|x|1/2+ε|T (x)| < ∞ for the innovations having a discrete distribution,

for some ε > 0.
(b) The order of approximation given in (7) is precisely the same as the one obtained

by Akonom (1993) for T being an indicator on a compact interval.

The first order asymptotics for the integrable transformations do not require any regu-
larity conditions other than integrability. We have

3.7 Corollary Let Assumptions 2.2 and 2.3 hold, and let T : R → R be integrable. Then
we have

1√
n

n∑
t=1

T (xt) →d L(1, 0)
∫ ∞
−∞

T (x) dx

as n →∞.

3.8 Remark (a) The first order asymptotics in Corollary 3.7 significantly improves upon
Park and Phillips (1999). For the moment condition on the innovation process, their results
require p > 8, while ours hold as long as p > 2. Moreover, they assume the Lipschitz
condtion, while we do not require anything other than integrability, on the transformation
function T .

(b) Our result in Corollary 3.7 is comparable to Theorems 2.1 in Borodin and Ibragimov
(1995). For the random walks driven by iid innovations, they establish the same result.
Their result requires that T is integrable with |T (x)| < c/(1 + |x|1+ε) for some constant c
and ε > 0. They allow for the innovations having a discrete distribution if their characteristic
function ϕ is such that |ϕ(t)| = 1 if and only if t is a multiple of 2π.
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4. Concluding Remark

In this paper, we develop the strong approximations for the nonlinear transformations of
integrated time series. As noted earlier, they are potentially useful in many different con-
texts. In particular, they can be used directly for: the nonparametric and semiparametric
estimation of the models involving integrated time series, the theory of the bootstrap re-
finements for nonlinear models with integrated time series, and the statistical analysis of
models with the asymptotic unit roots. These researches are currently under way, and will
be reported later.

5. Mathematical Proofs

5.1 Proof of Lemma 3.1 The stated result follows from Theorem 1.1, pp. 80-81, of
Borodin and Ibragimov (1995).

5.2 Proof of Theorem 3.2 Let (cn) be a sequence satisfying the conditions in Theorem
3.2, and write

|T (Wn(r))− T (W (r))| ≤ An(r) + Bn(r) + Cn(r) + Dn(r)

where

An(r) = |T (Wn(r))− T (W (r))|1{|Wn(r)| ≥ cn}1{|W (r)| ≥ cn}
Bn(r) = |T (Wn(r))− T (W (r))|1{|Wn(r)| < cn}1{|W (r)| ≥ cn}
Cn(r) = |T (Wn(r))− T (W (r))|1{|Wn(r)| ≥ cn}1{|W (r)| < cn}
Dn(r) = |T (Wn(r))− T (W (r))|1{|Wn(r)| < cn}1{|W (r)| < cn}

for all r ∈ [0, 1].
Define

cm = 1 + max
0≤r≤1

|W (r)|

and let M be the Lipschitz constant such that

|T (x)− T (y)| ≤ M |x− y|

for all x, y ∈ [cn, cm]. We may now deduce that

M ≤ (1 + cb
n)Z

for some random variable Z such that Z < ∞ a.s., due to the condition in the part (b) of
Assumption 2.4, and therefore,

An(r) ≤ (1 + cb
n)Z|Wn(r)−W (r)|

for all large n. Consequently,∫ 1

0
An(r) dr = Op

(
(1 + cb

n)∆n

)
(8)
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for all large n.
We may similarly show that for all n sufficiently large

Bn(r) ≤ |T (Wn(r))− T (W (r))|1{|Wn(r)| ≥ cn −∆n}1{|W (r)| ≥ cn}

≤
(
1 + (cn −∆n)b

)
Z|Wn(r)−W (r)|

with some random variable Z such that Z < ∞ a.s., by considering the interval [cn−∆n, cm]
in place of [cn, cm]. By the same token, we also have for all n sufficiently large

Cn(r) ≤ |T (Wn(r))− T (W (r))|1{|W (r)| ≥ cn −∆n}1{|Wn(r)| ≥ cn}

≤
(
1 + (cn −∆n)b

)
Z|Wn(r)−W (r)|

with some random variable Z such that Z < ∞ a.s. It therefore follows that∫ 1

0
Bn(r) dr,

∫ 1

0
Cn(r) dr = Op

(
(1 + cb

n)∆n

)
(9)

for all large n.
Finally, we have∫ 1

0
Dn(r) dr ≤

∫ 1

0
|T (Wn(r))|1{|Wn(r)| < cn} dr+

∫ 1

0
|T (W (r))|1{|W (r)| < cn} dr

≤ 2(1 + op(1))
∫ 1

0
|T (W (r))|1{|W (r)| < cn} dr

for large n, since, in particular, we may show that∫ 1

0
|T (Wn(r))|1{|Wn(r)| < cn} dr = (1 + op(1))

∫ 1

0
|T (W (r))|1{|W (r)| < cn} dr

for large n, following the proof of Theorem 1.1, pages 81-82, of Borodin and Ibragimov
(1995). Moreover, due to the condition in the part (a) of Assumption 2.4,

|T (W (r))|1{|W (r)| < cn} ≤ |W (r)|a1{|W (r)| < cn}

for all r ∈ [0, 1] and for all n sufficiently large, and we have∫ 1

0
|W (r)|a1{|W (r)| < cn} dr =

∫ ∞
−∞

|x|a1{|x| < cn}L(1, x) dx

≤
(

max
x∈R

L(1, x)
)∫ ∞

−∞
|x|a1{|x| < cn} dx

=
(

max
x∈R

L(1, x)
)

c1+a
n

1 + a

using the occupation times formula and the boundedness of L(1, ·). Recall that we assume
a > −1. We may now readily establish that∫ 1

0
Dn(r) dr = Op(c1+a

n ) (10)

The stated result now follows from (8) - (10).
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5.3 Proof of Theorem 3.5 We assume that x0 = 0, and that the support of T is included
on the positive half of the real line. These assumptions will simplify the exposition and cause
no loss in generality. We also assume, by taking piece by piece if necessary, that T satisfies
the conditions in Definition 2.9 over its entire support. We let (κn) and (δn) be sequences
of numbers that are given by

κn = n1/6+5/3p+ε, δn = n−1/6−2/3p

for some small ε > 0. It follows that

κnδn = n1/p+ε →∞ (11)

Note that κn ≤ n and δn ≥ n−1/2 for sufficiently small ε > 0, since we assume p > 2. These
are necessary to use the results in Akonom (1993) for our subsequent proof. Moreover, we
let (∆n) be defined as in (4). Note that ∆n = op(n−1/2+1/p), and therefore,

√
n∆n = op(κnδn)

and
κnδn ± 2

√
n∆n ≥ κnδn(1 + op(1)) (12)

due to (11).
Define

Tn(x) = T (x)1{0 ≤ x < κnδn}

Tnn(x) =
κn∑

k=1

T (kδn)1{(k − 1)δn ≤ x < kδn}

The function Tn is a truncated version of T , and the function Tnn is a simple function
approximating Tn. These two functions play important roles in what follows. It follows
from the part (b) of Definition 2.9 and (11) that∫ ∞

−∞
|(T − Tn)(x)|dx ≤ c

∫ ∞
−∞

x−q−11{x ≥ κnδn} dx

= n−q/p−ε

= o
(
n−1/6+1/3p−ε

)
(13)

for some constant c and for some small ε > 0. Moreover,

sup
−∞<x<∞

|Tn(x)− Tnn(x)| ≤ c δn (14)

for some constant c.
First, we show that

1√
n

n∑
t=1

T (xt)−
1√
n

n∑
t=1

Tn(xt) =d

√
n

∫ 1

0
(T − Tn)(

√
nWn(r))dr

= op

(
n−1/6+1/3p+ε

)
(15)
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for any ε > 0. By taking n sufficiently large, we may assume that T − Tn is monotone
decreasing on its support. This can be done without loss of generality, since we may always
bound T − Tn by such a function satisfying the same condition as T − Tn. We then have

(T − Tn)(
√

nWn(r)) ≤ T (
√

n(W (r)−∆n))1{
√

n(W (r) + ∆n) > κnδn}

and it follows that

√
n

∫ 1

0
(T − Tn)(

√
nWn(r))dr

≤
√

n

∫ 1

0
T (
√

n(W (r)−∆n))1{
√

n(W (r) + ∆n) > κnδn}dr

=
√

n

∫ ∞
−∞

T (
√

n(s−∆n))1{
√

n(s + ∆n) > κnδn}L(1, s)ds

=
∫ ∞
−∞

T (s)1{s > κnδn − 2
√

n∆n}L
(

1,
s√
n

+ ∆n

)
ds

≤
(

max
x∈R

L(1, x)
)∫ ∞

−∞
T (s)1{s > κnδn − 2

√
n∆n}ds

= op

(
n−1/6+1/3p−ε

)
for some small ε > 0. The second and third equalities are due respectively to the occupation
times formula and a simple change of variables for integrals, and the fourth inequality follows
from the boundedness of L(1, ·). The last equality can be deduced from (12) and (13).

Second, we have from the Lipschitz condition for T in the part (a) of Definition 2.9 that∣∣∣∣∣ 1√
n

n∑
t=1

Tn(xt)−
1√
n

n∑
t=1

Tnn(xt)

∣∣∣∣∣ ≤ cκnδ2
n

1
κnδn

√
n

n∑
t=1

1{0 ≤ xt < κnδn}

= Op(κnδ2
n)

= Op

(
n−1/6+1/3p+ε

)
(16)

where c is the constant introduced in (14). Note that

1
κnδn

√
n

n∑
t=1

1{0 ≤ xt < κnδn} =d

√
n

κnδn

∫ 1

0
1{0 ≤

√
nWn(r) < κnδn}dr

≤
√

n

κnδn

∫ 1

0
1{0 ≤

√
nW (r) < κnδn +

√
n∆n}dr

=
√

n

κnδn

∫ ∞
−∞

1{0 ≤
√

ns < κnδn +
√

n∆n}L(1, s)ds

=
∫ ∞
−∞

1{0 ≤ s < 1 + op(1)}L
(

1,
κnδns√

n

)
ds

= Op(1)



14

by applying occupation times formula and change of variables for integrals, and using the
boundedness of L(1, ·) and the result in (11).

Third, we show that

1√
n

n∑
t=1

Tnn(xt) =
(∫ ∞
−∞

T (x)dx

)
1

δn
√

n

n∑
t=1

1{0 ≤ xt < δn}+ op

(
n−1/6+1/3p+ε

)
(17)

for any ε > 0. We have

E

(
n∑

t=1

1{0 ≤ xt < δn} −
n∑

t=1

1{(k − 1)δn ≤ xt < kδn}

)2

≤ c n1/2δn (18)

for k = 1, . . . , κn, where c is some number, which is dependent only upon the distribution
of (εt) and bounded by some absolute constant. This follows from Lemma 6 of Akonom
(1993) for random walks driven by iid innovations, and can be shown to hold for general
integrated processes as in his proof of Lemma 13 in Akonom (1993). Since p > 2, we have

κnδ2
n log n = n−1/6+1/3p+ε log n ≤ 1

for sufficiently small ε > 0, and therefore, the term (1 + κnδ2
n log n) included in his result

becomes redundant and is not presented in (18).
It follows from (18) that

n∑
t=1

1{0 ≤ xt < δn} =
n∑

t=1

1{(k − 1)δn ≤ xt < kδn}+ Op

(
n1/4δ1/2

n

)
(19)

Since the error term in (19) can be bounded uniformly in k = 1, . . . , κn as explained below
(18), we may multiply both sides of (19) by T (kδn) for k = 1, . . . , κn and divide their sum
by

√
n for normalization to get(∫ ∞
−∞

Tnn(x)dx

)
1

δn
√

n

n∑
t=1

1{0 ≤ xt < δn} =
1√
n

n∑
t=1

Tnn(xt) + Op

(
n−1/4δ−1/2

n

)
However, we have n−1/4δ

−1/2
n = n−1/6+1/3p. Moreover, it follows from (13) and (14) that∫ ∞

−∞
Tnn(x)dx =

∫ ∞
−∞

Tn(x)dx + O(κnδ2
n)∫ ∞

−∞
Tn(x)dx =

∫ ∞
−∞

T (x)dx + o
(
n−1/6+1/3p−ε

)
and therefore ∫ ∞

−∞
Tnn(x)dx =

∫ ∞
−∞

T (x)dx + o
(
n−1/6+1/3p+ε

)
for any ε > 0. The result in (17) is now immediate.
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Fourth, we may easily deduce from Theorem 14 of Akonom (1993)

1
δn
√

n

n∑
t=1

1{0 ≤ xt < δn} =
√

n

δn

∫ 1

0
1{0 ≤

√
nW (r) < δn}dr + op

(
n−1/6+1/3p+ε

)
(20)

with the missing δn term corrected to make it comparable as Theorem 8. Finally, we have
√

n

δn

∫ 1

0
1{0 ≤

√
nW (r) < δn}dr =

√
n

δn

∫ ∞
−∞

1{0 ≤
√

ns < δn}L(1, s)ds

=
∫ ∞
−∞

1{0 ≤ s < 1}L
(

1,
δns√

n

)
ds

= L(1, 0) + O
(
n−1/4δ1/2

n

)
a.s. (21)

and, due to the result in (6),

√
n

∫ 1

0
T (
√

nW (r))dr = L(1, 0)
∫ ∞
−∞

T (x)dx + O(n−1/4) a.s. (22)

Note that n−1/4δ
−1/2
n = n−1/6+1/3p. The stated result now follows from (15), (16), (17),

(20), (21) and (22).

5.4 Proof of Corollary 3.7 Let (κn) and (δn) be defined as in the proof of Theorem
3.5, and let (∆n) be given as in (4). Moreover, we define Tn as in the proof of Theorem 3.5.
For any integrable T , we have

√
n

∫ 1

0
(T − Tn)(

√
nWn(r)) dr ≤

(
max
x∈R

L(1, ·)
)∫ ∞

−∞
T (s)1{s > κnδn − 2

√
n∆n} ds = op(1)

by (11) and the dominated convergence. Here we assume without loss of generality that
T − Tn is monotone decreasing on its support, as in the proof of Theorem 3.5.

We now let
Ik(δn) = {(k − 1)δn ≤ x < kδn}

and define

Tn(x) =
κn∑

k=1

(
sup

x∈Ik(δn)
T (x)

)
1(Ik(δn))

Tn(x) =
κn∑

k=1

(
inf

x∈Ik(δn)
T (x)

)
1(Ik(δn))

Then we may deduce as in the proof of Theorem 3.5(∫ ∞
−∞

Tn(x) dx

)
1

δn
√

n

n∑
t=1

1{0 ≤ xt < δn} =
1√
n

n∑
t=1

Tn(xt) + Op(n−1/4δ−1/2
n )

(∫ ∞
−∞

Tn(x) dx

)
1

δn
√

n

n∑
t=1

1{0 ≤ xt < δn} =
1√
n

n∑
t=1

Tn(xt) + Op(n−1/4δ−1/2
n )
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and consequently,

1√
n

n∑
t=1

Tn(xt) = L(1, 0)
(∫ ∞
−∞

T (x) dx

)
+ op(1)

1√
n

n∑
t=1

Tn(xt) = L(1, 0)
(∫ ∞
−∞

T (x) dx

)
+ op(1)

Note that ∫ ∞
−∞

Tn(x) dx,

∫ ∞
−∞

Tn(x) dx =
∫ ∞
−∞

Tn(x) dx + o(1)

since T is Riemann-integrable, and∫ ∞
−∞

|(T − Tn)(x)| dx =
∫ ∞
−∞

|T (x)|1{x ≥ κnδn} dx = o(1)

by (11) and the dominated convergence. The stated result now follows immediately, since

1√
n

n∑
t=1

Tn(xt) ≤
1√
n

n∑
t=1

Tn(xt) ≤
1√
n

n∑
t=1

Tn(xt)

and the proof is complete.
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