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Abstract

This paper develops the large sample theory for econometric models with time
series having roots in proximity of unity. In particular, a special attention is
given to the time series with roots outside the n−1-neighborhood of unity, called
the weak unit roots. They are the processes with roots approaching to unity as
sample size increases, but not too fastly. It is shown that the weak unit root
processes yield the standard law of large numbers and central limit theorem-like
results, and as a consequence, the usual large sample theory of inference based
on normal asymptotics is applicable for models with weak unit root processes.
This suggests that we may rely on the conventional statistical theory also for
models with roots close to unity, as long as the roots are not too close to unity.
In practice, it seems that we may safely use the standard normal theory, unless
the roots are very close to one in a metric proportional to the magnitude of
sample size. We consider a wide class of models including autoregressions and
nonlinear, as well as linear, cointegrated models with weak unit roots.
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1. Introduction

As is well known, the asymptotic theories for models with unit root processes are quite
distinct from those for models with stationary processes. The standard normal asymptotics
apply for the stationary models, while the asymptotics for the nonstationary models are
generally nonstandard and nonnormal. Therefore, the applied time series econometricians
always have to determine which of the two sets of asymptotic theories is more appropriate to
use for his or her dataset. They often find that it is not an easy task, since many economic
and financial time series have roots in a quite close neighborhood of unity. This has been
widely noted particularly in conjunction with the empirical researches on the predictability
of stock returns and exchange rates. Indeed, most variables that appear to be potentially
useful for the predictions of stock returns and exchange rates have roots close to one.

The sharp discontinuity in the statistical theories of stationary and unit root models, of
course, is something that exists only in the asymptotics. In finite samples, the distributions
change continuously as the roots approach to unity. Therefore, arises an important practical
question: How close the roots should be to the unity for the unit root asymptotics to be
more appropriate, or equivalently, how distant the roots need to be from the unity for the
standard normal limit theory to be more applicable. Obviously, there cannot be any single
good answer to the question. It should depend on, among many others, the data at hand,
the models and the inferences to be made. However, there is one important factor which
matters in all cases: the sample size. The sample size indeed plays a critical role here, as
we demonstrate clearly below.

We may formally investigate the dependency on the sample size n of the relevant asymp-
totics by modelling the largest autoregressive root of the underlying time series as a function
of n. When the root is set by 1 − c n−1 with some constant c > 0, the underlying time
series has the so-called near unit root, and this has been studied earlier by many authors as
the local alternatives to the exact unit root. In the paper, we focus on the case where the
root approaches to unity at a rate slower than n−1, and say that the resulting time series
have weak unit roots or are weakly integrated. The weak unit root processes have the root
outside the n−1-neighborhood of unity, and are contrasted with the exact or near unit root
processes that have the root inside or on the boundary of the n−1-neighborhood of unity.
The weak unit root processes are the processes with the root approaching to unity as the
sample size increases, but not too fastly.

For the exactly and nearly integrated processes, the asymptotics are nonstandard and
nonnormal. However, the weakly integrated processes yield asymptotics that are drastically
different. They obey standard law of large numbers and central limit theorem-like results,
and therefore, the usual large sample theory of inference based on normal asymptotics holds
for them. This implies in particular that the size of the unit root neighborhoods governed
by the nonstandard and nonnormal asymptotics shrinks as the sample size increases, and
we have normal distribution theory applicable everywhere outside of those shrinking neigh-
borhoods. Actually, our theory shows that the size of the neighborhoods on which the
normal asymptotics fail to work decreases at n−1 rate. This suggests that we may rely on
the conventional statistical theory also for models with roots close to unity, as long as the
roots are not too close to unity in a metric proportional to the magnitude of sample size.
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Figure 1: Distances from Normal and Unit Root Asymptotics of t-Tests in AR(1) Models

Figure 1 shows how distant are the finite sample distributions of the t-test in the Gaus-
sian AR(1) models from the standard normal and also from the unit root distributions. For
the samples of sizes n = 50, 100 and 5, 000 and for the autoregressive coefficient α ∈ [0.8, 1],
the distances from the finite sample distribution function Fn(·, α) of the t-statistic to the
standard normal distribution function Φ and to the unit root distribution function Ψ
are computed using the uniform metric. More precisely, their distances are defined by
An(α) = supx∈R |Fn(x, α) − Φ(x)| and Bn(α) = supx∈R |Fn(x, α) − Ψ(x)|, and plotted as
functions of α. As n → ∞, we have Fn(x, α) → Φ(x) for all |α| < 1 and Fn(x, α) → Ψ(x)
for |α| = 1 uniformly in x ∈ R, and consequently, it follows that An(α) → 0 for all |α| < 1
and Bn(α) → 0 for |α| = 1. The distance functions An(α) and Bn(α) are monotone in α
for all n.

In Figure 1, we may see especially over what ranges of the α values which of the two
competing asymptotics, the normal and the unit root asymptotics, is more appropriate to
use. As is clearly demonstrated, the answer depends critically upon the size n of the samples.
In general, the range of α’s for which the normal asymptotics yield better approximations
expands as n increases. When n = 50, the finite sample distributions of the t-tests are closer
to the standard normal distribution until the values of α get roughly bigger than 0.904. The
range, however, becomes much larger if the sample size gets as large as n = 5, 000. In this
case, the normal asymptotics work better than the unit root asymptotics for all values of α
except for those belonging to an immediate neighborhood of unity, i.e., the standard normal
distribution provides better approximations for all α’s smaller than roughly 0.999.
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Figure 2: Rejection Probabilities of 5% t-Tests in AR(1) Models

Figure 2 presents the simulated rejection probabilities of the 5% t-tests once again in
the Gaussian AR(1) models, for the samples of sizes n = 100, 500 and 10, 000. The critical
value of −1.645 is used, which would yield the exact 5% rejection probability if the normal
asymptotics work. As is well expected, the size distortions increase as the AR coefficient
α approaches to unity. This is so for the samples of all sizes. However, the range of α’s
yielding noticeable distortions shrinks as the sample size increases. For n = 100, the actual
rejection probabilities become 6% and 7% when α’s are are approximately 0.745 and 0.935,
respectively. However, for n = 10, 000, they are below 6% all the way until α gets as
big as 0.995, and become 7% only when α exceeds 0.999. For large samples, the normal
asymptotics indeed work reasonably well, unless α is truly close to one.

Our findings in Figures 1 and 2 continue to hold for time series more general than AR(1).
For the linear processes with the largest autoregressive root α close to unity, for instance,
we may obtain the results quite similar qualitatively to those obtained for the simple AR(1).
Moreover, the reported results for the simple AR(1) give some unambiguous clues to the
asymptotics for more general regression models. The asymptotics for the regression models
with unit root processes can in general be represented as the mixtures of the normal and
unit root asymptotics, where the magnitude of the latter is proportional to the longrun
correlation ρ between the innovations of the regressors and the regression errors. The
autoregressions are governed solely by the unit root asymptotics, and this amounts to the
case |ρ| = 1. For the case of the general regression models with |ρ| < 1, we may therefore
well expect that the unit root distribution would be even less prevailing in their asymptotics.
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The large sample theory established in the paper well explains our findings in Figures
1 and 2. We consider a wide class of econometric models including autoregressions and
nonlinear regression models with weakly integrated processes. Though we only explicitly
investigate their prototypical forms, our theory extends well, at least qualitatively, to other
more general models. The asymptotics in the paper are derived in a quite sophisticated
and unconventional manner. Yet, the main implication of our theoretical results is simple
and straightforward: The usual inference based on the normal asymptotics continue to be
valid even in the presence of the processes that are highly persistent, unless their largest
autoregressive root is not too close to unity and the sample size is reasonably large. How
close is ‘not too close’ and how large is ‘reasonably large’ should of course vary from one case
to another, but our simulation results in Figures 1 and 2 give some useful general guidance.

The rest of the paper is organized as follows. Section 2 introduces the model and pre-
liminaries. The weak unit root is formulated precisely, and the preliminary results that
are necessary for the development of the subsequent theories are introduced. We present
the basic asymptotic theories for the weak unit root processes in Section 3. Their asymp-
totics on nonlinear models are crucially dependent upon the specificity of the nonlinearity
involved, and therefore, we introduce the classes of nonlinear functions that are used most
frequently in practical applications. The asymptotic theories for models with weak unit
root processes are developed in Section 4. In particular, we consider autoregressions and
general nonlinear regressions explicitly there. Section 5 contains some concluding remarks,
and the mathematical proofs for the theorems are given in Section 6.

2. The Model and Preliminaries

Consider the time series (xt) generated as

xt = αxt−1 + vt, (1)

where (vt) is a stationary linear process. We may allow the initial value x0 of (xt) to be any
random variable as long as it is stochastically bounded. For expositional brevity, however,
we assume that x0 = 0 a.s. throughout the paper. We let

α = 1 − m

n
, (2)

where n denotes the sample size and m is given as a function of n such that

m

n
→ 0 (3)

as n → ∞.
We need to further specify m in our formulation of α in (2). Note that m is given as a

function of n in (3).2 It may therefore be more appropriately denoted by mn, though we will
not do so in the paper to simplify the exposition. Regardless of how we set m, α converges

2For example, we may set m = log n and our subsequent analysis is valid for such a specification of m.
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to unity under the condition (3). However, the exact convergence rate is determined by the
specification of m. In this paper, we will mainly look at the case

m → ∞ (4)

as n → ∞. Obviously, α = 1 for all values of n if we set m = 0. On the other hand, if we
let m = c for some constant c > 0, then α converges to unity at n−1 rate. This specification
yields what we usually refer to as the near unit root, or the root local-to-unity. It has
widely been used to formulate the local altermatives to the unit root.3 Clearly, α converges
to unity at a rate slower than n−1 under the specification of m as in (4).

The time series (xt) given by (1)–(3) represents a process with the root approaching
to unity as the sample size gets large. With the additional specification of m in (4), it
becomes a process with the root converging to unity more slowly than the process with the
near unit root. Such a process is said to have the weak unit root, or to be weakly integrated.
The condition (4) makes the process have a root outside the n−1-neighborhood of unity,
constrastingly with the exact and near unit root processes that have roots respectively inside
and on the boundary of the n−1-neighborhood of unity. The theories for weak unit root
processes should thus be more appropriate in finite samples for models with roots close, but
not too close, to unity. As we will show in the paper, the process with weak unit root has
limit theories that are quite different from those for the processes with exact or near unit
root. In particular, the latter has the nonstandard and nonnormal asymptotics, while the
standard normal limit theories apply for the former.

We now define (vt) more specifically as

vt = π(L) εt =
∞
∑

k=0

πkεt−k, (5)

where (εt) is a sequence of independent and identically distributed random variables with
mean zero, and π(1) 6= 0. Under specification (5), the time series (xt) introduced in (1)–(3)
becomes a general linear process with a weak unit root, including an autoregressive-weakly-
integrated-moving-average, or ARWIMA, process as a special case. We assume

Assumption 2.1
∑∞

k=0 k|πk| < ∞ and E|εt|p < ∞ for some p > 2.

For some of our subsequent results, we also need some additional assumptions on the dis-
tribution of (εt) as in

Assumption 2.2 The distribution of (εt) is absolutely continuous with respect to the
Lebesgue measure, and has characteristic function ϕ for which limt→∞ tδϕ(t) = 0 for some
δ > 0.

The time series (vt) has the longrun variance given by ω2 = π(1)2Eε2
t . Throughout the

paper, we set this value to be unity, unless stated otherwise. This is to avoid unnecessary

3See, e.g., Phillips (1987) and Stock (1994) for more details on the motivation and analyses of nearly
integrated processes.



6

complications in presenting our theoretical results. The longrun variance of (vt) only has
an unimportant scaling effect on our subsequent analysis.

We define
Vmn(r) = n−1/2x[nr]+1 (6)

for r ∈ [0, 1], where [z] denotes the largest integer which does not exceed z. Moreover, we
let

Vm(r) =

∫ r

0
exp(−m(r − s))dV0(s) (7)

for r ∈ [0, 1], where V0 is the standard Brownian motion. Then Vmn in (6) may be redefined,
up to the distributional equivalence, on the same probability space as Vm in (7) so that Vmn

and Vm are arbitrarily close for all large n in proability uniformly in m ∈ R+.4 Indeed, we
have

Lemma 2.3 Under Assumption 2.1, we may define Vmn and Vm on a common probability
space so that

sup
0≤r≤1

|Vmn(r) − Vm(r)| = op(n
−1/2+1/p) + Op(mn−1)

for large n, uniformly in m such that m/n → 0 as n → ∞.

Due to Lemma 2.3, the sample moments of various functions of time series (xt) can
now be approximated, up to the distributional equivalence, by the integrals of the same
functions of continuous process Vm. It is important to note that the approximations here
can be made so that they have errors small uniformly in m ∈ R+ for all large n. Therefore,
the required n-asymptotics for the sample moments of (xt) under various transformations
can be obtained directly from the m-asymptotics applied to the corresponding functionals
of Vm. For each m fixed, Vm is an Ornstein-Uhlenbeck process that can be defined by the
stochastic differential equation

dVm(r) = −mVm(r) dr + dW (r) (8)

with the initial condition Vm(0) = 0, where W is the standard Brownian motion. In the
paper, we refer to Vm as the Ornstein-Uhlenbeck process with parameter m.

To develop the m-asymptotics on the functionals of Vm, we need a proper normalization
for Vm. Therefore, we introduce a normalized process V

V (r) =
√

mVm

( r

m

)

(9)

which is defined from Vm by rescaling both its time and value. It follows immediately from
(8) that the normalized process V is the Ornstein-Uhlenbeck process with unit parameter. It
is well known that V has a stable stationary marginal distribution. In fact, the distribution

4Here and elsewhere in the paper, we do not distinguish two processes that are distributionally equiv-
alent. Therefore, in general, equality means distributional equality, and both almost sure convergence and
convergence in probability just imply convergence in distribution. They become convergence in probability
only when limits are nonrandom, since then convergences in probability and in distribution become identical.
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of V (r) approaches to normal with mean 0 and variance 1/2 as r → ∞, whose density we
will denote by D throughout the paper.

Our asymptotics heavily rely on the local time of the normalized process V in (9), which
is defined by

L(r, x) = lim
ε→0

1

2ε

∫ r

0
1{|V (s) − x| < ε} ds.

Roughly, L(r, x) measures the rate of time spent by V , up to time r, in an immediate
neighborhood of x. The concept of local time yields the so-called occupation times formula

∫ r

0
T (V (s)) ds =

∫ ∞

−∞
T (x)L(r, x) dx (10)

for any locally integrable function T on R. The local time L is continuous with respect to
both parameters x and r.

For the m-asymptotics, we eventually need to analyze the asymptotic behavior of L(m, ·)
as m → ∞. For this purpose, we define

Dm(x) =
L(m,x)

m
.

Then it follows that

Lemma 2.4 We have

Dm(x) = D(x) + o(m−1/2 log m log log m) a.s.

uniformly over any compact interval, and for any k > −1
∫ ∞

−∞
|x|kDm(x) dx →a.s.

∫ ∞

−∞
|x|kD(x) dx

as m → ∞.

Lemma 2.4 gives the asymptotics for the local time L of the Ornstein-Uhlenbeck process
V with unit parameter. For such an Ornstein-Uhlenbeck process, the time average of local
time approaches to its stable marginal density. This sharply contrasts with the asymptotic
behavior of the local times of nonstationary processes. For instance, for Brownian motion,
the local time is of stochastic order given by the square root of the progressing time, and
if normalized, it remains to be random in the limit. For the local time of an Ornstein-
Uhlenbeck process, we also have the central limit theorem as well as the law of large numbers
given in Lemma 2.4. It is indeed established in Bosq (1999) that

√
m(Dm(x) − D(x))

converges in distribution to normal law as m → ∞. Lemma 2.4 above gives the moment-
type convergences.

3. Function Classes and Basic Asymptotics

In this section, we develop the basic asymptotics for weakly integrated processes under
various transformations. Let (xt) be a weakly integrated process defined in Section 2, and
introduce an additional time series (ut) satisfying
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Assumption 3.1 Let (ut) be a martingale difference sequence with respect to some fil-
tration (Ft) such that

(a) (xt) is adapted to (Ft−1), and
(b) E(u2

t |Ft−1) = σ2 a.s. for all t, and supt E(|ut|2+ε|Ft−1) < ∞ a.s. for some ε > 0.

For a general real-valued function F on R, we will consider the asymptotics of

n
∑

t=1

F (xt) and

n
∑

t=1

F (xt)ut (11)

upon appropriate normalizations. They are called the mean and covariance asymptotics, re-
spectively. For the transformation function, we consider two classes of functions, integrable
and asymptotically homogeneous functions, satifying some regularity conditions.5

3.1 Asymptotics for Integrable Transformations

To derive the mean and covariance asymptotics for the sample moments in (11), we need
to introduce the regularity conditions for T = F and F 2. Let T be integrable, and define

Definition 3.2 Let T : R → R. We say that T is regularly integrable if
(a) T is piecewise Lipschitz, and
(b)

∫∞
−∞ |x|q|T (x)| dx < ∞ for some q ≥ (p − 2)/6.

Regularly integrable function T should therefore be piecewise Lipschitzian and have a fast
enought decaying rate. Here we require that the tail of T decrease at a faster rate as the
order of existing moments for the innovations increases. We may obtain finer asymptotics
if the order of existing moments increases. To do so, however, the tail of T should decay
accordingly at a faster rate.

The regularity conditions in Definition 3.2 allow us to develop the basic asymptotics for
the integrable transformations of weakly integrated processes. It follows immediately from
our definition of Vmn in (6) that

1√
nm

n
∑

t=1

T (xt) =

√

n

m

∫ 1

0
T (

√
nVmn(r))dr, (12)

which we may further approximate as in

5These are roughly the same classes of functions considered in Park and Phillips (1999) for their study on
the nonlinear models with exactly integrated processes. Our regularity conditions are, however, not directly
comparable to theirs. On the one hand, we could relax some of their restrictive assumptions by refining
their proofs. On the other hand, we need to impose somewhat stronger conditions to obtain the results that
are applicable for models with weakly, as well as exactly, integrated processes.
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Lemma 3.3 Let Assumptions 2.1 and 2.2 hold. If T is regularly integrable, then

√

n

m

∫ 1

0
T (

√
nVmn(r))dr =

√

n

m

∫ 1

0
T (

√
nVm(r))dr + op(1)

for large n, uniformly in m such that m = o (n1−2/p ∧ n2/3).

Moreover, it follows from the successive applications of normalization (9), occupation times
formular (10), change-of-variables for integrals, and Lemma 2.4 that

√

n

m

∫ 1

0
T
(√

nVm(r)
)

dr =
1

m

√

n

m

∫ m

0
T

(
√

n

m
V (r)

)

dr

=
1

m

√

n

m

∫ ∞

−∞
T

(
√

n

m
x

)

L(m,x) dx

=
1

m

∫ ∞

−∞
T (x)L

(

m,

√

m

n
x

)

dx

→a.s.D(0)

∫ ∞

−∞
T (x) dx (13)

as m → ∞ and m/n → 0. Consequently, we may easily deduce from (12) and (13), together
with Lemma 3.3, that

1√
nm

n
∑

t=1

T (xt) →p D(0)

∫ ∞

−∞
T (x) dx (14)

as n → ∞, if m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞.
The mean and covariance asymptotics for the sample moments in (11) under integrable

transformations may now be easily developed if we apply the result in (14) for T = F and
T = F 2.

Theorem 3.4 Let Assumptions 2.1, 2.2 and 3.1 hold. If F is regularly integrable, and if
m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞, then we have

1√
nm

n
∑

t=1

F (xt) →p D(0)

∫ ∞

−∞
F (x) dx,

1
4
√

nm

n
∑

t=1

F (xt)ut →d N

(

0, σ2D(0)

∫ ∞

−∞
F (x)2dx

)

as n → ∞.

If F is regularly integrable, then so is F 2. To see this, note in particular that a regularly
integrable function is bounded.
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Our results in (12) and Lemma 3.3 are applicable also for fixed m. If we let m = c with
some fixed constant c, we may therefore easily deduce that

1√
n

n
∑

t=1

F (xt) →d Lc(1, 0)

∫ ∞

−∞
F (x) dx, (15)

1
4
√

n

n
∑

t=1

F (xt)ut →d MN

(

0, σ2Lc(1, 0)

∫ ∞

−∞
F (x)2dx

)

(16)

as n → ∞, where Lc is the local time of the Ornstein-Uhlenbeck process with parameter
c. If c > 0, (15) and (16) provide the asymptotics for near unit root processes. If c = 0,
they are reduced to the unit root asymptotics obtained earlier by Park and Phillips (1999).
Recall that Ornstein-Uhlenbeck process Vc becomes Brownian motion if c = 0.

It is interesting to compare our asymptotics in Theorem 3.4 with those for the time series
with exact and near unit roots given by (15) and (16). The mean asymptotics for weakly
integrated processes involve nonrandom limits, and this contrasts with those for exactly
and nearly integrated processes that are random. Moreover, the covariance asymptotics for
weakly integrated processes have normal limiting distributions, whereas those for exactly
and nearly integrated processes have mixed normal limiting distributions with the mixing
variates given by the local times of Brownian motion and Ornstein-Uhlenbeck process.
The mean and covariance asymptotics for weakly integrated processes respectively yield
nonrandom probability limits and limiting normal distributions, analogously as LLN and
CLT for the usual asymptotics for stationary processes.

3.2 Asymptotics for Asymptotically Homogeneous Transformations

The concept of asymptotically homogeneous function was first introduced by Park and
Phillips (1999) in their development of the asymptotics for nonlinear transformations of ex-
actly integrated time series. An asymptotically homogeneous function T behaves asymptoti-
cally like a homogeneous function, and can roughly be written for large λ as T (λ·) ≈ κ(λ)S(·)
with S locally integrable. We call κ and S, respectively, the asymptotic order and the limit
homogeneous function of T . We first introduce the required conditions for the class of
locally integrable functions that define asymptotically homogeneous functions.

Definition 3.5 Let S : R\{0} → R. We say that S is regular if, for any ε > 0 sufficiently
small, it satisfies that

(a) for all |x| ≥ ε and |x − y| ≤ ε/2, |S(x) − S(y)| ≤ Kab(x) |x − y| with Kab(x) =
K(1 + |x|a)(1 + |x|b), where a > 0, b < 0 and K are some constants not depending upon ε,
and

(b) for all |x| < ε, |S(x)| ≤ K|x|c with some constants c > −1 and K independent of ε.
We say that S is regular in the second-order if both S and S2 are regular.

A regular function may have a pole-type discontinuity at the origin. Loosely put, a function
becomes regular if, near the origin, it is divergent at a slower rate than the reciprocal
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function and Lipschitz with Lipschitz constant increasing possibly only at polynomial rates
near the origin and at infinity.

We now introduce the regularity conditions for the class of asymptotically homogeneous
functions.

Definition 3.6 Let T : R → R be written as

T (λx) = κ(λ)S(x) + R(x, λ).

We say that T is regularly homogeneous if
(a) S is regular in the second-order, and
(b) |R(x, λ)| ≤ $(λ)Q(x) for all λ sufficiently large and for all x over any compact set,

where (κ−1$)(λ) → 0 as λ → ∞ and Q is regular in the second-order.

For an asymptotically homogeneous function T with asymptotic order κ and limit homoge-
neous function S, it follows immediately from Definition 3.6 that

1

n
κ

(√

n

m

)−1 n
∑

t=1

T (xt) ≈
1

n

n
∑

t=1

S

(√

m

n
xt

)

. (17)

The asymptotics of weakly integrated time series under asymptotically homogeneous trans-
formations can therefore be easily obtained by analyzing the asymptotics of the normalized
processes under their limit homogeneous transformations.

We have
1

n

n
∑

t=1

S

(
√

m

n
xt

)

=

∫ 1

0
S
(√

mVmn(r)
)

dr (18)

and

Lemma 3.7 Let Assumption 2.1 hold. If S is regular, then

∫ 1

0
S(

√
mVmn(r)) dr =

∫ 1

0
S(

√
mVm(r)) dr + op(1)

for large n, uniformly in m such that m = o (n1−2/p ∧ n2/3).

Moreover, it follows directly from normalization (9), application of occupation time formula
(10) and Lemma 2.4 that

∫ 1

0
S
(√

mVm(r)
)

dr =
1

m

∫ m

0
S(V (r)) dr

=
1

m

∫ ∞

−∞
S(x)L(m,x) dx

→a.s.

∫ ∞

−∞
(SD)(x) dx (19)
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as m → ∞. As a result, we may easily deduce from (18) and (19), together with Lemma
3.7, that

1

n

n
∑

t=1

S

(
√

m

n
xt

)

→p

∫ ∞

−∞
(SD)(x) dx (20)

as n → ∞, if m = o (n1−2/p ∧n2/3) and m → ∞ as n → ∞. The corresponding asymptotics
for T follow immediately from (17).

Now it can be easily deduced that

Theorem 3.8 Let Assumptions 2.1 and 3.1 hold. If F is regularly homogeneous with
asymptotic order κ and limit homogeneous function H, and if m = o (n1−2/p ∧ n2/3) and
m → ∞ as n → ∞, then we have

1

n
κ

(
√

n

m

)−1 n
∑

t=1

F (xt) →p

∫ ∞

−∞
(HD)(x) dx,

1√
n

κ

(
√

n

m

)−1 n
∑

t=1

F (xt)ut →d N

(

0, σ2

∫ ∞

−∞
(H2D)(x) dx

)

as n → ∞.

Under asymptotically homogeneous transformations, the mean and covariance asymp-
totics for weakly integrated processes are quite distinct from those for exactly or nearly
integrated processes. For the asymptotics for nearly integrated processes, we just let m be
fixed at c, and deduce

1

n
κ(
√

n)−1
n
∑

t=1

F (xt) →d

∫ 1

0
H(Vc(s))ds, (21)

1√
n

κ(
√

n)−1
n
∑

t=1

F (xt)ut →d

∫ 1

0
H(Vc(s))dU(s), (22)

where U is the limit Brownian motion for (ut).
6 If we set c = 0, then the asymptotics in

(21) and (22) become those for the unit root processes obtained earlier by Park and Phillips
(1999).

For asymptotically homogeneous transformations, the differing characteristics of the
asymptotics for weakly integrated processes become more obvious. The asymptotics for
weakly integrated processes have LLN and CLT type results, i.e., nonrandom probability
limits and normal limit distributions under asymptotically homogeneous transformations,
just as in the case of integrable transformations. On the other hand, the asymptotics for
exactly and nearly integrated processes under asymptotically homogeneous transformations
are quite different from those for integrable transformations. For exactly and nearly inte-
grated processes, the mean asymptotics under asymptotically homogeneous transformations

6If we define the partial sum process Un(r) = n−1/2
∑[nr]

t=1 ut jointly with Vn(r) = n−1/2x[nr]+1, then it
follows that (Un, Vn) →d (U, Vc) under Assumptions 2.1 and 3.1.
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yield random limits. Moreover, the covariance asymptotics for exactly and nearly integrated
processes are given as stochastic integrals, which are generally non-Gaussian, under asymp-
totically homogeneous transformations. The stochastic integral in (22) is non-Gaussian,
unless U is independent of Vc. As will be shown in the next section, this difference in the
covariance asymptotics has an important consequence for inference.

4. Inference in Models with Weak Unit Roots

As noted in the previous section, the basic asymptotics for weakly integrated processes
involve the usual LLN and CLT type results, under both integrable and asymptotically
homogeneous transformations. That is, the mean asymptotics yield nonrandom probability
limits and the covariance asymptotics are given by limiting normal distributions. Their
mean and covariance asymptotics are entirely analogous to LLN and CLT, respectively.
This makes the theories of inference for models with weakly integrated processes completely
parallel to those for models with stationay and ergodic processes. Therefore, the standard
asymptotics built upon LLN and CLT become valid for a wide class of models with weakly
integrated processes. In this section, we explicitly consider two special classes of models that
are of most interest for practical applications: autoregressions and nonlinear regressions.

For both classes of models, we only consider their prototypical forms. For the former,
we restrict our attention to the univariate, finite-order autoregressive models with single
weak unit roots. Likewise, for the latter, we look at the simple regression models which have
single weakly integrated regressors and martingale difference regression errors. Neither of
them is allowed to have deterministic trends. It must be emphasized here that the reason
for this is purely expositional. Our theoretical results, at least qualitatively, extend well
beyond the models that we explicitly consider here. In particular, the normal asymptotics
established here continue to be applicable for VAR’s and other general regression models
with multiple regressors, possibly with various deterministic trends. The rigorous deriva-
tions of their asymptotics, however, require some lengthy developments of new frameworks
and methodologies, and it appears to be more desirable to report them separately in a
subsequent work.

4.1 Autoregressive Models

Consider an autoregressive model for (xt) given by

xt = α1xt−1 + · · · + αKxt−K + εt, (23)

where (εt) is assumed to be a sequence of independent and identically distributed random
variables with mean zero. We let

α(z) = zK − α1z
K−1 − · · · − αK

and assume
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Assumption 4.1 Let E|εt|p < ∞ for some p > 2, and let α(z) have a root z = 1 − m/n,
while all the other roots are inside the unit circle.

Under Assumption 4.1, the time series (xt) has a weak unit root. We may indeed rewrite
(xt) as in (1), where (vt) follows an invertible (K−1)-th order autoregression, and therefore,
can be represented as a linear process given in (5). Clearly, Assumption 4.1 is sufficient
to ensure that the summability and moment conditions in Assumption 2.1 hold for such a
representation. The time series (vt) has the longrun variance given by ω2 = Eε2

t /α(1)2.
Now we derive the asymptotics for the least squares estimators α̂1, . . . , α̂K of the au-

toregressive coefficients α1, . . . , αK. To do so, it will be convenient to look at a transformed
model

xt = αxt−1 +

K−1
∑

k=1

βk

(

xt−k −
(

1 − m

n

)

xt−k−1

)

+ εt, (24)

where α is as given in (2) and (βk) are the autoregressive coefficients for (vt), i.e.,

vt = β1vt−1 + · · · + βK−1vt−K+1 + εt.

The parameters in (23) and (24) are related to each other by

α1 = α + β1,

αk = βk − (1 − m/n)βk−1, k = 2, . . . , K − 1, (25)

αK = −(1 − m/n)βK−1.

In our representation (24), α is the critical parameter determining the nonstationary char-
acter of the model. Note that α =

∑

K

k=1(1−m/n)−(k−1)αk, as can be easily deduced from
(25). As is well known, the asymptotics for α̂1, . . . , α̂K in (23) can be obtained directly from
those of α̂ and β̂1, . . . , β̂K−1, the least squares estimators of α and β1, . . . , βK−1 in (24),
using the relationships derived in (25).

Let
θTRS = (α, β1, . . . , βK−1)

′

and denote respectively by θ̂TRS the least squares estimator of θTRS. Moreover, we define a
diagonal matrix

Cmn = diag

(

n√
m

,
√

nIK−1

)

,

where IK−1 is the identity matrix of dimension K−1, and let Γ = EvtKv′tK , where vtK =
(vt−1, . . . , vt−K+1)

′.

Theorem 4.2 Let Assumption 4.1 hold. We have

Cmn

(

θ̂TRS − θTRS

)

→d N(0,Σ),

where Σ = diag
(

2α(1)2,Γ−1
)

, as n → ∞, if m = o (n1−2/p ∧n2/3) and m → ∞ as n → ∞.
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Theorem 4.2 shows that the limiting distributions of all parameter estimates in the
transformed model (24) are jointly normal. In particular, the estimator α̂ of the critical
parameter α has limiting normal distribution. This is in contrast with the exact and near
unit root models. In these models, the limiting distribution of α̂ is nonnormal. Indeed, if
we set m = c for some fixed c, then it follows that

n (α̂ − α) →d

(
∫ 1

0
Vc(r)

2dr

)−1 ∫ 1

0
Vc(r)dV0(r), (26)

which reduces to the distribution tabulated in Dickey and Fuller (1996) when c = 0. The
limiting distribution appearing in (26) is nonnormal for all values of c. The rate of covergence
for α̂ in our weak unit root model is given by n/

√
m, an order of magnitude slower than

the rate n for the exact and near unit root models. As m approaches to n, the convergence
rate for α̂ in the weak unit root model gets closer to

√
n. The estimators for all the other

parameters have
√

n convergence rates and normal asymptotics in the weak unit root model,
like in the exact and near unit root models.

The limiting distributions of the least squares estimators for the parameters in the
original model (23) can now be obtained directly from Theorem 4.2 and the relationships
in (25). If we define

θORG = (α1, . . . , αK)′

and let θ̂ORG be the least squares estimator of θORG, then we may easily deduce under the
conditions in Theorem 4.2 that

√
n
(

θ̂ORG − θORG

)

→d N
(

0, JΓ−1J ′
)

,

where Γ is defined in the paragraph preceding Theorem 4.2 and

J =

















1
−1 1

−1
. . .
. . . 1

−1

















,

and that
n√
m

ι′
(

θ̂ORG − θORG

)

→d N
(

0, 2α(1)2
)

,

where ι is the K-dimensional vector of ones.
The limiting distribution of (α̂k) is jointly normal with the convergence rate

√
n for our

model with the weak unit root, and this is also precisely what we have for the exact and
weak unit root models. The joint limit distribution of (α̂k), however, has a sigularity in the
sum

∑

K

k=1 α̂k, and this is again true for all models with exact, near and weak unit roots.
This common sigularity also brings out the important differences between the asymptotics
for weak unit root models and those for exact and near unit root models. Although

∑

K

k=1 α̂k

converge at accelerated rates in all models, the rates are different in each model: It converges
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at the rate n/
√

m for the weak unit root model but at n rate for the exact and near unit root
models. More importantly, they yield different limiting distributions along the singularity:
The distribution of (α̂k) along the singularity is again normal for the weak unit root model,
whereas it is nonnormal for the exact and near unit root models.

In the weak unit root model, all linear combinations of (α̂k) have limiting normal dis-
tributions, including the one that is given by the direction which yields the asymptotic
multicollinearity and an accelerated convergence rate. Qualitatively, the asymptotics for
the weak unit root model are completely parallel to those for stationary invertible autore-
gressions. This has an obvious implication for inference. For the weak unit root model,
the hypotheses on autoregressive coefficients can be tested using standard tests that rely
on normal asymptotics. This, however, is not so for the exact and near unit root models.
For those models, the standard t-statistic to test for a hypothesis on the sum of autore-
gressive coefficients, or the nonstationarity parameter, has nonnormal limiting distribution,
and therefore, the usual t-test relying on normal critical values is not valid.

4.2 Nonlinear Regression Models

Next we look at the nonlinear regression model given by

yt = f(xt, θ0) + ut, (27)

where (xt) is a weakly integrated regressor and (ut) is the regression error that is assumed
to be a martingale difference sequence. As usual, we let f be a known function and let
θ0 be the unknown parameter. The unknown parameter θ0 is commonly estimated by the
nonlinear least squares (NLS) estimator θ̂, which is defined by

θ̂ = argmin
θ∈Θ

n
∑

t=1

(yt − f(xt, θ))2,

where Θ is the parameter set that is assumed to be compact.
To introduce the necessary regularity conditions for the regression function, we need to

consider the class of vector-valued functions F (·, π) on R indexed by the parameter π ∈ Π,
and require that the conditions in Definitions 3.2 and 3.5 hold uniformly for π ∈ Π in an
appropriate sense. Naturally, we say that the regularity conditions in Definitions 3.2 and
3.5 are satisfied for a vector-valued function if and only if they hold for each component of
the function. For the required uniformity, we define more formally that

Definition 4.3 We say that F (·, π) satisfies the regularity conditions of Definitions 3.2
and 3.5 uniformly for π ∈ Π, if their Lipschitz conditions in part (a) hold with the Lipschitz
constant independent of π ∈ Π, and their boundedness conditions in part (b) are met for
supπ∈Π |F (·, π)|.

We may now define the regularity conditions for the families F (·, π) of functions that
are integrable and asymptotically homogeneous functions. We call them I- and H-regular,
respectively, if they satisfy the required regularity conditions.
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Definition 4.4 We say that F is I-regular on Π if
(a) F (·, π) satisfies the regularity conditions in Definition 3.2 uniformly for π ∈ Π, and
(b) for each π0 ∈ Π, there exists a neighborhood N of π0 and T bounded and regularly

integrable such that ‖F (x, π) − F (x, π0)‖ ≤ ‖π − π0‖T (x) for all π ∈ N .

Definition 4.5 Let

F (λx, π) = κ(λ, π)H(x, π) + R(x, λ, π),

where κ is nonsingular. We say that F is H-regular on Π if
(a) H(·, π) satisfies the second-order regularity conditions in Definition 3.5 uniformly

for π ∈ Π,
(b) H(x, ·) is continuous on Π, and
(c) R(x, λ, π) = $(λ, π)Q(x), where (κ−1$)(λ) → 0 as λ → ∞ uniformly for π ∈ Π and

Q is regular in the second-order.
We call κ and H respectively the asymptotic order and limit homogeneous function of F . If
F has the asymptotic order κ which does not depend upon π, we say that it is H0-regular.

The regularity conditions in Definitions 4.4 and 4.5 are not very stringent, and are satisfied
by virtually all nonlinear regression models used in practical applications.7

The asymptotic distributions of the NLS estimator θ̂ of θ0 may now be developed under
the regularity conditions introduced above. Define ḟ = (∂f/∂θi), f̈ = (∂2f/∂θi∂θj) and...
f = (∂3f/∂θi∂θj∂θk) to be the vectors of partial derivatives of f with respect to θ, arranged
by the lexicographic ordering of their indices. For the regressions with I-regular regression
functions, we have

Theorem 4.6 Let Assumptions 2.1, 2.2 and 3.1 hold. Assume
(a) f, ḟ and f̈ are I-regular on Θ,
(b)

∫∞
−∞(f(x, θ) − f(x, θ0))

2dx > 0 for all θ 6= θ0, and

(c)
∫∞
−∞(ḟ ḟ ′)(x, θ0) dx > 0.

Then we have

4
√

nm
(

θ̂ − θ0

)

→d N

(

0, σ2

(

D(0)

∫ ∞

−∞
(ḟ ḟ ′)(x, θ0) dx

)−1
)

as n → ∞, if m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞.

Theorem 4.6 establishes the large sample theory for the NLS estimator θ̂ in the nonlinear
regression with integrable regression function and weakly integrated regressor. Besides the
technical regularity conditions, we only require some minimal conditions for identification,
which are expected to hold for a wide range of integrable regression functions.

7The regularity conditions here are not directly comparable to those introduced by Park and Phillips
(2001) to establish the asymptotic theory for the nonlinear regression models with exact integrated processes.
See Footnote 5.
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If the regressor is weakly integrated, the NLS estimator is asymptotically normal in the
regression with integrable regression function. This is in contrast with the case where the
regressor is exactly or nearly integrated. In this case, we have

4
√

n
(

θ̂ − θ0

)

→d MN

(

0, σ2

(

Lc(1, 0)

∫ ∞

−∞
(ḟ ḟ ′)(x, θ0) dx

)−1
)

, (28)

where Lc is the local time of the Ornstein-Uhlenbeck process with parameter c. The asymp-
totics in (28) generalize those obtained in Park and Phillips (2001) for the regression with
exactly integrated regressor. The limiting distribution in (28) is mixed normal, contrast-
ingly with the case of weakly integrated regressor. The inference, however, can be based on
the usual chi-square tests in all three cases where the regressor is exactly, nearly or weakly
integrated. The convergence rate for the NLS estimator in the regression with weakly in-
tegrated regressor is 4

√
nm, and faster than 4

√
n in the regression with exactly or nearly

integrated regressor. It approaches to the usual
√

n rate as m gets close to n.
We now consider the nonlinear regressions with H-regular regression functions. In what

follows, we denote by (κ, h), (κ̇, ḣ), (κ̈, ḧ) and (
...
κ,

...
h ), respectively, the asymptotic order

and the limit homogeneous function of f , ḟ , f̈ and
...
f that are assumed to be asymptotically

homogeneous. Moreover, we do not distinguish two functions on R that are identical a.e.,
i.e., identical except on a subset of R with Lebesgue measure zero. As an example, for two
functions a and b on R, a 6= b implies that they disagree on a subset of R with nonzero
Lebesgue measure.

Theorem 4.7 Let Assumptions 2.1 and 3.1 hold. Assume
(a) f, ḟ and f̈ are H0-regular on Θ,
(b) ‖

(

(κ̇ ⊗ κ̇)−1κκ̈
)

(λ)‖ < ∞ as λ → ∞,
(c) h(·, θ) 6= h(·, θ0) for all θ 6= θ0, and
(d) ḣ(·, θ0) is linearly independent.

Then we have

√
nκ̇

(
√

n

m

)′
(

θ̂ − θ0

)

→d N

(

0, σ2

(
∫ ∞

−∞
(ḣḣ′)(x, θ0)D(x) dx

)−1
)

as n → ∞, if m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞.

Theorem 4.8 Let Assumptions 2.1 and 3.1 hold. Assume
(a) ḟ , f̈ and

...
f are H-regular on Θ,

(b) there exists a neighborhood N of θ0 such that we have as λ → ∞

λ−1
∥

∥

(

(κ̇ ⊗ κ̇)−1κ̈
)

(λ, θ0)
∥

∥→ 0, (29)

λ−1+ε

∥

∥

∥

∥

(κ̇ ⊗ κ̇)−1(λ, θ0)

(

sup
θ∈N

κ̈(λ, θ)

)∥

∥

∥

∥

→ 0, (30)

λ−1+ε

∥

∥

∥

∥

(κ̇ ⊗ κ̇ ⊗ κ̇)−1(λ, θ0)

(

sup
θ∈N

...
κ (λ, θ)

)∥

∥

∥

∥

→ 0, (31)
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for some ε > 0, and
(c) ḣ(·, θ0) is linearly independent.

Then we have

√
nκ̇

(
√

n

m
, θ0

)′
(

θ̂ − θ0

)

→d N

(

0, σ2

(
∫ ∞

−∞
(ḣḣ′)(x, θ0)D(x) dx

)−1
)

as n → ∞, if m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞.

Theorems 4.7 and 4.8 establish the large sample theory for the NLS estimator θ̂ in the nonlin-
ear regression with asymptotically homogeneous regression function and weakly integrated
regressor. The technical regularity conditions are not very restrictive, and the identifying
restrictions are extremely mild. The required conditions are satisfied for a wide variety of
asymptotically homogeneous regression functions, including all that are considered in Park
and Phillips (2001).

If the regressor is weakly integrated, the NLS estimator is asymptotically normal also
for the regression with asymptotically homogeneous regression function. As a natural con-
sequence, the standard chi-square tests provide valid inferences. The asymptotics here are
more drastically different from those for the regressions with exactly or nearly integrated
regressors, in which case we have

√
n κ̇′

n

(

θ̂ − θ0

)

→d

(
∫ 1

0
(ḣḣ′)(Vc(s), θ0)ds

)−1 ∫ 1

0
ḣ(Vc(s), θ0)dU(s) (32)

with κ̇n = κ̇(
√

n) or κ̇n(
√

n, θ0) correspondingly to the asymptotics in Theorem 4.7 or 4.8,
where Vc is the Ornstein-Uhlenbeck process with parameter c and U is the limit Brownian
motion for (ut) as in (22). The asymptotics in (32) extend those in Park and Phillips (2001)
to the case for nearly integrated regressors. The limiting distribution in (32) is nonnormal
unless U is independent of Vc, and generally depends upon the correlation between U and
Vc. This of course implies that the usual tests based on the NLS procedure are invalid,
in sharp contrast to the regressions with weakly integrated regressors. The convergence
rate for the NLS estimator in the regression with weakly integrated regressor is determined
by the asymptotic order of the regression function, as in the case of the regression with
exactly or nearly integrated regressor. However, it converges to the standard

√
n rate as m

approaches to n, irrespective of the regression function.

5. Concluding Remarks

In this paper, we consider the time series with roots given as functions of the sample size
n, and approaching to unity at a rate slower than n−1. The motivation is clear. We set
the roots as functions of n, since their finite sample distributions in a neighborhood of the
unit root depend crucially on n. Further, we concentrate on the roots converging slowly to
unity, since this is the most relevant case for practical applications. Many economic and
financial time series are indeed known to have roots in close, but not too close, proximity
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of unity. Our theories, though developed using abstract mathematics and sophisticated
reasoning, have implications that are unambiguous and straightforward: The usual normal
asymptotics are generally applicable in finite samples for the standard econometric models
even if they include time series with roots close to one, as long as they are not too close to
one and the sample size is reasonably large.

Our theories are developed for a wide class of econometric models that are frequently
used in practical applications. However, we only explicitly consider their prototypical forms.
In particular, our models only allow for a single weakly integrated process without any
deterministic regressors and assume the absence of endogeneity. Needless to say, this is to
focus on the important issues and effectively deliver the main messages. For the practical
applications, the models considered in the paper may well be restrictive. The extensions
to alleviate these restrictions, though possible, require some new tools and fundamental
results that are not introduced in the paper. They are underway, and will be reported in
subsequent works. Roughly, all of our qualitative results in the paper well extend to more
general models with multiple regressors possibly including deterministic trends, and to a
certain degree, also to models with endogeneity.

The normal asymptotics continue to hold for the regression models with multiple weakly
integrated regressors. Our results in the paper are indeed naturally extended to them
within a new framework allowing for multiple weakly integrated processes. We have similar
normal limit theories for the regression models with deterministic trends, though the actual
asymptotics are developed in a somewhat different way due to the presence of non-stochastic
and trending regressors. The effect of endogeneity is more essential. The least squares
estimators have the limiting distributions that are affected by the presence of endogeneity
and depend upon the nuisance parameters characterizing the endogeneity. However, they
are still consistent. This is because the stochastic orders of weakly integrated regressors
are bigger than those of the regression errors that are assumed to be stationary, as in the
theory of the usual cointegression models with exact unit roots.

6. Mathematical Proofs

Our n-asymptotics in the paper are developed under the condition m = o (n1−2/p ∧ n2/3)
and m → ∞ as n → ∞. To avoid the repetition, however, we simply state in what follows
“n → ∞” and do not make it explicit that m is also given as a function of n satisfying the
condition m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞.

6.1 Useful Lemmas and Their Proofs

Lemma A1 Let V be the Ornstein-Uhlenbeck process with unit parameter, and let L be
the local time of V . We have

(a) E exp(cL(1, x)) < ∞ for all c and x,

(b) |L(1, a) − L(1, b)| ≤ |a − b|1/2−εZ for any ε > 0, where EZk < ∞ for all k ≥ 0, and

(c) sup0≤r≤m |V (r)| = O
(

(log m)1/2
)

a.s.
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Proof of Lemma A1 It follows from (8) with m = 1 and Tanaka’s formula [see, e.g.,
Revuz and Yor (1994, Theorem 1.2, p213)] that

L(1, x) = 2
(

(V (1) − x)+ − (V (0) − x)−
)

− 2

(∫ 1

0
1{V (r) > x} dW (r) −

∫ 1

0
V (r)1{V (r) > x} dr

)

, (33)

which will be used repeatedly below. It is well known that the stochastic differential equation
(8) has a stationary solution for any m > 0, if the initial condition is given consistently.
Therefore, if we let V (0) to be a normal random variate with mean zero and variance 1/2,
V becomes a stationary process. In our definition V is not strictly statonary, since V (0) is
assumed to be zero. This assumption, however, is made purely for expositional simplicity,
and does not change any of our results in the paper that rely on the asymptotic behavior
of V . Here and elsewhere, we will simply assume that V is a stationary process, with or
without the convention V (0) = 0.

For the proof of part (a), we note that

E exp(cV (1)) < ∞ (34)

for any c, due to Gaussianity of V (1). Moreover, we have

∫ 1

0
1{V (r) > x} dW (r) ≤ sup

0≤r≤1
|U(r)|,

where U is the DDS(Dambis-Dubins-Schwarz) Brownian motion [see, e.g., Revuz and Yor
(1194, Theorem 1.6, p173)] of the martingale

∫ ·
0 1{V (r) > x} dW (r), the quadratic variation

of which at time unity is given by
∫ 1
0 1{V (r) > x} dr ≤ 1. Consequently,

E exp

(

c

∫ 1

0
1{V (r) > x} dW (r)

)

< ∞ (35)

for any c. Finally, we have

∣

∣

∣

∣

∫ 1

0
V (r)1{V (r) > x} dr

∣

∣

∣

∣

≤
∫ 1

0
|V (r)| dr ≤ 2 sup

0≤r≤1
|W (r)|

since

V (r) = W (r) −
∫ r

0
e−(r−s)W (s) ds

and, for all r ∈ [0, 1],

|V (r)| ≤ |W (r)| +
(

1 − e−r
)

sup
0≤s≤r

|W (s)| ≤ 2 sup
0≤r≤1

|W (r)|. (36)

It therefore follows that

E exp

(

c

∫ 1

0
V (r)1{V (r) > x} dr

)

< ∞ (37)
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for any c. Recall that the running maximum of Brownian motion has the same distribution
as the modulus of Brownian motion. The result stated in part (a) can now be easily deduced
from (34), (35) and (37).

For the proof of part (b), it suffices to show that

E|L(1, a) − L(1, b)|2k ≤ ck|a − b|k (38)

for all integer k ≥ 1 and some constant ck depending only upon k (which work in particular
for all a and b), due to the extended version of the Kolmogorov criterion in Revuz and Yor
(1994, Theorem 2.1, p25). Here and elsewhere in the proof, we use ck to denote a generic
constant depending upon k, which may vary from line to line. Note that

ELk(1, x) ≤ ckE

(

|V (1)|k +

(
∫ 1

0
|V (r)| dr

)k

+ 1

)

≤ ckE

(

sup
0≤r≤1

|W (r)|
)k

,

which follows readily from (33), (36) and the inequality by BDG (Burkholder-Davis-Gundy)
[see, e.g., Revuz and Yor (1994, Theorem 4.1, p153)]. We therefore have

sup
x∈R

ELk(1, x) ≤ ck (39)

for all k ≥ 1.
Now define

M(x) =

∫ 1

0
1{V (r) > x} dW (r)

so that we have

M(a) − M(b) =

∫ 1

0
1{a < V (r) ≤ b} dW (r).

Using BDG-inequality, occupation time formula, Hölder inequality and Fubini’s theorem
successively, we may deduce that

E|M(a) − M(b)|2k ≤ ckE

(
∫ 1

0
1{a < V (r) ≤ b} dr

)k

= ckE

(∫ ∞

−∞
1{a < x ≤ b}L(1, x) dx

)k

≤ ck|a − b|kE
(

1

b − a

∫ b

a
Lk(1, x) dx

)

= ck|a − b|k
(

sup
x∈R

ELk(1, x)

)

(40)

for all k ≥ 1.
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Moreover, if we let

N(x) =

∫ 1

0
V (r)1{V (r) > x} dr

and

N(a) − N(b) =

∫ 1

0
V (r)1{a < V (r) ≤ b} dr,

then it follows from occupation times formula, Hölder inequality and Fubini’s theorem that

E|N(a) − N(b)|2k = E

(∫ 1

0
V (r)1{a < V (r) ≤ b} dr

)2k

= E

(
∫ ∞

−∞
x1{a < x ≤ b}L(1, x) dx

)2k

≤
(

b2 − a2

2

)2k

E

(

2

b2 − a2

∫ b

a
xL2k(1, x) dr

)

=

(

b2 − a2

2

)2k (

sup
x∈R

EL2k(1, x)

)

for all k ≥ 1. As a result, we may choose

|a − b| ≤ max(|a| + |b|, 1)−2

to deduce that

E|N(a) − N(b)|2k ≤ ck|a − b|k
(

sup
x∈R

EL2k(1, x)

)

(41)

for all k ≥ 1. Due to (33), we may now easily derive (38) from (39)–(41), and therefore, the
proof of part (b) is complete.

To prove part (c), we write

erV (r) = U

(

1

2
(e2r − 1)

)

, (42)

where U is the DDS Brownian motion of the martingale M

M(r) = erV (r) =

∫ r

0
e2sdV0(s).

Due to the law of iterated logarithm for Brownian motion, we have

(log r)−1/2e−r

∣

∣

∣

∣

U

(

1

2
(e2r − 1)

)∣

∣

∣

∣

= (log r)−1/2|V (r)| = Oa.s.(1)

and it therefore follows from our representation V in (42) as a time changed Brownian
motion that

sup
0≤r≤m

|V (r)| = Oa.s.((log m)1/2)

as was to be shown.
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Lemma A2 Let π0 ∈ Π be arbitrarily chosen and let N be any neighborhood of π0.
(a) If F (·, π) satisfies the regularity conditions in Definition 3.2 uniformly in π ∈ Π,

then supπ∈N F (·, π) and infπ∈N F (·, π) are both regularly integrable.
(b) If F (·, π) satisfies the regularity conditions in Definition 3.5 uniformly in π ∈ Π,

then supπ∈N F (·, π) and infπ∈N F (·, π) are both regularly locally integrable.

Proof of Lemma A2 Note that
∣

∣

∣

∣

inf
π∈N

F (x, π) − inf
π∈N

F (y, π)

∣

∣

∣

∣

,

∣

∣

∣

∣

sup
π∈N

F (x, π) − sup
π∈N

F (y, π)

∣

∣

∣

∣

≤ sup
π∈N

|F (x, π) − F (y, π) |

and that
∣

∣

∣

∣

sup
π∈N

F (·, π)

∣

∣

∣

∣

,

∣

∣

∣

∣

inf
π∈N

F (·, π)

∣

∣

∣

∣

≤ sup
π∈Π

|F (·, π)|,

from which the stated results follow immediately.

Lemma A3 Let Assumptions 2.1, 2.2 and 3.1 hold. If F is I-regular on a compact set Π,
then we have

1√
nm

n
∑

t=1

F (xt, π) →p D(0)

∫ ∞

−∞
F (x, π) dx

and
1√
nm

n
∑

t=1

F (xt, π)ut →p 0

as n → ∞, uniformly in π ∈ Π.

Proof of Lemma A3 Fix π0 ∈ Π arbitrarily, and let N be any neighborhood of π0. Due
to I-regularity condition (a) and Lemma A2, supπ∈N F (·, π) and infπ∈N F (·, π) are regularly
integrable. Therefore, we have

1√
nm

n
∑

t=1

sup
π∈N

F (xt, π) →p D(0)

∫ ∞

−∞
sup
π∈N

F (x, π) dx, (43)

1√
nm

n
∑

t=1

inf
π∈N

F (xt, π) →p D(0)

∫ ∞

−∞
inf
π∈N

F (x, π) dx (44)

from Theorem 3.4.
Let Nδ be the δ-neighborhood of π0. By I-regularity condition (b), we have for all x ∈ R

sup
π∈Nδ

F (x, π) − inf
π∈Nδ

F (x, π) → 0

as δ → 0, and by dominated convergence,
∫ ∞

−∞
sup
π∈Nδ

F (x, π) dx −
∫ ∞

−∞
inf

π∈Nδ

F (x, π) dx → 0 (45)
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as δ → 0. We may now easily deduce from (43)–(45) that there exists a neighborhood of
π0 such that

1√
nm

n
∑

t=1

F (xt, π) →p D(0)

∫ ∞

−∞
F (x, π) dx

uniformly in π. Since π0 was chosen arbitrarily and Π is compact, the proof for mean
asymptotics is complete.

For the proof of the result for covariance asymptotics, we also choose π0 ∈ Π arbitrarily.
Due to the compactness of Π, it suffices to show that there exists a neighborhood N of π0

such that

sup
π∈N

∣

∣

∣

∣

∣

1√
nm

n
∑

t=1

F (xt, π)ut

∣

∣

∣

∣

∣

= op(1) (46)

as n → ∞. Moreover, since it follows from Theorem 3.4 that

1
4
√

nm

n
∑

t=1

F (xt, π0)ut = Op(1),

we only need to establish that

sup
π∈N

∣

∣

∣

∣

∣

1√
nm

n
∑

t=1

(F (xt, π) − F (xt, π0))ut

∣

∣

∣

∣

∣

= op(1) (47)

to show (46).
However, it follows from I-regularity condition (b) that

n
∑

t=1

|F (xt, π) − F (xt, π0)||ut| ≤ ‖π − π0‖
(

σ

n
∑

t=1

|T (xt)| +
n
∑

t=1

|T (xt)|wt

)

, (48)

where wt = |ut| − E(|ut||Ft−1). Note that E(|ut||Ft−1)
2 ≤ σ2 by Jensen’s inequality.

Furthermore, we have from Theorem 3.4 that

1√
nm

n
∑

t=1

|T (xt)|,
1

4
√

nm

n
∑

t=1

|T (xt)|wt = Op(1),

since T is regularly integrable. It is therefore clear from (48) that we may choose a neigh-
borhood N of π0 such that (47) holds, and this completes the proof.

Lemma A4 Let Assumptions 2.1 and 3.1 hold. If F is H-regular with asymptotic order
κ and limit homogeneous function H on a compact set Π, then we have

1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

F (xt, π) →p

∫ ∞

−∞
H(x, π)D(x) dx

and
1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

F (xt, π)ut →p 0

as n → ∞, uniformly in π ∈ Π
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Proof of Lemma A4 Due to H-regularity condition (c), we have

1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

F (xt, π) =
1

n

n
∑

t=1

H

(
√

n

m
xt, π

)

+ op(1) (49)

uniformly in π ∈ Π, as n → ∞. Moreover, if we let π0 be chosen arbitrarily and let N be a
neighborhood of π0, then it follows directly from H-regularity condition (a) and Lemma A2
that supπ∈N H(·, π) and infπ∈N F (·, π) are regularly locally integrable. Therefore, we have
from (20) that

1

n

n
∑

t=1

sup
π∈N

H

(
√

n

m
xt, π

)

→p

∫ ∞

−∞
sup
π∈N

H(x, π)D(x) dx, (50)

1

n

n
∑

t=1

inf
π∈N

H

(
√

n

m
xt, π

)

→p

∫ ∞

−∞
inf
π∈N

H(x, π)D(x) dx (51)

as n → ∞.
Let Nδ be the δ-neighborhood of π0. Then we have for every x ∈ R

sup
π∈Nδ

H(x, π) − inf
π∈Nδ

H(x, π) → 0

as δ → 0, due to the continuity of H(x, ·) given by H-regularity condition (b). Moreover, it
follows from dominated convergence that

∫ ∞

−∞

(

sup
π∈Nδ

H(x, π) − inf
π∈Nδ

H(x, π)

)

D(x) dx → 0 (52)

as δ → 0. We may now easily deduce from (49)– (52) that there exists a neighborhood of
π0, where

1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

F (xt, π) →p

∫ ∞

−∞
H(x, π)D(x) dx

holds uniformly in π. Since π0 was chosen arbitrary and Π is compact, this proves the
stated result for mean asymptotics.

For the proof of the result for covariance asymptotics, note that we have for any π0 ∈ Π

1√
n

κ

(
√

n

m
, π

)−1 n
∑

t=1

F (xt, π0)ut = Op(1)

due to Theorem 3.8. Therefore, we only need to show that there exists a neighborhood N
of π0 such that

sup
π∈N

∣

∣

∣

∣

∣

1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

(F (xt, π) − F (xt, π0))ut

∣

∣

∣

∣

∣

= op(1) (53)
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to establish that

sup
π∈N

∣

∣

∣

∣

∣

1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

F (xt, π)ut

∣

∣

∣

∣

∣

= op(1)

as n → ∞. The stated result would then follow immediately from the compactness of Π.
It follows from Cauchy-Schwarz that

∣

∣

∣

∣

∣

1

n
κ

(
√

n

m
, π

)−1 n
∑

t=1

(F (xt, π) − F (xt, π0)) ut

∣

∣

∣

∣

∣

≤
(

1

n
κ

(
√

n

m
, π

)−2 n
∑

t=1

(F (xt, π) − F (xt, π0))
2

)1/2(

1

n

n
∑

t=1

u2
t

)1/2

. (54)

However, we may show as in the proof of part (a) that

1

n
κ

(
√

n

m
, π

)−2 n
∑

t=1

(F (xt, π) − F (xt, π0))
2 →p

∫ ∞

−∞
(H(x, π) − H(x, π0)

2D(x) dx (55)

uniformly in π ∈ Π. Moreover, due to H-regularity condition (b), we have for all x ∈ R

sup
π∈Nδ

|H(x, π) − H(x, π0)| → 0

and it follows from the dominated convergence that
∫ ∞

−∞
(H(x, π) − H(x, π0)

2D(x) dx → 0 (56)

as δ → 0, where Nδ is the δ-neighborhood of π0. It now follows readily from (54)–(56)
that there exists a neighborhood N of π0 such that (53) holds uniformly, and the proof is
complete.

Lemma A5 Let Assumption 4.1 hold. Then we have for k = 1, . . . , K − 1

1

n

n
∑

t=1

xtvt−k = Op(1)

as n → ∞, if m = o (n1−2/p ∧ n2/3) and m → ∞ as n → ∞.

Proof of Lemma A5 Notice that
n
∑

t=1

xtvt−k =
(

1 − m

n

)k+1
n
∑

t=1

xt−k−1vt−k

+

n
∑

t=1

vtvt−k +
(

1 − m

n

)

n
∑

t=1

vt−1vt−k + · · · +
(

1 − m

n

)k
n
∑

t=1

vt−kvt−k

=
(

1 + O
(m

n

))

n
∑

t=1

xt−1vt + Op(n)
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uniformly for any finite number of k’s. Now we write

n
∑

t=1

xt−1vt = π(1)

n
∑

t=1

xt−1εt +

n
∑

t=1

xt−1 (ṽt−1 − ṽt) .

We have
n
∑

t=1

xt−1εt = Op

(

n√
m

)

.

Moreover,

n
∑

t=1

xt−1 (ṽt−1 − ṽt) =

n
∑

t=1

(xt − xt−1)ṽt + Op(
√

n)

=

n
∑

t=1

vtṽt −
m

n

n
∑

t=1

xt−1ṽt + Op(
√

n)

= −m

n

n
∑

t=1

xt−1ṽt + Op(n)

and
∣

∣

∣

∣

∣

n
∑

t=1

xt−1ṽt

∣

∣

∣

∣

∣

≤
(

n
∑

t=1

x2
t−1

)1/2( n
∑

t=1

ṽ2
t

)1/2

= Op

(

n√
m

)

Op(
√

n),

from which we may deduce

n
∑

t=1

xt−1vt = Op

(

n√
m

)

+
m

n
Op

(

n√
m

)

Op(
√

n) + Op(n) = Op(n).

The proof is now complete.

6.2 Proofs of Theorems

Proof of Lemma 2.3 It can be deduced after recursive substitution that

n−1/2xi+1 = n−1/2
i+1
∑

j=1

vj − (1 − α)

i
∑

j=1

αi−j

(

n−1/2
j
∑

k=1

vk

)

. (57)

See Stock (1994) for more detailed explanation for the derivation. We define

V0n(r) = n−1/2

[nr]+1
∑

i=1

vi (58)

and note that
α = exp(−m/n) + O((m/n)2). (59)
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Then we have for all i

m

∫ i/n

0
exp

(

−m

(

i

n
− s

))

V0n(s) ds

=
(

1 − exp
(

−m

n

))

i
∑

j=1

(

exp
(

−m

n

))i−j
(

n−1/2
j
∑

k=1

vk

)

(60)

and for any i/n < r < (i+1)/n

m

∫ r

i/n
exp(−m(r − s))V0n(s) ds = V0n

(

i

n

)

m

∫ r

i/n
exp(−m(r − s)) ds

= V0n

(

i

n

)(

1 − exp

(

−m

(

r − i

n

)))

= Op(m/n) (61)

uniformly in i.
It follows from (57)–(61) that

Vmn(r) = V0n(r) − m

∫ r

0
exp(−m(r − s))V0n(s) ds + Op(mn−1). (62)

However, we may have, by expanding the underlying probability space if necessary, Brow-
nian motion V0 such that

sup
0≤r≤1

|V0n(r) − V0(r)| = op(n
−1/2+1/p), (63)

which follows from the strong approximation result for the linear process by e.g., Akonom
(1993). We therefore have from (62) and (63)

Vmn(r) = V0(r) − m

∫ r

0
exp(−m(r − s))V0(s) ds + op(n

−1/2+1/p) + Op(mn−1). (64)

The stated result now can easily be deduced from (64) upon noticing that

∫ r

0
exp(−m(r − s)) dV0(s) = V0(r) − m

∫ r

0
exp(−m(r − s))V0(s) ds,

which is due to the integration by parts formula for stochastic integrals.

Proof of Lemma 2.4 The first part follows from Bosq (1999, Theorem 6.11, p163). The
conditions (i) and (iii) there are clearly satisfied, and the requirements (ii) and (iiii) are
shown to hold in parts (a) and (b) of Lemma A1. The continuity of EL(T, ·), while it
certainly holds in our case, is not required here, since D is Lipschitz over the entire R.

To prove the second part, we let

∆m(x) = (Dm(x) − D(x))1
{

|x| ≤ (log m)1/2
}

.
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Then it follows that

|Dm(x) − D(x)| ≤ |∆m(x)| + D(x)1
{

|x| > (log m)1/2
}

due to part (c) of Lemma A1. Obviously, we have

∫ ∞

−∞
|x|kD(x)1{|x| > (log m)1/2} dx → 0

as m → ∞, and therefore, it suffices to show that
∫ ∞

−∞
|x|k|∆m(x)| dx → 0 (65)

as m → ∞. As in Bosq (1999, p163), we may assume that m is an integer.
For the proof of (65), we first define

Lt(x) = L(t, x) − L(t−1, x) (66)

and notice that ELt(x) = D(x) for 1 ≤ t ≤ m. Then it follows for |x| ≤ (log m)1/2 that

∆m(x) =
1

m

m
∑

i=1

(Lt(x) − ELt(x)).

Part (a) of Lemma A1 entails Cramer’s conditions, and therefore, we have for |x| ≤
(log m)1/2

P{cm|∆m(x)| > η} ≤ Km− log log m, (67)

where
cm = m1/2(log m log log m)−1

and K is some constant.
We now let

δm = m−(1+2ε)/(1−2ε)

for ε > 0 given in part (b) of Lemma A1, and define δm(i) = [(i−1)δm, iδm] for the values
of i’s just enough to ensure [−(log m)1/2, (log m)1/2] ⊂ ⋃i δm(i). For x ∈ δm(i), we have

|∆m(x)| ≤ |Dm(x) − Dm(iδm)| + |∆m(iδm)| + |D(x) − D(iδm)|. (68)

Let Zt be the random variable associated with Lt in part (b) of Lemma A1. Then it follows
that

|Dm(x) − Dm(iδm)| ≤ 1

m

m
∑

t=1

|Lt(x) − Lt(iδm)| ≤ δ1/2−ε
m

1

m

m
∑

t=1

Zt.

Remark that the bound does not depend upon i, and
∑m

t=1 Zt/m = O(1) a.s. by the ergodic
theorem. Therefore, we have

cm max
i

sup
x∈δm(i)

|Dm(x) − Dm(iδm)| ≤ cmδ1/2−ε
m →a.s. 0 (69)
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as m → ∞.
On the other hand, it follows from (67) that

P

{

max
i

cm|∆m(iδm)| > η

}

≤ Kδ−1
m m− log log m log m

and Borel-Cantelli lemma entails

max
i

cm|∆m(iδm)| →a.s. 0 (70)

as m → ∞. Finally, we have

max
i

sup
x∈δm(i)

|D(x) − D(iδm)| ≤
√

2/πeδm

and
cm max

i
sup

x∈δm(i)
|D(x) − D(iδm)| ≤

√

2/πecmδm →a.s. 0 (71)

as m → ∞.
Now it follows from (68)–(71) that

sup
x∈R

|∆m(x)| = O(m−1/2 log m log log m) a.s.

and we may easily deduce that

∫ ∞

−∞
|x|k|∆m(x)| dx =

∫

|x|≤(log m)1/2

|x|k|∆m(x)| dx

= Oa.s.

(

(log m)(k+3)/2 log log m√
m

)

.

The result stated in the second part now follows immediately.

Proof of Lemma 3.3 We assume without loss of generality that x0 = 0, and that the
support of T is included on R+. Also, we assume, by taking piece by piece if necessary,
that T satisfies the conditions in Definition 3.2 over its entire support. In our subsequent
proof, ε > 0 denotes an arbitrarily small number, which may vary from line to line. Denote
by (κmn) and (δmn) the sequences of numbers satisfying

δmn = min(m−1n−1/p−ε,m−1/2n−1/6−2/3p), κmnδmn = n1/p+ε (72)

if n1/2+1/p ≥ m, and

δmn = min(m−2n1/2−ε,m−7/6n1/6), κmnδmn = n1/p+ε (73)

if m ≥ n1/2+1/p. Note that
m1/2n1/2δmn ≥ 1 (74)
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for both cases (72) and (73), given the assumption m = o (n1−2/p ∧ n2/3). This is required
in the subsequent proof. Note also that

mκmnδ2
mn ≤ 1 (75)

for both cases (72) and (73).
We define

∆mn = sup
0≤r≤1

|Vmn(r) − Vm(r)| . (76)

It follows that √
n∆mn = op(n

1/p) + Op(n
−1/2m) = op(κmnδmn)

and
κmnδmn ± 2

√
n∆mn ≥ κmnδmn(1 + op(1)).

Moreover, we let

Tmn(x) = T (x)1{0 ≤ x < κmnδnm},

Tnm(x) =

κmn
∑

k=1

T (kδmn)1{(k − 1)δmn ≤ x < kδmn}.

The function Tmn is a truncated version of T , and Tnm is a simple function approximating
Tmn.

First, we show that

1√
nm

n
∑

t=1

T (xt) −
1√
nm

n
∑

t=1

Tmn(xt) =d

√

n

m

∫ 1

0
(T − Tmn)(

√
nVmn(r))dr

= op(n
−1/6+1/3p+ε) (77)

uniformly in m ∈ R+. By taking n (and hence m) sufficiently large, we may assume that
T − Tmn is monotone decreasing on its support. Then it follows that
√

n

m

∫ 1

0
(T − Tmn)(

√
nVmn(r))dr

≤
√

n

m

∫ 1

0
T (

√
n(Vm(r) − ∆mn))1{

√
n(Vm(r) + ∆mn) > κmnδmn}dr

=
1

m

√

n

m

∫ 1

0
T

(
√

n

m
V (r) −

√
n∆mn

)

1

{
√

n

m
V (r) +

√
n∆mn > κmnδmn

}

dr

=
1

m

√

n

m

∫ ∞

−∞
T

(
√

n

m
x −

√
n∆mn

)

1

{
√

n

m
x +

√
n∆mn > κmnδmn

}

L(m,x)dx

=
1

m

∫ ∞

−∞
T (x)1{x > κmnδmn − 2

√
n∆mn}L

(

m,

√

m

n
x +

√
m∆mn

)

dx

≤
∫ ∞

−∞
T (x)1{x > κmnδmn(1 + op(1))}dx

≤
∫ ∞

−∞
|T (x)|1{x > n1/p+ε(1 + op(1))}dx

= op(n
−1/6+1/3p−ε)
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uniformly in m ∈ R+, for some small ε > 0.
Second, we have from the Lipschitz condition for T that

∣

∣

∣

∣

∣

1√
nm

n
∑

t=1

Tmn(xt) −
1√
nm

n
∑

t=1

Tnm(xt)

∣

∣

∣

∣

∣

≤ cκmnδ2
mn

1

κmnδmn
√

nm

n
∑

t=1

1{0 ≤ xt < κmnδmn}

= Op(κmnδ2
mn)

= m−1/2
(

op(n
−1/6+1/3p+ε) + op(m

1/3n−1/3+ε)
)

(78)

uniformly in m ∈ R+ for some constant c, since we have in particular

1

κmnδmn
√

nm

n
∑

t=1

1{0 ≤ xt < κmnδmn}

=d
1

κmnδmn

√

n

m

∫ 1

0
1{0 ≤

√
nVmn(r) < κmnδmn}dr

≤ 1

κmnδmn

√

n

m

∫ 1

0
1{0 ≤

√
nVm(r) < κmnδmn +

√
n∆mn}dr

=
1

m

1

κmnδmn

√

n

m

∫ m

0
1

{

0 ≤
√

n

m
V (r) < κmnδmn(1 + op(1))

}

dr

=
1

m

1

κmnδmn

√

n

m

∫ ∞

−∞
1

{

0 ≤
√

n

m
x < κmnδmn(1 + op(1))

}

L(m,x)dr

=
1

m

∫ ∞

−∞
1{0 ≤ x < 1 + op(1)}L

(

m,κmnδmn

√

m

n
x

)

dx

= Op(1)

uniformly in m ∈ R+.
Third, we have

1√
nm

n
∑

t=1

Tnm(xt) =

(∫ ∞

−∞
T (x)dx

)

1

δmn
√

nm

n
∑

t=1

1{0 ≤ xt < δmn}

+ op(n
−1/6+1/3p+ε) + op(m

1/4n−1/4+1/2p+ε)

+ op(m
1/3n−1/3+ε) + op(m

3/4n−1/2+ε) (79)

uniformly in m ∈ R, for any ε > 0. To show (79), we first note that

E

(

n
∑

t=1

1{0 ≤ xt < δ} −
n
∑

t=1

1{(k − 1)δ ≤ xt < kδ}
)2

≤ cm1/2n1/2δ(1 + mkδ2 log n), (80)

where c is some number, which is dependent only upon the distribution of (εt) and bounded
by some absolute constant. We may deduce (80) exactly as in Akonom (1993) upon noticing
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that the density and its first derivative of (xt) are bounded uniformly by the constant
multiples of (m/t)1/2 and m/t, respectively. The proof for (80) goes precisely as the proof
of Lemma 6 in Akonom (1993) for simple random walks, and can be extended for more
general linear processes following the arguments used in his proof of Lemma 13. Note that
the condition (74) is required to obtain (80).

As we noted earlier, we have (75) given our choices of δmn and κmn in (72) and (73).
Therefore, it follows that

n
∑

t=1

1{0 ≤ xt < δmn} =
n
∑

t=1

1{(k − 1)δmn ≤ xt < kδmn} + op(m
1/4n1/4+εδ1/2

mn)

uniformly in m ∈ R+ and k = 1, . . . , κmn. However, if n1/2+1/p ≥ m, then

m1/4n1/4+εδ1/2
mn = δmn

√
nm

(

o(n−1/6+1/3p+ε) + o(m1/4n−1/4+1/2p+ε)
)

and, if m ≥ n1/2+1/p, then

m1/4n1/4+εδ1/2
mn = δmn

√
nm

(

o(m1/3n−1/3+ε) + o(m3/4n−1/2+ε)
)

.

Consequently, it follows that

(∫ ∞

−∞
Tnm(x)dx

)

1

δmn
√

nm

n
∑

t=1

1{0 ≤ xt < δmn} =
1√
nm

n
∑

t=1

Tnm(xt)

+ op(n
−1/6+1/3p+ε) + op(m

1/4n−1/4+1/2p+ε) + op(m
1/3n−1/3+ε) + op(m

3/4n−1/2+ε).

Note that
∫ ∞

−∞
Tnm(x)dx =

∫ ∞

−∞
Tmn(x)dx + O(κmnδ2

mn)

=

∫ ∞

−∞
T (x)dx + m−1/2

(

o(n−1/6+1/3p+ε) + o(m1/3n−1/3+ε)
)

from which we may easily derive (79).
Fourth, it can be deduced that

1

δmn
√

nm

n
∑

t=1

1{0 ≤ xt < δmn} =
1

δmn

√

n

m

∫ 1

0
1{0 ≤

√
nVm(r) < δmn}dr

+ op(n
−1/6+1/3p+ε) + op(m

1/3n−1/3+ε). (81)

To show (81), we may proceed as in the proof of Theorem 8 in Akonom (1993) and establish
using (80) and Lemma 2.3 that the terms A1(n,m), A2(n,m) and A3(n,m) corresponding
to A1(n), A2(n) and A3(n) defined in Akonom (1993) have orders given by

A1(n,m), A3(n,m) = op(m
1/4n1/4+εδ1/2(1 + mkδ2)1/2),

A2(n,m) = op(n
1/2+1/p) + Op(n

−1/2m).



35

When n1/2+1/p ≥ m, we may choose k−1 = m1/2n−1/6−2/3pδ to get

A1(n,m), k−1A2(n,m), A3(n,m) = op(m
1/2n1/3+1/3p+εδ) = δ

√
nmop(n

−1/6+1/3p+ε).

If, on the other hand, m ≥ n1/2+1/p, then we have

A1(n,m), k−1A2(n,m), A3(n,m) = op(m
5/6n1/6+εδ) = δ

√
nmop(m

1/3n−1/3+ε)

with the choice of k−1 = (n/m)1/6δ. The result in (81) now follows immediately.
Fifth, it follows from part (b) of Lemma A1 that

1

m
|L(m,a) − L(m, b)| ≤ 1

m

m
∑

t=1

|Lt(a) − Lt(b)| ≤ |a − b|1/2−ε 1

m

m
∑

t=1

Zt,

where Lt is defined in (66) and Zt is the random variable associated with Lt, and therefore,

1

m
|L(m,a) − L(m, b)| = O(|a − b|1/2−ε) a.s. (82)

We have

1

δmn

√

n

m

∫ 1

0
1{0 ≤

√
nVm(r) < δmn}dr

=
1

mδmn

√

n

m

∫ m

0
1

{

0 ≤
√

n

m
V (r) < δmn

}

dr

=
1

mδmn

√

n

m

∫ ∞

−∞
1

{

0 ≤
√

n

m
x < δmn

}

L(m,x)dr

=
1

m

∫ ∞

−∞
1{0 ≤ x < 1}L

(

m, δmn

√

m

n
x

)

dx

= Dm(0) +
1

m

∫ ∞

−∞
1{0 ≤ x < 1}

[

L

(

m, δmn

√

m

n
x

)

− L(m, 0)

]

dx

= Dm(0) + O(δ1/2
mnm1/4n−1/4+ε) a.s. (83)

and
√

n

m

∫ 1

0
T (

√
nVm(r))dr =

1

m

√

n

m

∫ m

0
T

(
√

n

m
V (r)

)

dr

=
1

m

√

n

m

∫ ∞

−∞
T

(
√

n

m
x

)

L(m,x)dx

=
1

m

∫ ∞

−∞
T (x)L

(

m,

√

m

n

)

dx

= Dm(0)

∫ ∞

−∞
T (x)dx

+
1

m

∫ ∞

−∞
T (x)

[

L

(

m,

√

m

n

)

− L(m, 0)

]

dx

= Dm(0)

∫ ∞

−∞
T (x)dx + O(m1/4n−1/4+ε) a.s., (84)
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which are due in particular to (82).
We may now easily deduce from (77), (78), (79), (81), (83) and (84) that

√

n

m

∫ 1

0
T (

√
nVmn(r))dr =

√

n

m

∫ 1

0
T (

√
nVm(r))dr + Rmn,

where

Rmn = op

(

max
(

n−1/6+1/3p,m1/4n−1/4+1/2p,m1/3n−1/3,m3/4n−1/2
)1−ε

)

for some ε > 0. The proof is therefore complete.

Proof of Theorem 3.4 The mean asymptotics follow directly from (14). For the covari-
ance asymptotics, we invoke the CLT for general martingale difference sequences in Hall
and Hyde (1981, Corollary 3.1). We have for any ε > 0

n
∑

t=1

E

(

∣

∣

∣

∣

1
4
√

nm
F (xt)ut

∣

∣

∣

∣

2+ε
∣

∣

∣

∣

∣

Ft−1

)

≤ (nm)−ε/4

(

sup
1≤t≤n

E
(

|ut|2+ε |Ft−1

)

)

1√
nm

n
∑

t=1

|F (xt)|2+ε

= Op((nm)−ε/4),

where (Ft) is the filtration introduced in Assumption 3.1, and therefore, the conditional
Lindeberg condition is satisfied. Remark that if F is regularly integrable, so is |F |2+ε for
any ε > 0.

To obtain the stated result, we simply note that

E
(

(F (xt)ut)
2
∣

∣Ft−1

)

= σ2F 2(xt)

and apply (14) with T = F 2 to deduce

1√
nm

n
∑

t=1

F 2(xt) →p D(0)

∫ ∞

−∞
F 2(x) dx

as n → ∞. The stated covariance asymptotics now follow immediately from Hall and Heyde
(1981, Corollary 3.1).

Proof of Lemma 3.7 Let ∆mn be defined as in (76), and let (cmn) be a random sequence
such that cmn ≥ √

m∆mn and cmn →p 0 as n → 0. We write

∣

∣S(
√

mVmn(r)) − S(
√

mVm(r))
∣

∣ ≤ Amn(r) + Bmn(r) + Cmn(r) + Dmn(r),
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where

Amn(r) =
∣

∣S(
√

mVmn(r)) − S(
√

mVm(r))
∣

∣ 1
{√

m|Vmn(r)| ≥ cmn

}

1
{√

m|Vm(r)| ≥ cmn

}

,

Bmn(r) =
∣

∣S(
√

mVmn(r)) − S(
√

mVm(r))
∣

∣ 1
{√

m|Vmn(r)| < cmn

}

1
{√

m|Vm(r)| ≥ cmn

}

,

Cmn(r) =
∣

∣S(
√

mVmn(r)) − S(
√

mVm(r))
∣

∣ 1
{√

m|Vmn(r)| ≥ cmn

}

1
{√

m|Vm(r)| < cmn

}

,

Dmn(r) =
∣

∣S(
√

mVmn(r)) − S(
√

mVm(r))
∣

∣ 1
{√

m|Vmn(r)| < cmn

}

1
{√

m|Vm(r)| < cmn

}

for every r ∈ [0, 1].
Due to the condition in part (a) of Definition 3.5, we have

Amn(r) ≤ K
(

1 +
∣

∣

√
mVm(r)

∣

∣

a)
(1 + cb

mn)
√

m |Vmn(r) − Vm(r)|

for all large n. However,
∫ 1

0

(

1 +
∣

∣

√
mVm(r)

∣

∣

a)
dr =

1

m

∫ m

0
(1 + |V (r)|a) dr

=
1

m

∫ ∞

−∞
(1 + |x|a)L(m,x) dr

→a.s.

∫ ∞

−∞
(1 + |x|a)D(x) dr

as m → ∞, and it therefore follows that
∫ 1

0
Amn(r) dr = Op

(√
m(1 + cb

mn)∆mn

)

(85)

for all large n.
Since for all n sufficiently large

{∣

∣

√
mVm(r)

∣

∣ ≥ cmn

}

⊂
{∣

∣

√
mVmn(r)

∣

∣ ≥ cmn − ∆mn

}

and
{∣

∣

√
mVmn(r)

∣

∣ ≥ cmn

}

⊂
{∣

∣

√
mVm(r)

∣

∣ ≥ cmn − ∆mn

}

,

we may also easily deduce that
∫ 1

0
Bmn(r) dr,

∫ 1

0
Cmn(r) dr = Op

(√
m(1 + cb

mn)∆mn

)

(86)

for all large n. Remark that cmn ≥ √
m∆mn.

Finally, we have
∫ 1

0
Dmn(r) dr ≤ 2(1 + op(1))

∫ 1

0

∣

∣S
(√

mVm(r)
)∣

∣ 1
{√

m|Vm(r)| < cmn

}

dr

for large n, since, in particular,
∫ 1

0

∣

∣S
(√

mVmn(r)
)∣

∣ 1
{√

m|Vmn(r)| < cmn

}

dr

= (1 + op(1))

∫ 1

0

∣

∣S
(√

mVm(r)
)∣

∣ 1
{√

m|Vm(r)| < cmn

}

dr
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for large n. Moreover, due to the condition in part (b) of Definition 3.5,

∣

∣S
(√

mVm(r)
)∣

∣ 1
{√

m|Vm(r)| < cmn

}

≤
∣

∣

√
mVm(r)

∣

∣

c
1
{√

m|Vm(r)| < cmn

}

for all r ∈ [0, 1] and for all n sufficiently large, and we have

∫ 1

0

∣

∣

√
mVm(r)

∣

∣

c
1
{√

m|Vm(r)| < cmn

}

dr =
1

m

∫ m

0
|V (r)|c1{|V (r)| < cmn}

=
1

m

∫ ∞

−∞
|x|c1{|x| < cmn}L(m,x) dx

≤
(

sup
x∈R

L(m,x)

m

)∫ ∞

−∞
|x|c1{|x| < cmn} dx

= (D(0) + o(1))
c1+c
mn

1 + c
a.s.,

due in particular to Lemma 2.4. It therefore follows that

∫ 1

0
Dmn(r) dr = Op(c

1+c
mn ) (87)

for large n.
We now have from (85)–(87)

∫ 1

0
S(

√
mVmn(r) dr =

∫ 1

0
S(

√
mVm(r) dr + Rmn,

where
Rmn = Op

(√
m(1 + cb

mn)∆mn

)

+ Op

(

c1+c
mn

)

.

For c ≥ 0 and b ≥ 0, we may choose cmn =
√

m∆mn to show that Rmn = Op(
√

m∆mn).
If c ≤ b and −1 < c < 0, then the same choice of cmn gives the optimal rate Rmn =
Op((

√
m∆mn)1+c). Finally, when c > −1, c > b and b < 0, the optimal choice of cmn

reduces to cmn = (
√

m∆mn)1/(1+c−b), which yields Rmn = Op((
√

m∆mn)(1+c)/(1+c−b)). To
complete the proof, note that

√
m∆mn = op(m

1/2n−1/2+1/p) + Op(m
3/2n−1),

which becomes of order op(1) if m = o (n1−2/p ∧ n2/3) as we assume here.

Proof of Theorem 3.8 The mean asymptotics follow immediately from (17) and (20).
The covariance asymptotics can be obtained using the CLT for general martingale sequences
used in the proof of Theorem 3.4. To establish the required conditional Linderberg condi-
tion, we first note that if F 2 is regularly homogeneous, then so is |F |2+ε for ε > 0 sufficiently
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small. Then it follows that

n
∑

t=1

E





∣

∣

∣

∣

∣

1√
n

κ

(
√

n

m

)−1

F (xt)ut

∣

∣

∣

∣

∣

2+ε
∣

∣

∣

∣

∣

∣

Ft−1





≤ n−ε/2

(

sup
1≤t≤n

E
(

|ut|2+ε |Ft−1

)

)

1

n
κ

(
√

n

m

)−2−ε n
∑

t=1

|F (xt)|2+ε

= Op(n
−ε/2),

where (Ft) is the filtration introduced in Assumption 3.1.
To deduce the stated covariance asymptotics, we note

E
(

(F (xt)ut)
2
∣

∣Ft−1

)

= σ2F 2(xt)

and use the results in (17) and (20) with T = F 2 and S = H2 to derive

1

n
κ

(
√

n

m

)−2 n
∑

t=1

F 2(xt) →p

∫ ∞

−∞
(HD)2(x) dx

as n → ∞. Remark that if F is regularly homogeneous with asymptotic order κ and limit
homogeneous function H, and if F 2 is regularly homogeneous, then the asymptotic order
and limit homogeneous function of F 2 are given respectively by κ2 and H2. The covariance
asymptotics for regularly homogeneous functions can now be established directly from Hall
and Heyde (1981, Corollary 3.1).

Proof of Theorem 4.2 Let σ2 = Eε2
t . As is well known, we have

1

n

n
∑

t=1

vtKv′tK →p Γ (88)

and
1√
n

n
∑

t=1

vtKεt →d N(0, σ2Γ) (89)

as n → ∞.
We now apply the mean asymptotics in Theorem 3.8 for (xt/ω) (that has the unit longrun

variance) with F (x) = x2, which has asymptotic order κ(λ) = λ2 and limit homogeneous
function H(x) = x2, to get

m

n2

n
∑

t=1

x2
t−1 →p

ω2

2
(90)

as n → ∞. Moreover, if applied for (xt/ω) and (ut) = (εt) with F (x) = x that has
asymptotic order κ(λ) = λ and limit homogeneous function H(x) = x, the covariance
asymptotics in Theorem 3.8 yield

√
m

n

n
∑

t=1

xt−1εt →d N

(

0, σ2 ω2

2

)

(91)

as n → ∞. The stated result now follows readily from (88)–(91) and Lemma A5.
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Proof of Theorem 4.6 Given Lemma A3, the stated result can easily be obtained as in
the proofs of Theorem 4.1 and 5.1 in Park and Phillips (2001). The details are therefore
omitted.

Proof of Theorem 4.7 Given Lemma A4, the stated result follows essentially as in
the proofs of Theorem 4.2 and 5.2 in Park and Phillips (2001). Our conditions here are,
however, slightly different from those used by them. First, they assume that κ is bounded
away from zero in the proof of Theorem 4.2. This is not assumed here, due to our extended
asymptotics that are also applicable for functions having poles at the origin. Second, for
the identification condition, we only require that h(·, θ) 6= h(·, θ0) for every θ 6= θ0. This is
in contrast with their unit root asymptotics, where it is necessary to have for all δ > 0 that
∫

|x|≤δ h(x, θ) dx 6=
∫

|x|≤δ h(x, θ0) for every θ 6= θ0. This is because the spatial distribution
of the exact or near unit root processes is random and compactly supported a.s., while that
of the weak unit root process is nonrandom and supported over the entire real line. For the
same reason, our asymptotics are valid as long as ḣ(·, θ0) is linearly independent over the
entire real line, while the unit root asymptotics require that

∫

|x|≤δ ḣ(x, θ0)ḣ(x, θ0) dx > 0
for all δ > 0.

Proof of Theorem 4.8 Our proof here is analogous to the proof of Theorem 5.3 in Park
and Phillips (2001), which will be referred to as PP henceforth. Define

κ̇mn(θ) = κ̇

(
√

n

m
, θ

)

, κ̈mn(θ) = κ̈

(
√

n

m
, θ

)

,
...
κmn(θ) =

...
κ

(
√

n

m
, θ

)

.

Also, we let νmn = n1/2κ̇mn(θ0) and define, for δ such that 0 < δ < ε/3, µmn = n1/2−δκ̇mn(θ0).
Moreover, we let (Q̇n, Q̈n) (and Q̈◦

n) and (D̈in) be defined as in PP. Subsequently, we also
define

$2
imn(θ) =

∥

∥

∥
µ−1

mnD̈inµmn

∥

∥

∥

similarly as in PP.
To deduce the stated result, it suffices to show that the conditions AD1–AD4 and AD7

in PP hold with their νn and µn replaced by our νmn and µmn, respectively. The conditions
AD1 and AD3 are immediate from Theorem 3.8. Also, since we have as n → ∞

∥

∥

∥

∥

∥

(νmn ⊗ νmn)−1
n
∑

t=1

f̈(xt, θ0)ut

∥

∥

∥

∥

∥

≤ n−1/2
∥

∥

(

(κ̇mn ⊗ κ̇mn)−1κ̈mn

)

(θ0)
∥

∥

∥

∥

∥

∥

∥

1√
n

κ̈−1
mn(θ0)

n
∑

t=1

f̈(xt, θ0)ut

∥

∥

∥

∥

∥

→p 0,

and n−1/2 ≤ (n/m)−1/2, the condition AD2 follows readily from (29) in (b). Furthermore,
the conditon AD4 holds due to our identifiability assumption in (c).

To establish the condition AD7, we need to show that

sup
θ∈Nmn

$2
imn(θ) = op(1) (92)
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as n → ∞, where Nmn is the neighborhood of θ0 given by Nmn = {‖µ′
mn(θ − θ0)‖ ≤ 1}.

However, we have for all θ ∈ Nmn that

n
∑

t=1

∥

∥

∥
(µmn ⊗ µmn)−1(θ0)f̈(xt, θ)

∥

∥

∥

2

≤ n−1+4δ

∥

∥

∥

∥

(κ̇mn ⊗ κ̇mn)−1(θ0)

(

sup
θ∈Nmn

κ̈mn(θ)

)∥

∥

∥

∥

1

n

n
∑

t=1

∥

∥

∥
κ̈−1(θ)f̈(xt, θ)

∥

∥

∥

2
(93)

and

n
∑

t=1

∥

∥(µmn ⊗ µmn ⊗ µmn)−1(θ0)
...
f (xt, θ)

∥

∥

2

≤ n−2+6δ

∥

∥

∥

∥

(κ̇mn ⊗ κ̇mn ⊗ κ̇mn)−1(θ0)

(

sup
θ∈Nmn

...
κmn(θ)

)∥

∥

∥

∥

1

n

n
∑

t=1

∥

∥

...
κ−1(θ)

...
f (xt, θ)

∥

∥

2
(94)

and it follows from Lemma A4 that

1

n

n
∑

t=1

∥

∥

∥
κ̈−1(θ)f̈(xt, θ)

∥

∥

∥

2
,

1

n

n
∑

t=1

∥

∥

...
κ−1(θ)

...
f (xt, θ)

∥

∥

2
= Op(1) (95)

as n → ∞, uniformly in a neighborhood of θ0. Now, under (30) and (31), (92) follows
straightforwardly from (93)–(95) if we apply Cauch-Schwarz inequality to the results (58)–
(61) in the proof of Theorem 5.3 in PP. Note that n−1/2+3δ ≤ (n/m)−1/2+ε if m → ∞ as
n → ∞ and 0 < δ < ε/3, as we assume here. The proof is therefore complete.
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Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes, 2nd ed. Springer, New
York.

Hall, P. and C.C. Heyde (1980). Martingale Limit Theory and Its Application. Academic
Press: New York.

Park, J.Y. and P.C.B. Phillips (1999). “Asymptotics for nonlinear transformations of
integrated time series,” Econometric Theory, 15, 269-298.

Park, J.Y. and P.C.B. Phillips (2001). “Nonlinear regressions with integrated time series,”
Econometrica, 69, 1452-1498.

Phillips, P.C.B. (1987). “Towards a unified asymptotic theory for autoregression,” Biometrika,
74, 535-547.



42

Revuz, D. and M. Yor (1994). Continuous Martingale and Brownian Motion. New York:
Springer–Verlag.

Stock, J.H. (1994). “Unit roots and structural breaks,” In R.F. Engle and D. McFadden,
eds., Handbook of Econometrics, Vol. 4, 2739-2841, Elsevier: Amsterdam.


