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Abstract

In this paper, we look for new opportunities that can be exploited using some
of the recent developments on the theory of nonlinear models with integrated
time series. Heuristic introductions on the basic tools and asymptotics are fol-
lowed by the opportunities in three different directions: in data generation, in
mean and in volatility. In the direction of data generation, we investigate the
nonlinear transformations of random walks. It is shown in particular that they
can generate stationary long memory as well as bounded nonstationarity and
leptokurticity, which we commonly observe in many of economic and financial
data. We then discuss how the nonlinear mean relationships between integrated
processes can be appropriately formulated, interpreted and estimated within
the regression framework. Both the nonlinear least squares regression and the
nonparametric kernel regression are considered. Such formulations allow us to
explore the nonlinear and nonparametric cointegration, which may be used in
modelling the nonlinear and nonparametric longrun relationships among various
economic and financial time series. Finally, a stochastic volatility model with
the conditional variance specified as a nonlnear function of a random walk is
examined. Established are various time series properties of the model, which
are shown to be largely consistent with the observed characteristics of many
time series data.
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1. Introduction

It has long been recognized that many of economic and financial time series data exhibit
nonstationarity that can be reasonably well modelled as integrated processes. Integrated
processes have stochastic trends, which allow us to build their relationships using the notion
of cointegration. As is well known, cointegration refers to the presence of a linear relation-
ship among multiple integrated processes that holds up to stationary and mean-reverting
residuals, and it has thus been widely used to describe various longrun economic equilibria.
While the concept of cointegration has been received enthusiastically by many applied re-
searchers, its practical implementation appears to be not entirely successful. In particular,
we have not witnessed many meaningful empirical findings on the subject, in spite of the
numerous attempts that have been made by many practitioners for the past two decades.
Most of them seem to have found nothing beyond our common sense.

Both integration and cointegration, respectively as means of modelling observed individ-
ual time series and describing relationships among them, often appear to be too restrictive
to be much useful in practical applications. For instance, there are many time series ob-
served in reality that are bounded, yet locally nonstationary, and behave like integrated
processes. Clearly, such time series cannot be effectively modelled as integrated processes
that should necessarily be unbounded. It is also apparent for an obvious reason that any
time series taking only nonnegative values cannot be generated by an integrated process.
Moreover, in many cases it seems extremely unrealistic to presume that a simple linear
relationship persists among integrated processes over a long period of time, which is im-
plied by the presence of cointegration. Undoubtedly, there are many economic problems
and phenomena that the concepts of integration and cointegration, both of which are very
linear, appear to be too simple to effectively deal with.

This paper considers the nonlinear models with integrated time series. The relevant
theory has been developed in a series of recent papers by Park and Phillips (1998, 1999,
2000, 2001, 2003), Chang, Park and Phillips (2001), Park (2002, 2003), Phillips and Park
(1997) and several other papers that are still in progress. We concentrate on the positive
side of the theory, and seek new research opportunities, rather than pitfalls, in nonstationary
nonlinearity. An outlook for the new opportunities is made into three different directions:
in data generation, in mean and in volatility. Presented are various possibilities that can
come out of nonstationary nonlinearity in data generations, in regressions and in models for
conditional variance. They are given in a unified framework. We also introduce the basic
tools to effectively deal with nonstationary nonlinearity, and subsequently to develop some
fundamental nonstationary nonlinear asymptotics.

First, we consider the nonstationary nonlinearity in data generation. Here we look for
the possibility that integrated time series undergo a nonlinear transformation prior to our
final observation. The transformation may come as a result of policy or market interven-
tion as in the case of the exchange rate regime with a target zone, or simply from taking
variable transformations such as logs and/or ratios. To investigate the effect of a nonlinear
transformation, we examine the time series properties of the transformed integrated pro-
cesses. Quite a few interesting results are obtained here. It is shown, for instance, that the
nonlinear transformation of an integrated time series may yield bounded nonstationarity
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and/or long memory. Leptokurticity and/or thick tails can also be generated by the non-
stationary nonlinearity in data generation. Moreover, we demonstrate that the nonlinear
transformation may or may not preserve the unit root depending upon the transformation
function.

Second, the nonlinear relationships between integrated time series are discussed. We
consider both the parametric nonlinear least squares regression and the nonparametric ker-
nel regression, which are useful to make inference on the nonlinear and nonparametric coin-
tegration models. As shown in Park and Phillips (2001), the usual nonlinear least squares
yields consistent estimate for the nonlinear cointegrating regression. Also, we may use the
standard kernel method to consistently estimate a cointegrating relationship nonparamet-
rically. The nonparametric method, however, reduces the convergence rate dramatically,
espectially when the regression function is increasing at infinity. We suggest as a practical
solution to this problem the partial parametric approach, which in the first step models
and estimates the dominent component parametrically. The residual component can be
estimated nonparametrically in the second step.

Third, we look at a stochastic volatility model with conditional variance given by a
nonlinear function of a random walk. The model, referred to as nonstationary nonlinear

heteroskedasticity, was introduced and investigated earlier by Park (2002). Here we clearly
demonstrate that the nonstationary nonlinearity can also play an important role in mod-
elling volatility. In particular, it is shown that the nonstationary nonlinearity in volatility
may generate samples with volatility clustering and leptokurticity, which are observed com-
monly for many economic and financial time series data. There appear to be many potential
examples for such time series. For instance, the volatility of a stock return may well be
positively related with the level of interest rate and/or transactions quantity, which are
believed by many to be integrated.

All our subsequent discussions are heuristic. This is to focus effectively on the main
theme that we want to deliver in this paper: new research opportunities from nonstation-
ary nonlinearity. The assumptions made here are far from being necessary to obtain the
stated results. Also, the results are not proved rigorously in the paper. The readers are
referred to other existing literature for the minimal conditions and rigorous proofs. The
standard notations are used without specific references. In particular, =d signifies the equiv-
alence in distribution, →d denotes the convergence in distribution. Likewise, we use →a.s

and →p, respectively, to signify almost sure convergence and convergence in probability.
The stochastic order symbols op and Op are also used, and MN stands for mixed normal
distribution.

The rest of the paper is organized as follows. Section 2 introduces the technical pre-
liminaries that are necessary to understand the subsequent development of our theory.
Basic tools to deal with nonstationary nonlinearity are introduced, and some fundamental
nonstationary nonlinear asymptotics are also developed. In Sections 3 to 5, various new op-
portunities from nonstationary nonlinearity are proposed. Section 3 lays out the statistical
properties of nonlinear transformations of integrated processes. The nonlinear relationships
for nonstationary processes are considered in Section 4. Here we develop their asymptotics,
and discuss how they can be properly formulated and effectively estimated. In Section 5,
we introduce nonstationary nonlinear heteroskedasticity as a volatility model, and compare
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it with other competing models. Section 6 concludes the paper.

2. Theoretical Background

We consider an integrated time series (xt), which is given by

xt = xt−1 + vt (1)

where (vt) is an independent and identically distributed sequence of random variables with
mean zero and variance ω2. It is assumed that (vt) has continous type distribution. Some
of our subsequent results require the existence of higher moments for (vt), i.e., E|vt|r < ∞
for some r > 2. The assumption made here is far from being necessary for most of our
subsequent results. Many of the results derived in the paper are applicable for more general
integrated processes driven by linear processes or mixing sequences. In those cases, we may
obtain similar results using higher moment conditions on innovations sequences and/or
stronger assumptions on nonlinear transformation functions. As we move along, we will
indicate what types of extensions are possible and where to find more general results.

Our primary objective in this paper is to investigate the probabilistic and statistical
properties of an integrated process, such as (xt) introduced in (1), under a transformation.
The transformation is presumed, though not restricted, to be nonlinear. In general, the
asymptotics for integrated time series under the nonlinear transformation depend crucially
on the type of the transformation involved. This was clearly demonstrated by Park and
Phillips (1999). They indeed introduced three different classes of transformation functions
– integrable functions, asymptotically homogeneous functions and exponential functions –
to characterize the asymptotics for the nonlinear transformations of integrated processes.
Of the three classes, we consider only the first two classes. The integrated processes have
stochastic trends, and their exponential transformations appear to be too explosive to be
useful for practical applications.

Obviously, the transformations like T (x) = 1{a ≤ x ≤ b} with some constants a and
b, and T (x) = e−x2

are integrable. Asymptotically homogeneous functions are roughly the
functions that behave asymptotically as homogeneous functions. In short, the transforma-
tion T is asymptotically homogeneous, if we have

T (λx) ≈ ν(λ)S(x) (2)

for all large λ and for all x on any bounded interval. We will call ν and S, respectively,
the asymptotic order and the limit homogeneous function of T . The class of asymptotically
homogeneous transformations includes a wide variety of functions. It includes, for instance,
constant functions, all distribution function-like functions, logarithmic functions and all
functions that behave asymptotically as polynomials.

The transformation given by T (x) = |x|k is homogeneous, and is certainly asymptotically
homogeneous with asymptotic order ν(λ) = λk and limit homogeneous function S(x) =
|x|k. The logarithmic transformation T (x) = log |x| is also asymptotically homogeneous
with asymptotic order ν(λ) = log λ and limit homogeneous function S(x) = 1. Note that
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log |λx| = log λ + log |x| ≈ log λ for all large λ and for all x on any bounded interval. The
logistic transformation T (x) = ex/(1+ex) can be decomposed as T (x) = S(x)+R(x), where
S(x) = 1{x ≥ 0} is homogeneous and R(x) = 1{x < 0}ex/(1 + ex) − 1{x ≥ 0}1/(1 + ex) is
integrable. However, it follows that S(λx) = S(x) for all λ and for all x, and R(λx) → 0
as λ → ∞ for all x on any bounded interval. We thus have T (λx) ≈ 1{x ≥ 0} for all large
λ and for all x on a bounded interval. Consequently, it has asymptotic order ν(λ) = 1 and
limit homogeneous function S(x) = 1{x ≥ 0}. The same result applies to any distribution
function-like transformation.

2.1 Statistical Tools

The classical Donsker’s theorem applies to (vt). Therefore, if we let [nr] be the integral part
of nr for r ∈ [0, 1] and define

Vn(r) =
1√
n

[nr]
∑

t=1

vt (3)

then it follows that
Vn →d V (4)

where V is the Brownian motion with variance ω2 on the unit interval [0, 1]. The invari-
ance principle (4) holds under the conditions that are much weaker than those we impose
here. We may obtain it for, e.g., linear processes driven by martingale difference sequences
satisfying some mild summability and moment conditions. See Hall and Heyde (1981) and
Phillips and Solo (1992) for technical details.

Our subsequent asymptotic theory is presented using various functionals of the limit
Brownian motion V introduced above in (4). It also involves the local time L of the
Brownian motion V . The Brownian local time L is a stochastic process with two parameters,
t and s, say, which can be defined as

L(t, s) = lim
ε→0

1

2ε

∫ t

0
1{|V (r) − s| < ε} dr (5)

Roughly, it may be interpreted as the time, measured as an instantaneous rate, spent by
V in an immediate neighborhood of s up to time t.2 The reader is referred to Chung and
Williams (1990) for an elementary introduction to the concept of local time.

The Brownian local time is known to have a version continuous both in t and s, so we
may assume L is given as such. For each t, L(t, ·) has a compact support a.s. This should be
obvious, since Brownian motion has continuous sample path a.s. Some of our asymptotics,
in particular, include the Brownian local time at t = 1 and s = 0, i.e., L(1, 0). It is well
known that L(1, 0) has the same distribution as |V (1)|, i.e., the modulus of the normal
variate with mean zero and variance ω2. This follows immediately from the fact that the
local time of standard Brownian motion has distribution given by the truncated standard

2The local time is defined for a broader class of semi-martingales. Also, it is more customary to measure
the time in the unit of the quadratic variation of the underlying process. Our local time L in (5) may thus
be defined more conventionally using d[V ](r) = ω2dr in place of dr. However, it is more convenient to use
our definition (5) for the subsequent asymptotics on nonstationary nonlinearity.
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Figure 1: Sample Path and Local Time of Brownian Motion

normal supported on the positive half of R. See, e.g., Revuz and Yor (1994, Proposition
3.7, p100 and Theorem 2.3, p230). Note that the local time L of V at time and spatial
parameters t and s has the same value with 1/ω times of the local time of W at t and s/ω.
This can be easily deduced from our defition in (5).

The local time yields the formula

∫ t

0
T (V (r)) dr =

∫

∞

−∞

T (s)L(t, s) ds (6)

for any T locally integrable. The relationship (6) is commonly referred to as the occupation

times formula. For each fixed t, it allows us to evaluate the integral of any locally integrable
transformation of a Brownian motion with respect to time as the integral of the function
itself weighted by the local time. In this sense, we may legitimately interpret the local
time, as a function of its spatial parameter, as the spatial density of the values that the
underlying Brownian motion takes. The interpretation of the local time as the spatial
density is illustrated in Figure 1. There we present a simulated Brownian sample path with
its estimated local time, which shows the relative frequencies for the realized values of the
underlying Brownian motion.

2.2 Basic Asymptotics

Now we are ready to derive some basic asymptotics for the nonlinear models with integrated
time series. To develop the covariance asymptotics, as well as the mean asymptotics, we
introduce (ut) in addition to (xt) defined in (1). In what follows, we assume that (ut,Ft)
is a martingale difference sequence, where (Ft) is a filtration such that (xt) is adapted to
(Ft−1). We let

σ2 = E(u2
t |Ft−1)

and E(|ut|r|Ft−1) < ∞ a.s. for some r > 2. Moreover, we define a partial sum process Un

on [0, 1] from (ut), similarly as Vn in (3) constructed from (vt), and denote by U the limit
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Brownian motion of Un. Clearly, U is a Brownian motion with variance σ2, and allowed to
be dependent with the limit Brownian motion V of Vn. We may indeed permit U and V to
be perfectly correlated and identical.

We let Tn : R → R and consider the asymptotic behaviors of

n
∑

t=1

Tn(xt) and
n

∑

t=1

Tn(xt)ut

under appropriate normalizations. Under suitable conditions, we may expect

1

n

n
∑

t=1

Tn(xt) =

∫ 1

0
Tn(

√
nVn(r)) dr ≈

∫ 1

0
Tn(

√
nV (r)) dr (7)

1√
n

n
∑

t=1

Tn(xt)ut =

∫ 1

0
Tn(

√
nVn(r)) dUn(r) ≈

∫ 1

0
Tn(

√
nV (r)) dU(r) (8)

for large n.
If, for instance, Tn is given by

Tn(x) = T

(

x√
n

)

for some locally integrable T , then both the mean and covariance asymptotics follow im-
mediately from (7) and (8). It is indeed easy to see that (7) and (8) imply in this case

1

n

n
∑

t=1

T

(

xt√
n

)

→d

∫ 1

0
T (V (r)) dr (9)

1√
n

n
∑

t=1

T

(

xt√
n

)

ut →d

∫ 1

0
T (V (r)) dU(r) (10)

as n → ∞.
If, on the other hand, we let Tn = T for all n, the asymptotics become crucially depen-

dent upon the type of function T . If T is asymptotically homogeneous and given as in (2),
then the relevant asymptotics follow somewhat similarly as in (9) and (10). We only need
different normalizations. Indeed, since

T (xt) ≈ ν(
√

n)S

(

xt√
n

)

in this case, we may readily deduce that

1

n
ν−1(

√
n)

n
∑

t=1

T (xt) →d

∫ 1

0
S(V (r)) dr (11)

1√
n

ν−1(
√

n)
n

∑

t=1

T (xt)ut →d

∫ 1

0
S(V (r)) dU(r) (12)

as n → ∞.
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The asymptotics for Tn = T with an integrable T are more intriguing. To obtain the
mean asymptotics in this case, we need to note that

√
n

∫ 1

0
T (

√
nV (r)) dr =

√
n

∫

∞

−∞

T (
√

ns)L(1, s) ds

=

∫

∞

−∞

T (s)L

(

1,
s√
n

)

ds

→a.s.L(1, 0)

∫

∞

−∞

T (s) ds (13)

as n → ∞. This follows by the successive applications of occupation times formula, change-
of-variables and dominated convergence. Consequently, we may obtain the mean asymp-
totics

1√
n

n
∑

t=1

T (xt) →d L(1, 0)

∫

∞

−∞

T (s) ds (14)

as n → ∞, due to (7) and (13).
The covariance asymptotics are more difficult to obtain. Due to the representation

theorem of continuous martingale by time-changed Brownian motion [see, e.g., Revuz and
Yor (1994, Theorem 1.6, p173)], we may regard for each n a continuous martingale

Mn(t) = 4
√

n

∫ t

0
T (

√
nV (r)) dU(r)

as Brownian motion, say, Wn evaluated at time

[Mn](t) = σ2√n

∫ t

0
T 2(

√
nV (r)) dr

where [Mn] is the quadratic variation of Mn. That is, Mn(t) = Wn([Mn](t)), where Wn is
often referred to as Dambis-Dubins-Schwarz (DDS) Brownian motion. It is obvious that we
may write

Mn(t) =d W ([Mn](t)) a.s.

for all n.
Now we obtain the limit distribution of Mn(1) using its representation as the DDS

Brownian motion. We have exactly as in (13)

[Mn](1) →a.s. σ2L(1, 0)

∫

∞

−∞

T 2(s) ds

and, as a result,

Mn(1) →d W

(

σ2L(1, 0)

∫

∞

−∞

T 2(s) ds

)

as n → ∞. Moreover, if we denote by [Mn, V ] the quadratic covariation of Mn and V , then

[Mn, V ](t) = 4
√

n

∫ t

0
T (

√
nV (r)) d[U, V ](r) →a.s. 0
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Figure 2: Target Zone Exchange Rate Model

for all t ≥ 0. Therefore, Mn is asymptotically independent of V , and hence, of L which is
the local time of V . This, however, implies in turn that L is independent of W , since W is
the distributional equivalence of the DDS Brownian motion of Mn. Consequently, it follows
that

W

(

σ2L(1, 0)

∫

∞

−∞

T 2(s) ds

)

=d MN

(

0, σ2L(1, 0)

∫

∞

−∞

T 2(s) ds

)

[see, e.g., Revuz and Yor (1994, Chapter XIII) for a more detailed derivation]. The covari-
ance asymptotics for Tn = T with integrable T now follow immediately and given by

1
4
√

n

n
∑

t=1

T (xt)ut →d MN

(

0, σ2L(1, 0)

∫

∞

−∞

T 2(s) ds

)

(15)

as n → ∞, dut to (8).
The asymptotics for more general Tn can be obtained in a completely analogous manner,

once the approximations in (7) and (8) are validated. The reader is referred to Akonom
(1993), Borodin and Ibragimov (1995) and Park (2003) for the precise conditions and the
exact orders of approximation errors. The asymptotics derived here hold for much more
general time series than are assumed here. The asymptotics for integrable transformation
in (14) and (15) hold for general integrated processes driven by linear processes with iid
innovations satisfying some mild regularity conditions. The asymptotics in (9) and (10)
for normalized transformations, and those in (11) and (12) for asymptotically homogeneous
transformations are obtainable under even much weaker conditions. For these results, the
invariance principle (4) is virtually all that is required. See Park (2003) for the exact
conditions and technical details.

3. Nonstationary Nonlinearity in Data Generation

In this section, we look at the time series (yt) given by

yt = F (xt)

and consider its time series properties. Such a time series (yt) may be generated in reality
due to the presence of institutional restriction and/or barrier or policy intervention, in which
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Figure 3: Simulated Sample Paths

case (xt) would represent the corresponding economic fundamentals. A prime example for
(yt) would be the observed exchange rates in the presence of target zone. In this example,
F is given by a bounded and S-shaped nonlinear function, which is shown in Figure 2. The
resulting time series (yt) may exhibit very different characteristics, depending upon the type
of function F . If F is integrable, then (yt) would look more like a stationary process. If F
is asymptotically homogeneous, then (yt) would behave like an integrated process having
a unit root. The time series (yt) itself of course becomes an integrated process when F is
the identity. In Figure 3, the sample paths of the transformed time series are simulated for
F (x) = e−x2

and F (x) = ex/(1 + ex).
To investigate the statistical properties of the transformed series (yt), we define the

sample autocorrelation for (yt) by

Rnk =

n
∑

t=k+1

(yt − ȳn)(yt−k − ȳn)

n
∑

t=1

(yt − ȳn)2

where ȳn denotes the sample mean of (yt). We also look at the sample variance of (yt) given
by

S2
n =

1

n

n
∑

t=1

(yt − ȳ)2

and the sample kurtosis

K4
n =

1

n

n
∑

t=1

(yt − ȳ)4

(

1

n

n
∑

t=1

(yt − ȳ)2
)2

which will be analyzed subsequently for both integrable and asymptotically homogeneous
transformations.
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3.1 Integrable Transformations

We assume that F is bounded and integrable. Then it follows from (14) that

1√
n

n
∑

t=1

F p(xt) →d L(1, 0)

∫

∞

−∞

F p(x) dx (16)

for p = 1, 2, . . ., as n → ∞. Moreover, if we denote by Dk the density of (xt − xt−k) that is
assumed to be independent of (xt−k) for k = 1, 2, . . ., then we have E(F (xt)|Ft−k) = G(xt−k)
with an integrable function G given by

G(x) =

∫

∞

−∞

F (x + y)Dk(y) dy (17)

We may therefore deduce under suitable regularity conditions that

1√
n

n
∑

t=1

F (xt)F (xt−k) =
1√
n

n
∑

t=1

(GF )(xt−k) + op(1)

→d L(1, 0)

∫

∞

−∞

(GF )(x) dx

= L(1, 0)

∫

∞

−∞

∫

∞

−∞

F (x)F (x + y)Dk(y) dx dy (18)

as n → ∞.
We may now easily deduce from (16) and (18) that

Rnk →p Rk

where

Rk =

∫

∞

−∞

∫

∞

−∞

F (x)F (x + y)Dk(y) dx dy
∫

∞

−∞

F 2(x) dx

for k = 1, 2, . . ., as n → ∞. For the integrable transformation, the sample autocorrelation
Rnk therefore converges in probability to a nonrandom limit. Of course, the limit Rk may
be regarded as its asymptotic autocorrelation function.

We have

∫

∞

−∞

G2(x) dx =

∫

∞

−∞

(
∫

∞

−∞

F (x + y)Dk(y)dy

)2

dx

<

∫

∞

−∞

dx

∫

∞

−∞

dy Dk(y)F 2(x + y) =

∫

∞

−∞

F 2(x) dx

from which, together with the Cauchy-Schwarz inequality

∣

∣

∣

∣

∫

∞

−∞

(GF )(x) dx

∣

∣

∣

∣

<

(
∫

∞

−∞

G2(x) dx

)1/2 (
∫

∞

−∞

F 2(x) dx

)1/2
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it follows that Rk < 1 for all k = 1, 2, . . .. This implies, in particular, that the first order
autoregression run with the integral transformation of a random walk would asymptotically
yield the coefficient strictly less than unity. Hence, the unit root disappears under inte-
grable transformations. The actual values of the asymptotic autocorrelation function Rk

are determined by the distribution of (vt), as well as the transformation function.
It is important to investigate the behavior of the asymptotic autocorrelation Rk as a

function of k. This is to find the degree of persistency for the integral transformation of a
random walk. If (vt) are normally distributed, then xt − xt−k =d k1/2vt. We therefore have
Dk(x) = k−1/2D(k−1/2x), where D is the density of (vt). Consequently, we may deduce
that

k1/2Rk =

∫

∞

−∞

∫

∞

−∞

F (x)F (x + y)D(k−1/2y) dx dy
∫

∞

−∞

F 2(x) dx

→ D(0)

(
∫

∞

−∞

F (x) dx

)2

∫

∞

−∞

F 2(x) dx

as k → ∞, due to dominated convergence. The transformation function F (x) = e−x2

actually yields the asymptotic autocorrelation function Rk = 1/
√

k + 1 for k = 1, 2, . . ..
It is interesting to note that the autocorrelation function of the integrable transformation

of a random walk decays, as for the stationary time series. The decaying rate, however, is
much slower, and given by

Rk = c k−1/2

for some constant c > 0. The integral transformations of random walks would thus be
expected to show considerable persistency in memory. The rate of decay for their autocor-
relations is indeed comparable to that of the stationary long memory processes. For the I(d)
process with 0 < d < 1/2, the autocorrelation function is given by Rk = c k2d−1 for some
constant c > 0 [see, e.g., Beran (1994, p63)]. The autocorrelation function of the integrable
transformation of a random walk has therefore the same rate of decay as that of the I(d)
process with d = 1/4. Stationary long memory can thus be generated by nonstationary
nonlinearity.

The asymptotics of the sample variance and kurtosis for the integrable transformations
of random walks can also be easily obtained. Indeed, it follows immediately from (16) and
(18) that

√
nS2

n →d L(1, 0)

∫

∞

−∞

F 2(x) dx

1√
n

K4
n →d

∫

∞

−∞

F 4(x) dx

L(1, 0)

(
∫

∞

−∞

F 2(x) dx

)2
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as n → ∞.
The sample variance of the integral transformation of a random walk is thus expected

to decrease at the rate of n−1/2. Roughly, this implies that the second-order variations
of the integral transformations of random walks are increasing, but not as fast as the
sample size. On the other hand, the sample kurtosis of the integral transformation of a
random walk increases at an n1/2 rate as the sample size gets large. We may thus expect
the sample kurtosis to be large for the integral transformations of random walks. The
leptokurticity, along with the aforementioned long memory property, is frequently observed
in many macroeconomic and financial time series.

All of our results previously derived in this subsection apply to the transformations
that can be defined as the constant shifts of integrable functions, as well as the integrable
functions themselves. This is so, since the statistics, sample autocorrelation, sample variance
and sample kurtosis considered here, are all invariant with respect to the constant shift.
More precisely, all the previous results hold also for the function F , which can be written
as

F (x) = c + G(x) (19)

where c is some constant, and G is an integrable function that has been considered thus far.
The function F in (19) is, of course, not integrable. It is indeed asymptotically homogeneous
with the unit asymptotic order and the constant limit homogeneous function. The analy-
sis for general asymptotically homogeneous functions with nonconstant limit homogeneous
functions will follow in the next subsection.

3.2 Asymptotically Homogeneous Transformations

We now let F be an asymptotically homogeneous function with asymptotic order κ and
limit homogeneous function H. Under very mild regularity conditions that are satisfied
by virtually all asymptotically homogeneous functions used in practical applications, F p

would also be asymptotically homogeneous with asymptotic order κp and limit homogeneous
function Hp, i.e.,

F p(λx) ≈ κp(λ)Hp(x)

for p = 1, 2 . . .. This will be assumed in what follows. Then it follows immediately from
(11) that

1

n
κ−p(

√
n)

n
∑

t=1

F p(xt) →d

∫ 1

0
Hp(V (r)) dr (20)

as n → ∞.
Moreover, if we let G be defined as in (17), then we may expect

G(λx) =

∫

∞

−∞

F (λx + y)Dk(y) dy

≈ κ(λ)

∫

∞

−∞

H

(

x +
y

λ

)

Dk(y) dy

≈ κ(λ)H(x)
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for all large λ and for all x on any bounded interval. That is, G is asymptotically homoge-
neous with asymptotic order κ and limit homogeneous function H, exactly as for F . As a
result, we have

(GF )(λx) ≈ κ2(λ)H2(x)

for all large λ and for all x on any bounded interval. We may therefore establish that

1

n
κ−2(

√
n)

n
∑

t=1

F (xt)F (xt−k) =
1

n
κ−2(

√
n)

n
∑

t=1

(GF )(xt−k) + op(1)

→d

∫ 1

0
H2(V (r)) dr (21)

as n → ∞, under suitable technical assumptions.
Here we assume that the limit homogeneous function H of F is non-constant. The case

where H is a constant yields quite different results and has already been considered. The
asymptotically homogeneous function will be called nontrivial, if it has non-constant limit
homogeneous function. Otherwise, it will be called trivial. For the nontrivial asymptotically
homogeneous function F , it only requires some simple algebra to deduce from (20) and (21)
that

Rnk →p 1

as n → ∞, for every k = 1, 2, . . .. The asymptotic autocorrelations for the nontrivial
asymptotically homogeneous transformation of a random walk are therefore unity at all
lags, just like those of untransformed random walks. In particular, the asymptotic first-
order autocorrelation remains to be unity. The nontrivial asymptotically homogeneous
transformation would thus preserve the unit root, i.e., the transformed time series continue
to have unit roots if the nontrivial asymptotically homogeneous function is used. This is
in sharp constrast with the integrable or trivial asymptotically homogeneous functions, for
which the unit root disappears upon transformations.

Once again, we let F be a nontrivial asymptotically homogeneous function with asymp-
totic order κ and limit homogeneous function H. It is straightforward to derive

κ−2(
√

n)S2
n →d

∫ 1

0

(

H(V ) −
∫ 1

0
H(V ))

)

K4
n →d

∫ 1

0

(

H(V ) −
∫ 1

0
H(V )

)2

∫ 1

0

(

H(V ) −
∫ 1

0
H(V )

)4

as n → ∞, using the results in (20) and (21). Note that we use the shorthand notation for the
integrals to simplify the exposition. This convention will be followed also in the subsequent
presentation of our results, whenever they become lengthy and require simplifications in
expressions.

The sample variance of the nontrivial asymptotically homogeneous transformation of a
random walk may diverge or converge, depending upon its asymptotic order. If κ(λ) → 0 as
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λ → ∞, as in the case of the power function with a negative power, then S2
n →p 0 as n → ∞.

On the other hand, S2
n →p ∞ as n → ∞ for all power functions with positive powers and

any other functions with diverging asymptotes including the logarithmic function, since for
them κ(λ) → ∞ as λ → ∞. For the bounded asymptotically homogeneous functions such
as the logistic function or any other distribution function-like functions, we have κ(λ) = 1,
and the sample variance would be stochastically bounded, though it remains to be random
in the limit. Indeed, the sample variance in this case has a well-defined limit distribution
that is represented by a functional of the limit homogeneous transformation of Brownian
motion.

In contrast, the sample kurtosis has random limit in all cases. As long as the underly-
ing asymptotically homogeneous transformation is nontrivial, the sample kurtosis has the
limit distribution that is given as a functional of the limit homogeneous transformation
of Brownian motion. The sample kurtosis, just as the sample variance in the case of the
asymptotically homogeneous transformations that are nontrivial and bounded, is expected
to be given randomly, with distribution depending upon the limit homogeneous function of
the underlying transformation. The limit distributions for the sample variance and sample
kurtosis can easily be simulated for any asymptotically homogeneous transformation, if its
limit homogeneous function is given.

4. Nonstationary Nonlinearity in Mean

In this section, we statistically analyze the nonlinear relationships between nonstationary
time series. We consider the regression model

yt = F (xt) + ut (22)

where (xt) is an integrated regressor as specified earlier in (1), and (ut) is a stationary error.
We assume the regression function F to be either integrable or asymptotically homogeneous.
The regressand (yt) can therefore have characteristics of both stationary and integrated time
series, depending upon F . Our results in the previous section imply that the process (yt)
would behave like a stationary time series if F is integrable, whereas it would look more
like an integrated time series if F is asymptotically homogeneous.

Assume that (ut) satisfies the conditions introduced in Section 2.2. Then we have in
particular

E(yt|Ft−1) = F (xt)

as in the usual regression model. However, our regression involves integrated time series,
and would thus have different interpretations. If the regression function F is asymptotically
homogeneous, the regression model specifies a nonlinear cointegrating relationship, i.e., a
longrun nonlinear equilibrium relationship, between (yt) and (xt). On the other hand, the
integrable regression function F would remove the stochastic trend in (xt), and therefore,
the model specifies a usual stationary relationship between (yt) and (F (xt)). We may
leave the regression function F completely unrestricted, or further parametrize it using
some appropriate family of functions. We consider both cases in the paper, which will be
analyzed below in sequel.
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4.1 Nonlinear Regressions with Integrated Processes

The model (22) becomes, and may be analyzed as such, a nonlinear regression, if we further
specify F as

F (x) = G(x, θ0)

where G(·, θ) with θ ∈ Θ represents a parametric family of functions. The function G is
assumed to be known, while the true parameter value θ0 is regarded as being unknown. The
family of functions should, of course, be chosen so that the regresion is balanced, i.e., we
should choose an integrable family if the regressand (yt) behaves like a stationary process.
If the regressand is closer to an integrated process, an asymptotically homogeneous family
should be more appropriate. The linear cointegrating regression can be considered as a
special case with G(x, θ) = xθ.

The nonlinear regression
yt = G(xt, θ0) + ut (23)

can be estimated by the nonlinear least squares (NLLS), in which case the estimator θ̂n can
be obtained by

θ̂n = argmin
θ∈Θ

n
∑

t=1

(yt − G(xt, θ))
2

It is shown by Park and Phillips (2001) that the estimator θ̂n of θ in nonlinear regression
(23) is asymptotically equivalent to the usual least squares (LS) estimator of θ in the linear
regression

yt = Ġ(xt, θ0)
′θ + ut (24)

where Ġ denotes the partial derivative of G with respect to θ. The asymptotic equivalence
of (23) and (24) is well established and long known for the standard stationary regressions.

The asymptotic distribution of θ̂n can be readily obtained from the asymptotic equiv-
alence of (23) and (24), using the basic nonstationary nonlinear asymptotics introduced
earlier. Note that the aforementioned asymptotic equivalence implies

θ̂n ≈
(

n
∑

t=1

Ġ(xt, θ0)Ġ(xt, θ0)
′

)

−1 n
∑

t=1

Ġ(xt, θ0)yt

= θ0 +

(

n
∑

t=1

Ġ(xt, θ0)Ġ(xt, θ0)
′

)

−1 n
∑

t=1

Ġ(xt, θ0)ut (25)

for large n. The asymptotic distribution of θ̂n may therefore be derived from our mean and
covariance asymptotics developed in Section 2.

If Ġ(·, θ0) is integrable, then we may deduce from (14) and (15) that

4
√

n(θ̂n − θ0) →d MN

(

0, σ2
(

L(1, 0)

∫

∞

−∞

Ġ(s, θ0)Ġ(s, θ0)
′ds

)

−1
)

(26)
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as n → ∞. Moreover, if Ġ(·, θ0) is asymptotically homogeneous with asymptotic order κ̇(·)
and limit homogeneous function Ḣ(·, θ0), then we have due to (11) and (12)

√
nκ̇(

√
n)(θ̂n − θ0) →d

(
∫ 1

0
Ḣ(V, θ0)Ḣ(V, θ0)

′

)−1 ∫ 1

0
Ḣ(V, θ0) dU (27)

as n → ∞.
The NLLS estimator θ̂n in both cases is consistent. The convergence rate, however, is

different, depending upon the regression function. If Ġ(·, θ0) is integrable, θ̂n converges at
the 4

√
n rate, which is of an order of magnitude slower than the standard linear stationary

case. For asymptotically homogeneous Ġ(·, θ0), the actual convergence rate is dependent
upon its asymptotic order κ̇, and is given by

√
nκ̇(

√
n). The rate becomes n for the linear

cointegrating regression, since κ̇(λ) = λ in this case. The distribution of θ̂n is asymptotically
mixed normal, when Ġ(·, θ0) is integrable. If it is asymptotically homogeneous, however,
the limiting distribution is generally non-Gaussian. We have the Gaussianity only under the
strictly exogeneity, i.e., the case where the regressors are uncorrelated with the regression
errors in all leads and lags. This is unrealistic.

To obtain our results in (26) and (27), we need to require some obvious identifiabil-
ity assumptions as well as technical regularity conditions. In particular, we should have
∫

∞

−∞
Ġ(s, θ0)Ġ(s, θ0)

′ds > 0 for Ġ(·, θ0) integrable. Likewise, asymptotically homogeneous

Ġ(·, θ0) must have limit homogeneous function Ḣ satisfying
∫ 1
0 Ḣ(V, θ0)Ḣ(V, θ0)

′ > 0 a.s. If
these conditions fail, then our results here are obviously no long valid. This, however, does
not imply that such identifiability assumption is absolutely necessary. It is often the case
that the failure of the identifiability condition simply results in asymptotic multicollinearity,
which can be avoided by an appropriate reparametrization.

For instance, if we let θ = (α, β)′, and let

G(x, α, β) = α + β log |x|

Since log |x| is asymptotically homogeneous with asymptotic order log λ and limit homo-
geneous function 1, Ḣ becomes (1, 1)′ and the identifiability condition does not hold. We
may nevertheless reformulate the regression as

yt = α + β log |xt| + ut

= (α + β log
√

n) + β log
|xt|√

n
+ ut

to obtain the proper asymptotics. After some simple algebra, we may obtain

√
n

(

1 log
√

n
0 1

)

(θ̂n − θ0) →d

(

1
∫ 1
0 log |V |

∫ 1
0 log |V |

∫ 1
0 log2 |V |

)

−1 (

∫ 1
0 dU

∫ 1
0 dU log |V |

)

as n → ∞. Similar reformulations are possible for other cases having asymptotic multi-
collinearities.

The detailed statistical theory of the NLLS estimator for the nonlinear regression with
integrated time series is developed in Park and Phillips (2001) and Chang, Park and Phillips
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(2001). The rigorous foundation for the formal asymptotics for the models with a single
regressor is develped in the former. In the latter, the theory is extended for more realistic
models having multiple integrated regressors that are additively nonlinear, as well as other
stationary and deterministic regressors. Efficient estimation and chi-square testing proce-
dures are also proposed there. Park and Phillips (2000) consider the binary choice model
with integrated explanatory variables, and derive the asymptotic distributions of the max-
imum likelihood estimator. Chang and Park (1999) investigate the index-type model such
as the neural network and the smooth transition regression, where the multiple integrated
regressors are included in an index form. They develop the relevant statistical theory for
the efficient estimators and the chi-square testing procedures.

The nonlinear regression with general non-additive regression function with multiple
regressors yields the results that are drastically different from those in the single regressor or
additively separable multiple regressors case. Roughly, this is because integrated processes
are represented in the limit by Brownian motions, and a vector Brownian motion has the
recurrence property that is very distinctive from that of an univariate Brownian motion.
As can be shown using the asymptotic results obtained in Chang, Park and Phillips (2001),
the NLLS estimator is consistent, yet converges very slowly at a logarithmic rate. This is
so, as long as we have more than two regressors that are integrated. We thus have very
severe curse of dimensionality in this case. The curse of dimensionality, however, does not
get exacerbated along with the increase in the number of integrated regressors. At any rate,
the general nonlinear regression with multiple integrated regressors does not seem to be of
reasonable choice in practical applications.

4.2 Nonparametric Regressions with Integrated Processes

The nonparametric estimation of the regression function F in (22) is also possible. To esti-
mate F nonparametrically, it is customary to use the Nadaraya-Watson estimator defined
as

F̂n(x) =

n
∑

t=1

K

(

xt − x

hn

)

yt

n
∑

t=1

K

(

xt − x

hn

)

where K is the kernel function and hn is the bandwidth parameter. We assume in particular
that

∫

∞

−∞
K(s) ds = 1,

∫

∞

−∞
sK(s) ds = 0 and

∫

∞

−∞
s2K(s) ds 6= 0, i.e., K is a second-order

kernel, and that hn → 0 as n → ∞. We let F be twice continuously differentiable.
We decompose

F̂n(x) = F̂A
n (x) + F̂B

n (x)

where

F̂A
n (x) =

n
∑

t=1

K

(

xt − x

hn

)

F (xt)

n
∑

t=1

K

(

xt − x

hn

)

, F̂B
n (x) =

n
∑

t=1

K

(

xt − x

hn

)

ut

n
∑

t=1

K

(

xt − x

hn

)
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The two components F̂A
n (x) and F̂B

n (x) represent, respectively, the conditional mean and
variance parts of F̂n(x). In our context, the decomposition may be viewed as the discrete
analogue of the representation of a continuous semimartingale as the sum of a bounded
variation process and a continuous martingale.

Under suitable regularity conditions, we have

1
√

nh2
n

n
∑

t=1

K

(

xt − x

hn

)

=

√
n

hn

∫ 1

0
K

(√
nVn(r) − x

hn

)

dr

=

√
n

hn

∫ 1

0
K

(√
nV (r) − x

hn

)

dr + op(1)

and may deduce as in (13) that

∫ 1

0
K

(√
nV (r) − x

hn

)

dr →a.s. L(1, 0)

as n → ∞. Consequently, we have

1
√

nh2
n

n
∑

t=1

K

(

xt − x

hn

)

→d L(1, 0) (28)

as n → ∞.
We also have

1
√

nh2
n

n
∑

t=1

K

(

xt − x

hn

)

F (xt) =

√
n

hn

∫ 1

0
K

(√
nVn(r) − x

hn

)

F (
√

nVn(r)) dr

=

√
n

hn

∫ 1

0
K

(√
nV (r) − x

hn

)

F (
√

nV (r)) dr + op(1) (29)

and may derive similarly as in (13) that

√
n

hn

∫ 1

0
K

(√
nV (r) − x

hn

)

F (
√

nV (r)) dr

=

√
n

hn

∫

∞

−∞

K

(√
ns − x

hn

)

F (
√

ns)L(1, s) ds

=

∫

∞

−∞

K(s)F (x + hns)L

(

1,
1√
n

(x + hns)

)

ds

= L(1, 0)

(

F (x) +
1

2
h2

nF ′′(x)

∫

∞

−∞

s2K(s) ds

)

+ o(h2
n) a.s.

for large n. It follows that

1
√

nh2
n

n
∑

t=1

K

(

xt − x

hn

)

F (xt) =d L(1, 0)

(

F (x) +
1

2
h2

nF ′′(x)

∫

∞

−∞

s2K(s) ds

)

+ op(h
2
n) (30)
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as n → ∞, as long as the approximation error in (29) is small enough. We now have from
(28) and (30) that

F̂A
n (x) = F (x) +

1

2
h2

nF ′′(x)

∫

∞

−∞

s2K(s) ds + op(h
2
n)

for large n.
On the other hand, since

1
√

nh2
n

n
∑

t=1

K2
(

xt − x

hn

)

=

√
n

hn

∫ 1

0
K2

(√
nVn(r) − x

hn

)

dr

=

√
n

hn

∫ 1

0
K2

(√
nV (r) − x

hn

)

dr + op(1)

and we may show as in (13)

∫ 1

0
K2

(√
nV (r) − x

hn

)

dr →a.s. L(1, 0)

∫

∞

−∞

K2(s) ds

as n → ∞, it follows that

1
√

nh2
n

n
∑

t=1

K2
(

xt − x

hn

)

→d L(1, 0)

∫

∞

−∞

K2(s) ds

as n → ∞. We may therefore show as in (15) that

1
4
√

nh2
n

n
∑

t=1

K

(

xt − x

hn

)

ut →d MN

(

0, L(1, 0)

∫

∞

−∞

K2(s) ds

)

(31)

as n → ∞. Consequently, it follows from (28) and (31) that

4

√

nh2
nF̂B

n (x) →d MN

(

0, L(1, 0)−1
∫

∞

−∞

K2(s) ds

)

(32)

as n → ∞.
We now have from (30) and (32) that the optimal bandwidth is given by

hn = n−1/10 (33)

which balances off the bias and variance terms. The rate here suggests a bandwidth wider
than the usual stationary case, for which the optimal bandwidth is given by hn = n−1/5.
This is due to that an integrated regressor has a stochastic trend and observed more scarcely
around any fixed spatial point. We therefore need a wider bandwidth to have enough number
of observations to balance off the bias and variance terms. The bandwidth optimal for the
stationary regressor would make the variance term dominate the bias term in our case.

With the choice of the optimal bandwidth given in (33), we have

F̂n(x) = F (x) + Op(n
−1/5)
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Table 1: Rates of Convergence

Parametric Nonparametric
Approach Approach

Stationary n1/2 n2/5 ∼ n1/2

Regressor

Nonstationary H-regular n1/2κ̇(n1/2) n1/5 ∼ n1/4

Regressor I-regular n1/4

for each x ∈ R. The Nadaraya-Watson estimator for the regression function thus con-
verges at rate n1/5, when the regressor is an integrated time series. We may obtain faster
convergence rates, if we use a higher-order kernel, i.e., the kernel function K such that
∫

∞

−∞
skK(s) ds = 0 for some integer k ≥ 2. It is possible, at least theoretically, that we may

make the convergence rate arbitrarily close to n1/4 by using higher-order kernels. Note that
this convergence rate applies to any regression function F , in particular, for both asymptot-
ically homogeneous and integrable functions. This is in sharp contrast with the nonlinear
regression, for which the convergence rate is dependent upon the type of regression function.

It is interesting to compare the convergence rates of the parametric and nonparametric
regressions for the regression with an integrated regressor. The comparison is made explic-
itly in Table 1, and contrasted with the standard stationary regression. The rates for the
nonparametric approach depend upon the choice of kernels, and therefore, are given by the
ranges. In general, the nonparametric approach yields slower rates of convergence for both
statioary and nonstationary regressions. This might be considered as a price to be paid
for using unrestrictive and flexible specification for the regression function. The reduction
in the convergence rates can however be recovered for stationary regression if we rely on
higher-order kernels, which reduce the order of bias term. This is also true for nonstationary
regression if the regression function is integrable, though the convergence rates are overall
smaller for both parametric and nonparametric approaches.

For the nonstationary regression with asymptotically homogeneous regression function, a
quite different picture emerges. In this case, nonparatric approach yields a drastic reduction
in convergence rates that cannot be recovered simply by the use of higher-order kernels.
For instance, the convergence rate in the parametric linear cointegrating regression is given
by n, in comparison with the maximal rate n1/4 for the nonparametric regression. This
differing convergence rates come from the presence of stochastic trend in the regressor.
For the parametric approach, the stochastic trend amplifies the signal if the regression
function is increasing, and we may say that the convergence rate is given by the behavior
of the function at infinity. This is not so for the nonparametric approach, which essentially
estimates the regression function locally at each given point. The nonparametric method
thus would not utilize the effect of magnifying signals made by an integrated regressor for
the regression function increasing at infinity.
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The usual nonparametric approach is thus not very attractive for the estimation of non-
linear relationship between integrated time series. An obviously better method is given by
the partial parametric approach. Suppose that the regression function F can be decom-
posed as F = H + G, where H is homogeneous and G is integrable. We may then specify
H parametrically as

H(x, θ) = α|x|β or α1|x|β11{x ≥ 0} + α2|x|β21{x < 0}

with parameter θ = (α, β)′ or θ = (α1, α2, β1, β2)
′, while we leave G unrestricted and

estimate it nonparametrically.
The partial parametric model can be estimated consistently in two steps. In the first

step, we run the parametric NLLS regression

yt = H(xt, θ0) + wt

where (wt) is the regression error newly defined by wt = ut + G(xt). This first step NLLS
regression yields consistent estimator θ̂n, say, for θ0. It is indeed not difficult to show that
the NLLS estimator θ̂n of θ here has the same limiting distribution as in the regression
having error (ut). The asymptotic behavior of the NLLS estimator θ̂n of θ in this regression
is thus given by our earlier results. In the second step, we estimate G nonparametrically
from the regression

yt − H(xt, θ0) = G(xt) + ut

The limit theory is not affected by using H(xt, θ̂n) in place of H(xt, θ0) in the second-step
regression. The asymptotics for the second-step regression are therefore identical to our
theories for nonparametric regression given above.

5. Nonstationary Nonlinearity in Volatility

The nonstationary nonlinearity can also be used in modelling volatilities. If we let

yt = σtεt (34)

where (εt) is a sequence of independent and identically distributed random variables with
mean zero and unit variance, and (σt) signifies the conditional variance at time t given
information up to time t−1, which is represented by the filtration (Ft−1). We thus have
E(y2

t |Ft−1) = σ2
t . Furthermore, we let

σ2
t = F (xt) (35)

where (xt) is an integrated time series as we specified earlier, which is assumed to be (Ft−1)-
measurable and independent of (εt).

The model given by (34) and (35) can be regarded as a stochastic volatility model,
where the conditional heterogeneity is generated by a nonlinear function of an integrated
process. It is investigated by Park (2002), and referred to as nonstationary nonlinear

heteroskedasticity (NNH). The function F in (35), which should necessarily be nonlinear
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to ensure nonnegativity of the conditional variance, is called the heterogeneity generating
function (HGF). If (xt) in (35) is stationary, then it is said that we have stationary nonlinear

heteroskedasticity. Instead of modelling the conditional variance σt in (34) explcitly as a
function of some explanatory variable, the autoregressive conditional heteroskedasticity
(ARCH) or the generalized autoregressive conditional heteroskedasticity (GARCH) model
assumes that it is given by the past values of the squared process (y2

t ).
It appears that there are many potential examples, for which volatilities may reasonably

be specified as functions of integrated processes. For instance, the volatility of the return
from a stock may well be given as a function of interest rate or transaction quantity, which
are considered by many to be well approximated by integrated processes. We may likewise
specify the volatility in the nominal interest rate differentials as a function of inflation,
which is also commonly believed to have a unit root. It may also seem reasonable to model
the volatility of the spread between forward and spot rates as a function of the level of the
spot rate, as is demonstrated in Park (2002).

Using the asymptotics developed in Section 2, we may readily derive various statisti-
cal properties of the NNH model. Here we consider the limiting behavior of the sample
autocorrelations for the squared process (y2

t ), which is defined as

R2
nk =

n
∑

t=k+1

(y2
t − ȳ2

n)(y2
t−k − ȳ2

n)

n
∑

t=1

(y2
t − ȳ2

n)2

where ȳ2
n denotes the sample mean of (y2

t ). Moreover, we investigate the asymptotics for
the sample kurtosis

K4
n =

1

n

n
∑

t=1

y4
t

(

1

n

n
∑

t=1

y2
t

)2

Other sample statistics, of course, can be analyzed similarly, though we do not report the
details here.

There are two prominent characteristics that are revealed by many time series observa-
tions in economics and finance: volatility clustering and leptokurticity. For any volatility
model to be useful in describing data having such properties, it should therefore be able to
predict the persistency in the autocorrelations of the squared process and the large values
of the sample kurtosis. The asymptotics for R2

nk and K4
n can be obtained similarly as in

Section 3, since

yp
t = F p/2(xt) εp

t

= (Eεp
t ) F p/2(xt) + F p/2(xt) (εp

t − Eεp
t ) (36)

and, for all k = 1, 2, . . .,

y2
t y

2
t−k = F (xt)F (xt−k) ε2

t ε
2
t−k
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= F (xt)F (xt−k) + F (xt)F (xt−k)
(

ε2
t ε

2
t−k − 1

)

(37)

and their first terms dominate.

5.1 NNH with Integrable HGF

We first consider the NNH model with integrable HGF. Let the HGF F be bounded and
integrable. Then we may easily deduce from (36) and our earlier result (16) in Section 3
that

1√
n

n
∑

t=1

yp
t = (Eεp

t )
1√
n

n
∑

t=1

F p/2(xt) + op(1)

→d (Eεp
t ) L(1, 0)

∫

∞

−∞

F p/2(x) dx (38)

as n → ∞. Note that
n

∑

t=1

F p/2(xt) (εp
t − Eεp

t ) = Op(n
1/4)

for all large n, due to (15).
Moreover, it follows from (37) and (18) in Section 3 that

1√
n

n
∑

t=1

y2
t y

2
t−k =

1√
n

n
∑

t=1

F (xt)F (xt−k) + op(1)

→d L(1, 0)

∫

∞

−∞

∫

∞

−∞

F (x)F (x + y)Dk(y) dx dy (39)

as n → ∞. Similarly as above,

n
∑

t=1

F (xt)F (xt−k)
(

ε2
t ε

2
t−k − 1

)

= Op(n
1/4)

for all large n.
We may now readily deduce from (38) and (39) that

R2
nk →p R2

k

where

R2
k =

∫

∞

−∞

∫

∞

−∞

F (x)F (x + y)Dk(y) dx dy

Eε4
t

∫

∞

−∞

F 2(x) dx

As in Section 3, Dk, k = 1, 2, . . ., denotes the density of (xt − xt−k). If the HGF F is
integrable, the sample autocorrelation R2

nk of the squared process has a nonrandom proba-
bility limit R2

k for each k = 1, 2, . . ., which we may regard as the asymptotic autocorrelation
function of the squared process.
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The asymptotic autocorrelation function R2
k of the squared process can be analyzed

similarly as in Section 3. First, we may easily show that

R2
k < 1/Eε4

t

at all lags k = 1, 2, . . .. Note that Eε4
t > 1. The autocorrelations of the squared NNH process

with integrable HGF are therefore expected to be strictly less than unity. In particular, if
the distribution of (εt) has thick tails and large kurtosis, they should be small at all lags
k = 1, 2, . . .. Under Gaussianity, we have Eε4

t = 3, and therefore, R2
k < 1/3 for all lags

k = 1, 2, . . .. Moreover, it follows as in Section 3 that

k1/2R2
k → D(0)

(
∫

∞

−∞

F (x) dx

)2

Eε4
t

∫

∞

−∞

F 2(x) dx

as k → ∞. The autocorrelations of the squared NNH process with integrable HGF therefore
decay slowly at the rate of k−1/2, yielding persistency in memory, i.e., long memory. The
NNH model may thus generate long memory in volatility, if an integrable HGF is used.

Now we consider the asymptotic behavior of the sample kurtosis for the NNH model
with integrable HGF. Once again, it may easily be deduced from (36) that

1√
n

K4
n →d

Eε4
t

∫

∞

−∞

F 2(x) dx

L(1, 0)

(
∫

∞

−∞

F (x) dx

)2

as n → ∞. For the NNH model with integrable HGF, the sample kurtosis K4
n diverges as

n → ∞. It is therefore expected to have larger values as the sample size increases, which
provides an explanation for the leptokurticity observed in many economic and financial
data.

The asymptotics for the sample autocorrelations R2
nk of the squared process obtained

here for the NNH model with integrable HGF are applicable also for the NNH model with
trivial asymptotically homogeneous HGF. That is, if F is an asymptotically homogeneous
function given by a constant shift of an integrable function as in (19), R2

nk asymptotically
behaves exactly the same as in the case of an integrable function. This is an obvious
consequence of the definition of R2

nk, which is invariant with respect to the constant shift of
(y2

t ). Contrarily, such invariance does not hold for our definition of the sample kurtosis K4
n.3

The results here for K4
n therefore do not extend to the NNH model with any asymptotically

homogeneous HGF.

5.2 NNH with Asymptotically Homogeneous HGF

We now investigate the NNH model with asymptotically homogeneous HGF. If the HGF F
is an asymptotically homogeneous function with asymptotic order κ and limit homogeneous

3Recall that we assume Eyt = 0 is known to define the sample kurtosis K4

n.
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function H, then we may easily derive that

1

n
κ−p/2(

√
n)

n
∑

t=1

yp
t = (Eεp

t )
1

n
κ−p/2(

√
n)

n
∑

t=1

F p/2(xt) + op(1)

→d

∫ 1

0
Hp/2(V (r)) dr (40)

as n → ∞, from (36), our earlier result (20) in Section 3, and since

κ−p/2(
√

n)
n

∑

t=1

F p/2(xt) (εp
t − Eεp

t ) = Op(n
1/2)

for all large n, due to (12).
Moreover, it follows from (37), (21) in Section 3, and

κ−2(
√

n)
n

∑

t=1

F (xt)F (xt−k)
(

ε2
t ε

2
t−k − 1

)

= Op(n
1/2)

for all large n, which follows similarly as above, that

1

n
κ−2(

√
n)

n
∑

t=1

y2
t y

2
t−k =

1

n
κ−2(

√
n)

n
∑

t=1

F (xt)F (xt−k) + op(1)

→d

∫ 1

0
H2(V (r)) dr (41)

as n → ∞.
We assume that the asymptotically homogeneous HGF is nontrivial, i.e., it has non-

constant limit homogeneous function H. Then we may easily deduce from (40) and (41)
that

R2
nk →d R2

where

R2 =

∫ 1

0
H2(V ) −

(
∫ 1

0
H(V )

)2

Eε4
t

∫ 1

0
H2(V ) −

(
∫ 1

0
H(V )

)2

as n → ∞.
It is important to note that the limit R2 of R2

nk is random and independent of k. The
squared NNH process with nontrivial asymptotically homogeneous HGF therefore has a
random asymptotic correlation function that is identical for all lags. It is thus expected
that their sample autocorrelations are given randomly and independently of the lag order
even when the sample size is fairly large. The distribution of the asymptotic correlation
R2, of course, depends upon the fourth moment of (εt) and the limit homogeneous function
H of the HGF F . It is obtained through simulation in Park (2002) for the Gaussian
NNH model with asymptotically homogeneous HGF having limit homogeneous function
H(x) = 1{x ≥ 0} and H(x) = |x|. The distribution of R2 may vary substantially across
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different H’s. For the models with H(x) = 1{x ≥ 0}, R2 is likely to take values that
could be either very small or very large. In contrast, if H(x) = |x|, R2 is most likely to
have moderate values. For the former, the sample paths may show either little or heavy
volatility clusterings. The latter in most cases generates samples with moderate volatility
clusterings.

We may also easily obtain from (40) that

K4
n →d

Eε4
t

∫ 1

0
H2(V )

(
∫ 1

0
H(V )

)2

as n → ∞. The sample kurtosis remains to be random in the limit for the NNH pro-
cess with asymptotically homogeneous HGF. Its limit distribution depends upon the limit
homogeneous function of the HGF. However, for all NNH processes with asymptotically
homogeneous HGF’s, the limit distribution of the sample kurtosis has support truncated
on the left by the kurtosis Eε4

t of the innovations (εt). To see this, note that

(
∫ 1

0
H(V )

)2

≤
∫ 1

0
H2(V ) a.s.

which holds for all H, due to Cauchy-Schwarz inequality. The inequality is strict unless
H is a constant function. The leptokurticity is therefore naturally expected for the NNH
processes with asymptotically homogeneous HGF’s.

The limit distribution of the sample kurtosis for the NNH model with asymptotically
homogeneous HGF is given in Park (2002) for the choices of the limit homogeneous function
H, H(x) = 1{x ≥ 0} and H(x) = |x|. For the former, the limit density has the peak
at the left boundary of its support. For the latter, the limit distribution for the latter
is unimodal, though substantially skewed to the right. We may indeed obtain the limit
distribution analytically for the former. As is well known,

∫ 1
0 1{V ≥ 0} has arcsine law

with density 1/(π
√

x(1 − x)) on the unit interval (0, 1). The limit distribution in this case
is therefore given by a constant multiple of the reciprocal of arcsine law, which has the
density 1/(πx

√
x − 1) over the support (1,∞).

5.3 Comparisons with SNH and GARCH Models

It is illuminating to compare the properties of the NNH processes with those of the SNH
and the GARCH models. In particular, the comparison is made with respect to their ability
to explain the commonly observed patterns of the sample autocorrelations for the squared
processes. In Table 2,4 we present the sample autocorrelations of the squared returns for
Dow-Jones Industrial Averages (DJ) and Standard & Poor 500 (SP500) stock indices at
three different frequencies, i.e., daily, weekly and monthly.

4The data were obtained for the period of 1970.1.1 – 2003.3.3, and the returns were calculated as the
first differences of logged stock price indices.
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Table 2: Sample Autocorrelations of Squared Stock Returns

Daily Weekly Monthly

k DJ SP500 DJ SP500 DJ SP500

1 .0931 .1167 .1258 .2431 .0190 .0880
2 .1466 .1532 .0852 .1378 .0259 .0673
3 .0736 .0852 .0571 .1256 .0394 .0720
4 .0199 .0305 .0491 .1310 .0166 .0095
5 .1098 .1412 .0862 .0582 –.0069 –.0045

10 .0119 .0203 .0837 .0774 .0206 .0365
100 .0008 .0026 –.0110 .0094 –.0529 –.0705

Though we have different outcomes for different indices and frequencies, the sample
autocorrelations have some common features. First, they are quite persistent. Sometimes,
they do not decay at all. If they decay, they do so very slowly. Second, they are far
below unity at all lags. Even at the first lag, they are usually pretty small, though they
do not seem negligible. The patterns are quite consistent with those predicted by the NNH
models. Recall that the autocorrelations for the NNH processes decay very slowly or are
given randomly, depending upon whether the HGF is integrable (or trivial asymptotically
homogeneous) or nontrivial asymptotically homogeneous.

Of the ARCH-GARCH class of models, we consider the simple, but most popular
GARCH(1,1) model given by

σ2
t = ω + αy2

t−1 + βσ2
t−1

where ω, α and β are parameters that are assumed to be nonnegative. For the usual GARCH
model, we have α + β < 1. If α + β = 1, it becomes the so-called integrated GARCH
(IGARCH).

For the usual GARCH model with 0 < α + β < 1, the theoretical autocorrelation of the
squared process decreases at a geometric rate. Indeed, one may easily see that the sample
autocorrelation of the squared process has probability limit given by

(α + β)k−1 α + αβ2 + β3

1 − αβ

which is just the k-th autocorrelation of the stationary process (y2
t ). When α + β = 1, as is

the case for IGARCH, the process (y2
t ) becomes an integrated process and R2

nk converges
in probability to unity at all values of k. It is very clear that the observed patterns of the
sample autocorrelations are consistent with neither GARCH nor IGARCH. They neither
decay at geometric rates, nor are close to unity at any lag.

The SNH models are also inconsistent with the patterns that we observe in Table 2.
Under SNH, the sample autocorrelations of the squared process are expected to decrease as
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the number of lag increases. To see this more explicitly, we let (xt) be generated as

xt = αxt−1 + vt

with |α| < 1. Also, denote by D and Dk respectively the densities of (xt) and (xk
t ), where

xk
t = vt + αvt−1 + · · · + αk−1vt−k+1, and assume that EF 2(xt) < ∞ and EF 2(xk

t ) < ∞ for
all values of k. Then we have

R2
nk →p

Ey2
t y

2
t−k −

(

Ey2
t

)2

Ey4
t −

(

Ey2
t

)2

where Ey2
t = EF (xt) =

∫

∞

−∞
F (x)D(x) dx, Ey4

t = Eε4
t EF 2(xt) = Eε4

t

∫

∞

−∞
F 2(x)D(x) dx,

and

E y2
t y

2
t−k = EF (xt)F (xt−k)

=

∫

∞

−∞

∫

∞

−∞

F (αkx + y)F (x)D(x)Dk(y) dx dy

Let F be differentiable with derivative F ′, so that we have

F (αkx + y) ≈ F (y) + αkxF ′(y)

for large k. Then we may easily deduce under suitable technical conditions that for large k

R2
nk = c |α|k

with some constant c > 0. It is thus clear that the sample autocorrelations of the squared
SNH processes decrease at a geometric rate as the order k of lags increases up to infinity.
This is comparable to the usual GARCH process, and inconsistent with what we observe in
Table 2.

6. Concluding Remark

In this paper, we present a unified theory for nonstationary nonlinearity, and lay out new
research possibilities in several directions. One direction is omitted in our exposition: non-
stationary nonlinearity in statistical inference. Nonstationary nonlinearity can also be used
as testing instruments. Nonlinear transformations of integrated time series have some im-
portant statistical properties which can be exploited to develop tests with some desirable
characteristics. Phillips, Park and Chang (1999) and Chang (2002) demonstrate this possi-
bility very well. The asymptotic theory for unit root models is intrinsically non-Gaussian,
rendering standard tests relying on Gaussian limiting distribution not applicable. The limit-
ing Gaussianity of some nonlinear transformations of integrated time series, however, allows
us to use the nonlinear IV method to test for a unit root using the normal table. Moreover,
nonlinear transformations of integrated processes are asymptotically orthogonal, as long as
they are not cointegrated. Chang (2001) uses this property to develop the panel unit root
tests that are robust with respect to the cross-sectional dependency.
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