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Abstract

We consider the bootstrap unit root tests based on finite order autoregressive
integrated models driven by iid innovations, with or without deterministic time
trends. A general methodology is developed to approximate asymptotic dis-
tributions for the models driven by integrated time series, and used to obtain
asymptotic expansions for the Dickey-Fuller unit root tests. The second-order
terms in their expansions are of stochastic orders Op(n−1/4) and Op(n−1/2),
and involve functionals of Brownian motions and normal random variates. The
asymptotic expansions for the bootstrap tests are also derived and compared
with those of the Dickey-Fuller tests. We show in particular that the bootstrap
offers asymptotic refinements for the Dickey-Fuller tests, i.e., it corrects their
second-order errors. More precisely, it is shown that the critical values obtained
by the bootstrap resampling are correct up to the second-order terms, and the
errors in rejection probabilities are of order o(n−1/2) if the tests are based upon
the bootstrap critical values. Through simulations, we investigate how effective
is the bootstrap correction in small samples.
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1. Introduction

It is now well perceived that the bootstrap, if applied appropriately, helps to compute the
critical values of asymptotic tests more accurately in finite samples, and that the tests based
on the bootstrap critical values generally have actual finite sample rejection probabilities
closer to their asymptotic nominal values. See, e.g., Hall (1992) and Horowitz (2001). The
bootstrap unit root tests, i.e., the unit root tests relying on the bootstrap critical values,
seem particularly attractive in this respect. For most of the commonly used unit root
tests, the discrepancies in the actual and nominal rejection probabilities are known to be
large and often too large for the tests to be any reliable. It has indeed been observed by
various authors including Ferretti and Romo (1996) and Nankervis and Savin (1996) that
the bootstrap tests have actual rejection probabilities that are much closer to their nominal
values, compared to the asymptotic tests, in the unit root models.

The main purpose of this paper is to provide a theory for the asymptotic refinement
of bootstrap unit root tests. Bootstrap theories for unit root models have previously been
studied by, among others, Basawa et al. (1991a, 1991b), Datta (1996), Park (2002) and
Chang and Park (2002). However, they have all been restricted to the consistency (and
inconsistency) of the bootstrap estimators and statistics from unit root models. None of
them considers the asymptotic refinement of bootstrap. In this paper, we develop asymp-
totic expansions that are applicable for a wide class of unit root tests and their bootstrap
versions, and provide a framework within which we investigate the bootstrap asymptotic
refinement of various unit root tests. Our asymptotic expansions are obtained by analyzing
the Skorohod embedding, i.e., the embedding of the partial sum process into a Brownian
motion defined on an extended probability space.

In the paper, we consider more specifically the Dickey-Fuller unit root tests for the fi-
nite order autoregressive unit root models driven by iid errors, possibly with constant and
linear time trend. It can be clearly seen, however, that our methodology may also be used
to analyze many other unit root tests as well. For the Dickey-Fuller unit root tests, the
expansions have as the leading term the functionals of Brownian motion representing their
asymptotic distributions. This is as expected. The second-order terms in the expansions
are, however, quite different from the standard Edgeworth-type expansions for the station-
ary models. They are represented by functionals of Brownian motions and normal random
variates, which are of stochastic orders Op(n−1/4) and Op(n−1/2). The second-order expan-
sion terms involve various unknown model parameters. The expansions are obtained for
the tests in models with deterministic trends, as well as for the tests in purely stochastic
models. They have similar characteristics.

We show that the limiting distributions of the bootstrap statistics have expansions that
are analogous to the original statistics. The bootstrap statistics have the same leading
expansion terms. This is well expected, since the statistics that we consider are asymptot-
ically pivotal. More importantly, their second-order terms are also exactly the same as the
original statistics except that the unknown parameters included in the expansions of the
original statistics are now replaced by their sample analogues, which strongly converge to
the corresponding population parameters. Consequently, using the critical values obtained
by the bootstrap is expected to reduce the order of discrepancy between the actual (finite
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sample) and nominal (asymptotic) rejection probabilities of the tests. The bootstrap thus
provides an asymptotic refinement for the tests. Though our asymptotic expansions for
the unit root models are quite different from the Edgeworth-type expansions for stationary
models, the reason that the bootstrap offers a refinement of asymptotics is precisely the
same.

Through simulations, we investigate how effective the bootstrap correction is in small
samples. We consider both Gaussian and non-Gaussian unit root models. For the non-
Gaussian models, we investigate models driven by innovations that are distributed symmet-
rically and asymmetrically. Our findings are generally supportive of the theory developed
in the paper. Moreover, they are consistent with the simulation results obtained earlier by
Nankervis and Savin (1996). Overall, the bootstrap does provide some obvious improve-
ments over the asymptotics. The tests based on the bootstrap critical values in general
have rejection probabilities that are substantially closer to their nominal values. The actual
magnitudes of improvements, however, somewhat vary depending upon the distributional
characteristics of innovations, the size of samples and the presence of deterministic trends in
the model. It appears in particular that the benefits from the bootstrap are more noticeable
for the models with trends and for the samples of small sizes.

The rest of the paper is organized as follows. Section 2 introduces the model, tests
and bootstrap method. The test statistics are introduced together with the autoregressive
unit root model and the moment condition, and how to obtain bootstrap samples from
such a model is explained here. The asymptotic expansions are derived in Section 3. The
section starts with the probabilistic embeddings that are essential for the development of
our subsequent theory, and present the asymptotic expansions for the original and bootstrap
tests. Some of their implications are also discussed. The asymptotic powers of the bootstrap
tests against the local-to-unity model are considered in Section 4. Section 5 extends the
theory to the models with deterministic trends. The asymptotic expansions for the tests in
models with constant and linear time trend are presented and compared with the earlier
results. The simulation results are reported in Section 6, and Section 7 concludes the paper.
Mathematical proofs are given in Section 8.

2. The Model, Tests and Bootstrap Method

2.1 The Model and Test Statistics

We consider the test of the unit root hypothesis

H0 : α = 1 (1)

in the AR(p) unit root model

yt = αyt−1 +
p∑

i=1

αi4yt−i + εt (2)
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where 4 is the usual difference operator. We define

α(z) = 1−
p∑

i=1

αiz
i

so that under the null hypothesis of the unit root (1) we may write α(L)4yt = εt using the
lag operator L. Assume

Assumption 2.1 Let (εt) be an iid sequence with Eεt = 0 and E|εt|r < ∞ for some
r > 1. Also, we assume that α(z) 6= 0 for all |z| ≤ 1.

Under Assumption 2.1 (with r ≥ 2) and the unit root hypothesis (1), the time series (4yt)
becomes a (second-order) stationary AR(p) process.

The unit root hypothesis is customarily tested using the t-statistic on α in regression
(2). Denote by α̂n the OLS estimator for α in regression (2). If we let

xt−1 = (4yt−1, . . . ,4yt−p)′

and define

pyt−1 = yt−1 −

(
n∑

t=1

yt−1x
′
t−1

)(
n∑

t=1

xt−1x
′
t−1

)−1

xt−1,

then we may explicitly write the t-statistic for the null hypothesis (1) as

Fn =
α̂n − 1

σn

(
n∑

t=1

py
2
t−1

)−1/2
(3)

where σ2
n is the usual variance estimator for the regression errors. The test is first proposed

and investigated by Dickey and Fuller (1979, 1981), and it is commonly referred to as
the Dickey-Fuller test (if applied to the regressions with no lagged difference term) or the
augmented Dickey-Fuller (ADF) test (if based on the regressions augmented with lagged
difference terms).

We may also use the statistic

Gn =
n(α̂n − 1)

αn(1)
(4)

to test the unit root hypothesis, where

αn(1) = 1−
p∑

i=1

αni

with the least squares estimators αni of αi for i = 1, . . . , p. The statistic Gn reduces to the
normalized coefficient n(α̂n − 1) in the simple model with no lagged difference term.
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The asymptotic distributions of the statistics Fn and Gn under the presence of a unit
root are well known [see, e.g., Stock (1994)], and given by

Fn →d F =

∫ 1

0
W (t)dW (t)(∫ 1

0
W (t)2dt

)1/2
, Gn →d G =

∫ 1

0
W (t)dW (t)∫ 1

0
W (t)2dt

where W is the standard Brownian motion. Since F and G do not involve any nuisance
parameter, the statistics Fn and Gn are asymptotically pivotal. The distributions repre-
sented by F and G are however non-standard, and they are tabulated in Fuller (1996).
See Evans and Savin (1981, 1984) for a detailed discussion on some of their distributional
characteristics.

The initialization of (yt) is important for some of our subsequent theories. In what
follows, we let (y0, . . . , y−p) be fixed and make all our arguments conditional on them. If we
let α = 1 and define ut = 4yt, then we may equivalently assume that (y0, (u0, . . . , u−p+1))
are given. This convention on the initialization of (yt) is crucial for the theory developed
in Section 3 for the model with no constant term. It will however be unimportant for the
model with constant or linear time trend considered in Section 4. Under the unit root
hypothesis, our statistics become invariant with respect to the initial values of (yt) in the
regression with intercept.

2.2 The Bootstrap Method

Implementation of the bootstrap method in our unit root model is quite straightforward,
once we fit the regression

4yt =
p∑

i=1

αi4yt−i + εt (5)

and obtain the coefficient estimates (αni) and the fitted residuals (ε̂t). Since our purpose is
to bootstrap the distributions of the statistics under the null hypothesis of the unit root, it
seems natural to resample from the restricted regression (5) instead of the unrestricted one
in (2). It is indeed well known that the bootstrap must be based on regression (5), not on
regression (2), for consistency [see Basawas, et al. (1991a)].2

The first step is to draw bootstrap samples for the innovations (εt) after mean correction.
As usual, we denote by (ε∗t ) their bootstrap samples, i.e., (ε∗t ) are the samples from(

ε̂t −
1
n

n∑
i=1

ε̂i

)n

t=1

which can be viewed as iid samples from the empirical distribution given by (ε̂t−
∑n

i=1 ε̂i/n).
Note that the mean adjustment is necessary, since otherwise the mean of the bootstrap
samples is nonzero.

2We may estimate (αi) and (εt) from regression (2), as long as we set the value of α to unity (instead of
its estimated value) and use regression (6) to generate bootstrap samples. The resulting differences are of
order o(n−1 log n) a.s., and therefore, will not change any of our subsequent theory.
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Once the bootstrap samples (ε∗t ) are obtained, we may construct the values for (u∗t )
recursively from (ε∗t ) as

u∗t =
p∑

i=1

αniu
∗
t−i + ε∗t (6)

starting from (u0, . . . , u−p+1). Finally, the bootstrap samples (y∗t ) for (yt) can be obtained
just by taking partial sums of (u∗t ), i.e.,

y∗t = y0 +
t∑

i=1

u∗i

given y0. For the model with no intercept term, the initializations of (u∗t ) and (y∗t ) are
important and should be done as specified here to make our theory applicable. However,
they become unimportant for the models with deterministic trends including constant, as
in the case of the initializations of (ut) and (yt).

The bootstrap versions of the statistics Fn and Gn, which we denote by F ∗
n and G∗

n

respectively, are defined from (y∗t ) exactly in the same way that Fn and Gn in (3) and (4)
are constructed from (yt). Of course, the distributions of the bootstrap statistics F ∗

n and G∗
n

can now be found by repeatedly generating bootstrap samples and computing their values
in each bootstrap repetition. These distributions are regarded as approximations of the null
distributions of Fn and Gn. The bootstrap unit root tests use the critical values calculated
from the distributions of the bootstrap statistics F ∗

n and G∗
n.

3. Asymptotic Expansions of Test Statistics

3.1 Probabilistic Embeddings

Our subsequent theoretical development relies heavily on the probabilistic embedding of the
partial sum process constructed from the innovation sequence (εi) into a Brownian motion
in an expanded probability space. This will be given below. Throughout the paper, we
denote by Eε2

i = σ2,Eε3
i = µ3 and Eε4

i = κ4, whenever they exist.

Lemma 3.1 Let Assumption 2.1 hold with r ≥ 2. Then there exist a standard Brownian
motion (W (t))t≥0 and a time change (Ti)i≥0 such that T0 ≡ 0 and for all n ≥ 1,

W (Ti/n) =d
1

σ
√

n

i∑
k=1

εk (7)

i = 1, . . . , n, and if we let ∆i = Ti − Ti−1, then ∆i’s are iid with E∆i = 1 and E|∆i|r/2 ≤
KE|εt|r for all r ≥ 2, where K is an absolute constant depending only upon r.

The reader is referred to Hall and Heyde (1980) for the explicit construction of the time
change (Ti)i≥0. The result in Lemma 3.1 is originally due to Skorohod (1965). If Assumption
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2.1 holds with r > 2, we have as shown in Park and Phillips (1999)

max
1≤i≤n

∣∣∣∣Ti − i

ns

∣∣∣∣→a.s. 0 (8)

for any s > 1/2.
In what follows, we will assume that (εi) and (W, (Ti)) are defined on the common

probability space (Ω,F ,P). This causes no loss in generality since we are concerned only
with the distributional results of the test statistics defined in (3) and (4), yet it will greatly
simplify and clarify our subsequent exposition. The convention will be made throughout
the paper. From now on, we would thus interpret the distributional equality in (7) as the
usual equality. If we define a stochastic process Wn on [0, 1] by Wn(t) = n−1/2

∑[nt]
i=1 εi/σ,

then it follows from the Hölder continuity of the Brownian sample path and the result in
(8) that

sup
0≤t≤1

|Wn(t)−W (t)| ≤ sup
0≤t≤1

∣∣T[nt]/n− t
∣∣1/2−ε = o(n−1/4+ε) a.s. (9)

for any ε > 0. Therefore, we have in particular Wn →a.s. W uniformly on [0, 1]. Throughout
the paper, we let Tni = Ti/n, i = 1, . . . , n, for notational brevity.

For the development of our asymptotic expansions, it is necessary to define additional
sequences defined from the Brownian motion W and the time change (Ti) introduced in
Lemma 3.1. We let

δi = ∆i − 1

for i = 1, . . . , n. Moreover, we define

ηi = n

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dW (t)

for i = 1, . . . , n. Note that (δi) and (ηi) are iid sequences of random variables. We also need
to consider the sequence (ξi) given by

ξi = xi−1εi.

Clearly, (ξi) is a martingale difference sequence. Under the null hypothesis of the unit root, it
has conditional covariance matrix whose expectation is given by σ4Γ, where Γ = Exix

′
i/σ2.

Finally, we let E δ2
i = τ4/σ4, which is finite under Assumption 2.1. Note that δi ≡ 0,

when and only when (εi) are normal. The parameter τ can therefore be regarded as the
non-normality parameter. Subsequently, we set τ = 0 if and only if (εi) are normal. The
parameters Γ and τ4 defined here, in addition to σ2, µ3 and κ4 introduced earlier, will
appear frequently in the development of our asymptotic expansions.

Now we define
vi = (εi/σ, δi, ηi, ξ

′
i/σ2)′

and let

Bn(t) =
1√
n

[nt]∑
i=1

vi. (10)

Then invariance principle holds, and Bn →d B for a properly defined vector Brownian
motion B. We present this formally as a lemma.
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Lemma 3.2 Let Assumption 2.1 hold with r > 4. Then Bn →d B, where B is a vector
Brownian motion with covariance matrix Σ given by

Σ =


1 µ3/3σ3 µ3/3σ3 0

τ4/σ4 (κ4−3σ4 − 3τ4)/12σ4 0

κ4/6σ4 0
Γ


where the parameters are defined earlier in this section.

Following our earlier convention, we subsequently assume that both Bn and B are defined
on the probability space (Ω,F ,P), and that Bn →a.s. B. It is well known that any weakly
convergent random sequence can be represented, up to the distributional equivalence, by a
random sequence which converges a.s. [see, e.g., Pollard (1984)].

Remark We make a partition of the limit Brownian motion B as

B = (W,V,U, Z ′)′

conformably with (vi). Let (W ·,W ··) be a bivariate standard Brownian motion independent
of W . Clearly, we may then write

U = ωW + ·ωW ·,

V = ωW + ω·W · + ω··W ··,

where

ω =
µ3

3σ3
,

·ω =
(

κ4

6σ4
− µ6

9σ6

)1/2

,

ω· =
(

κ4

6σ4
− µ6

9σ6

)−1/2(
κ4 − 3σ4

12σ4
− τ4

4σ4
− µ6

9σ6

)
,

ω·· =

[
τ4

σ4
− µ6

9σ6
−
(

κ4

6σ4
− µ6

9σ6

)−1(
κ4 − 3σ4

12σ4
− τ4

4σ4
− µ6

9σ6

)2
]1/2

.

The representations can be greatly simplified for the Gaussian models, for which we have
µ3 = 0 and κ4 = 3σ4 as well as τ = 0. Consequently, we have ·ω = 1/

√
2 and ω =

ω· = ω·· = 0, and therefore, V ≡ 0 and U becomes independent of W . In addition to the
representations of U and V given above, we may write Z(1) = Γ1/2S using a multivariate
normal random vector S with the identity covariance matrix. Since Z is independent of
(W,V,U), so is S. Finally, our subsequent expansions also involve stochastic processes M
and N . We let M be an extended standard Brownian motion on R independent of B (and
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therefore all of the Brownian motions and normal random variates defined above), and let
N be another extended Brownian motion on R defined by N(t) = W (1 + t)−W (1).3 The
notations defined here will be used throughout the paper without any further reference.

3.2 Asymptotic Expansions

We are now ready to obtain asymptotic expansions for the distributions of the statistics Fn

and Gn introduced in (3) and (4). We define

Pn =
1
n

n∑
t=1

yt−1εt −
1
n

(
n∑

t=1

yt−1x
′
t−1

)(
n∑

t=1

xt−1x
′
t−1

)−1( n∑
t=1

xt−1εt

)
, (11)

Qn =
1
n2

n∑
t=1

y2
t−1 −

1
n2

(
n∑

t=1

yt−1x
′
t−1

)(
n∑

t=1

xt−1x
′
t−1

)−1( n∑
t=1

xt−1yt−1

)
. (12)

Also, we write the error variance estimate σ2
n as

σ2
n =

1
n

n∑
t=1

ε2
t −

1
n

(
n∑

t=1

εtx
′
t−1

)(
n∑

t=1

xt−1x
′
t−1

)−1( n∑
t=1

xt−1εt

)
(13)

and write

αn(1) = α(1)− ι′

(
n∑

t=1

xt−1x
′
t−1

)−1( n∑
t=1

xt−1εt

)
. (14)

Here and elsewhere in the paper, ι denotes the p-vector of ones. The statistics Fn and Gn

can now be written respectively as

Fn =
Pn

σn
√

Qn
and Gn =

Pn

αn(1)Qn
. (15)

Here we assume that σ2 and α(1) are estimated under the unit root restriction. This
assumption is made purely for the expositional purpose. All of our subsequent results also
hold for the unrestricted estimators of σ2 and α(1).

To derive the asymptotic expansions for the statistics Fn and Gn, we need to consider
various sample product moments in (11) – (14). The asymptotics for some of them are
presented in Lemma 3.3, which can be directly obtained from the probabilistic embeddings
developed in the previous section. Proposition 3.4 is a direct consequence of Lemma 3.3.
To simplify the subsequent exposition, we use X to denote X(1), as well as the process
itself, for Brownian motion X. This should cause no confusion.

3The definition of N , of course, requires that W (t) be defined for t < 0 as well as for t ≥ 0. In
the subsequent development of our theory, we assume that the necessary extension is made and W is an
extended Brownian motion defined on R.



9

Lemma 3.3 Let Assumption 2.1 hold with r > 4. Then we have

(a)
1

nσ2

n∑
t=1

ε2
t = 1 + n−1/2(V + 2U) + op(n−1/2),

(b)
1

n1/2σ2

n∑
t=1

xt−1εt = Z + op(1),

(c)
1

nσ2

n∑
t=1

xt−1x
′
t−1 = Γ + Op(n−1/2),

for large n.

Proposition 3.4 Let Assumption 2.1 hold with r > 4. Then we have

(a) σ2
n = σ2

[
1 + n−1/2(V + 2U)

]
+ op(n−1/2),

(b) αn(1) = α(1)− n−1/2ι′Γ−1Z + op(n−1/2),

for large n.

We now obtain the asymptotic expansions for the sample product moments
∑

yt−1εt,∑
y2

t−1 and
∑

xt−1yt−1. To effectively analyze these product moments, we define wt =∑t
i=1 εi for t ≥ 1 and w0 ≡ 0 and first consider the asymptotic expansions for the sample

product moments of (wt) and (εt). We let ut = 4yt as before, so that α(L)ut = εt under
the null hypothesis of the unit root. Under the unit root hypothesis, (ut) is just a linearly
filtered process of (εt), and (yt) becomes an integrated process generated by such a process.
Our subsequent asymptotic expansions involve various functionals of Brownian motions. To
ease the exposition, we let for Brownian motions X and Y ,

I(X) =
∫ 1

0
X(t)dt and J(X, Y ) =

∫ 1

0
X(t)dY (t),

in the subsequent development of our theory. This shorthand notation, together with X =
X(1) introduced above, will be used repeatedly for the rest of the paper.

Lemma 3.5 Let Assumption 2.1 hold with r ≥ 8. Then we have

(a)
1

n1/2σ

n∑
t=1

εt = W + n−1/4M(V ) + n−1/2N(V ) + op(n−1/2),

(b)
1

n3/2σ

n∑
t=1

wt−1 = I(W ) + n−1/2[WV − J(W,V )− ω] + op(n−1/2),

(c)
1

n2σ2

n∑
t=1

w2
t−1 = I(W 2) + n−1/2

[
W 2V − J(W 2, V )− 2ωI(W )

]
+ op(n−1/2),

(d)
1

nσ2

n∑
t=1

wt−1εt = J(W,W ) + n−1/4WM(V ),
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+ n−1/2
[
(1/2)M(V )2+WN(V )−(1/2)(V+2U)

]
+ op(n−1/2),

for large n.

The asymptotic expansions for
∑

yt−1εt,
∑

y2
t−1 and

∑
xt−1yt−1 can now be obtained

using the relationships between (yt) and (wt), and between (ut) and (εt). To write down
more explicitly their relationships, we need to define some new notation. We let

π = 1/α(1) and πi =
p∑

j=i

αj/α(1)

for i = 1, . . . , p, and let
$ = (π1, . . . , πp)′.

We also define

ν = (1/πσ)

(
y0 +

p∑
i=1

πiu1−i

)
.

Note that we assume (y0, (u0, . . . , u−p+1)) to be given. Therefore, we may and will regard
ν as a parameter in our subsequent analysis.

With the notation introduced above, we may write after some algebra

ut = πεt + $′(xt−1 − xt)

and subsequently get
yt = πσν + πwt −$′xt. (16)

It is now straightforward to deduce from Lemma 3.5 that

Proposition 3.6 Let Assumption 2.1 hold with r ≥ 8. Then we have

(a)
1

n3/2πσ

n∑
t=1

yt−1 = I(W ) + n−1/2 [WV − J(W,V ) + (ν − ω)] + op(n−1/2),

(b)
1

nπ2σ2

n∑
t=1

xt−1yt−1 = ι[1 + J(W,W )]− Γ$/π2 + op(1),

(c)
1

n2π2σ2

n∑
t=1

y2
t−1 = I(W 2),

+ n−1/2
[
W 2V −J(W 2, V )+2(ν−ω)I(W )

]
+ op(n−1/2),

(d)
1

nπσ2

n∑
t=1

yt−1εt = J(W,W ) + n−1/4WM(V ),

+ n−1/2[(1/2)M(V )2+WN(V )+νW−(1/2)(V+2U)−$′Z/π] + op(n−1/2),

for large n.

The asymptotic expansions for the statistics Fn and Gn can now be easily obtained from
(15), using the results in Lemma 3.3 and Propositions 3.4 and 3.6.
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Theorem 3.7 Let Assumption 2.1 hold with r ≥ 8. Then we have for large n

Fn = F + F1/
4
√

n + F2/
√

n + op(n−1/2),

Gn = G + G1/
4
√

n + G2/
√

n + op(n−1/2),

where F1 = WM(V )/I(W 2)1/2, G1 = WM(V )/I(W 2) and

F2 =
(1/2)M(V )2 + WN(V ) + νW − [1 + J(W,W )][(V + 2U)/2 + πι′Γ−1Z]

I(W 2)1/2

− J(W,W )[W 2V − J(W 2, V ) + 2(ν − ω)I(W )]
2I(W 2)3/2

,

G2 =
(1/2)M(V )2 + WN(V ) + νW − (V + 2U)/2− πι′Γ−1Z

I(W 2)

− J(W,W )[W 2V − J(W 2, V ) + 2(ν − ω)I(W )]
I(W 2)2

in notation introduced earlier in Lemma 3.5 and Proposition 3.6.

Naturally, the asymptotic expansions for the statistics Fn and Gn have the leading terms
F and G representing their asymptotic distributions. For both Fn and Gn, the second terms
F1/ 4

√
n and G1/ 4

√
n in our expansions are of stochastic order Op(n−1/4). Their effects are,

however, distributionally of order O(n−1/2). More precisely, we have

P
{
F + F1/

4
√

n ≤ x
}

= P {F ≤ x}+ O(n−1/2),

P
{
G + G1/

4
√

n ≤ x
}

= P {G ≤ x}+ O(n−1/2),

uniformly in x. This is because the process M included in F1 and G1 is a Gaussian process
independent of (W,V,U). Note that for any functionals a(W ) and b(W ) of W , we have

a(W ) + (1/ 4
√

n)b(W )M(V ) =d MN
(
a(W ), (1/

√
n)b(W )2|V |

)
where MN stands for mixed normal distribution.4 Therefore, we call

Fnn = F1/
4
√

n + F2/
√

n, Gnn = G1/
4
√

n + G2/
√

n

the second-order terms in our asymptotic expansions of Fn and Gn. The remainder terms
in the expansions are given to be of order op(n−1/2).

The results in Theorem 3.7 suggest that our second-order asymptotic expansions of
the statistics Fn and Gn provide refinements of their asymptotic distributions up to order
o(n−1/2). This can be shown rigorously, if we assume higher moments exist. More precisely,
if we let

2Fn = F + Fnn, 2Gn = G + Gnn, (17)

then we have
4The characteristic functions of F +F1/ 4

√
n and G+G1/ 4

√
n can therefore be expanded in integral powers

of n−1/2 with the leading terms being the characteristic functions of F and G, respectively. This shows that
the second terms F1/ 4

√
n and G1/ 4

√
n have distributional effects of order O(n−1/2).
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Corollary 3.8 Let Assumption 2.1 hold with r > 12. Then we have

P{Fn ≤ x} = P {2Fn ≤ x}+ o(n−1/2),
P{Gn ≤ x} = P {2Gn ≤ x}+ o(n−1/2),

uniformly in x ∈ R.

It is thus expected in general that the actual finite sample rejection probabilities of the
tests Fn and Gn disagree with their nominal values only by order o(n−1/2), if the second-
order corrected critical values are used, i.e., aλ and bλ such that P{2Fn ≤ aλ} = λ and
P{2Gn ≤ bλ} = λ for tests with nominal rejection probability λ.

For both statistics, the second-order terms Fnn and Gnn involve various functionals of
Brownian motions. The functionals are dependent upon various model parameters, not only
those included explicitly, but also those given implicitly by the variances and covariances
of (W,V,U, Z) in Lemma 3.2. More precisely, if we represent V,U and Z as suggested in
Remark following Lemma 3.2, then Fnn and Gnn can be written explicitly as functionals of
three independent Brownian motions W,W ·,W ·· and another independent normal random
vector S. The functionals involve the parameter θ defined by

θ = (ν, π, σ2, µ3, κ4, τ4,Γ). (18)

We denote by Fnn(θ) and Gnn(θ) the resulting functionals respectively for Fnn and Gnn.
Symbolically, we write

Fnn(θ) = Fnn(θ, (W,W ·,W ··, S)), Gnn(θ) = Gnn(θ, (W,W ·,W ··, S)) (19)

to signify such functionals.
Our asymptotic expansions of the statistics Fn and Gn provide some important infor-

mations on their finite sample distributions. For instance, our expansions make it clear
that the initial values have effects, which are distributionally of order O(n−1/2), on their
finite sample distributions. Note that they are parametrized as ν. Moreover, we may learn
from the expansions that the presence of shortrun dynamics, if it is correctly modelled, has
distributional effects also of order O(n−1/2). As is well known, neither the initial values nor
the shortrun dynamics affect the limiting distributions of Fn and Gn.

Though we will not discuss the details in the paper, it is rather straightforward to
obtain the second-order asymptotic expansions for many other unit root tests using our
results here. For the tests considered in Stock (1994, pp2772–2773), it is indeed not difficult
to see that the tests classified as ρ̂-class, τ̂ -class, SB-class, J(p, q), LMPI (no-deterministic
case) and PT all have the asymptotic expansions that are obtainable from the results in
Lemmas 3.3 and 3.5 and Propositions 3.4 and 3.6. This, of course, is true only when the
nuisance parameter is estimated from the AR(p) model as for Fn and Gn considered in
the paper. The nonparametric estimation of the nuisance parameter would fundamentally
change the nature of asymptotic expansions, and our results do not apply to the unit root
tests with nuisance parameters estimated nonparametrically. Our approach developed here
can also be used to analyze the models with the local-to-unity formulation of the unit root
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hypothesis. The asymptotics for such models are quite similar to those for the unit root
models, except that they involve Ornstein-Uhlenbeck diffusion process in place of Brownian
motion. Their asymptotic expansions can be obtained exactly in the same manner using
the probabilistic embedding of Ornstein-Uhlenbeck process.

3.3 Bootstrap Asymptotic Expansions

To develop the asymptotic expansions for the bootstrap statistics F ∗
n and G∗

n corresponding
to those for Fn and Gn presented in the previous section, we first need a probabilistic
embedding of the standardized partial sum of the bootstrap samples (ε∗i ) into a Brownian
motion defined on an extended probability space. Once this embedding is done in an
appropriately extended probability space, the rest of the procedure to obtain the asymptotic
expansions for F ∗

n and G∗
n is essentially identical to that for Fn and Gn. Following the

usual convention in the bootstrap literature, we use superscript ∗ for the quantities and
relationships that are dependent upon the realizations of (εi).

Let W be a standard Brownian motion independent of (εi),5 and assume that they
are defined on the common probability space (Ω,F ,P). Of course, there exists a proba-
bility space rich enough to support W together with (εi), since we assume that they are
independent. We then let (T ∗

i )i≥0 be a time change defined on (Ω,F ,P) such that

W (T ∗
i /n) =d∗

1
σn
√

n

i∑
k=1

ε∗k a.s. (20)

where =d∗ denotes the equivalence of distribution conditional on a realization of (εi). Note
that, for each n and for any possible realization of (εi)n

i=1, we may find a time change
(T ∗

i )n
i=1 for which (20) holds with the same Brownian motion W . The Brownian motion W

therefore is not dependent upon the realizations of (εi).
Just as the convention made in Section 3.1, we identify (ε∗i ) only up to their distributional

equivalences so that we may assume (ε∗i ) are also defined on the same probability space
(Ω,F ,P), and interpret the equality =d∗ in conditional distributions as the usual equality
in (20). Under the convention, we construct the sequences (δ∗i ) and (η∗i ) from (W, (T ∗

i )) for
each realization of (εi), analogously as (δi) and (ηi). We also let (ξ∗i ) be given similarly as
(ξi) for each realization of (εi). Clearly, we may alternatively define (δ∗i , η

∗
i ) to be the iid

samples from the empirical distribution of (δi, ηi), which are drawn together with (ε∗i ) from
(εi). We may thus regard (ε∗i , δ

∗
i , η

∗
i ) as the iid samples from the empirical distribution of

(εi, δi, ηi). To simplify the subsequent exposition, however, we will assume that (δ∗i , η
∗
i ) are

defined from the embedding (20) of (ε∗i ) given a realization of (εi).
Now we define

v∗i = (ε∗i /σn, δ∗i , η
∗
i , ξ

∗′
i /σ2

n)′

5The Brownian motion W here is, of course, distinct from the one introduced in Sections 3.1 and 3.2. We
just use the same notation here to make our results for bootstrap tests more directly comparable to those
for asymptotic tests.
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and let

B∗
n(t) =

1√
n

[nt]∑
i=1

v∗i

as in (10). It may be readily deduced that

Lemma 3.9 Let Assumption 2.1 hold with r > 4. Then B∗
n →d∗ B∗ a.s., where B∗ is a

vector Brownian motion with covariance matrix Σn given by the sample analogue estimator
of Σ defined in Lemma 3.2.

Analogously as for B, we let

B∗ = (W,V ∗, U∗, Z∗′)′

and further represent V ∗, U∗ and Z∗ in terms of independent standard Brownian motions
W , W · and W ··, as in Remark below Lemma 3.2, with the coefficients given by the sample
analogue estimators ωn, ·ωn, ω·n and ω··n, say, of ω, ·ω, ω· and ω··, i.e.,

U∗ = ωnW + ·ωnW ·,

V ∗ = ωnW + ω·nW · + ω··nW ··.

Moreover, we may write Z∗(1) = Γ1/2
n S, where Γn is the sample analogue estimator of Γ.

Note that we may use the same W ·,W ·· and S for all realizations of (εi) to represent V ∗,
U∗ and Z∗ as above. Therefore, we may assume that (W ·,W ··, S) are defined on the same
probability space (Ω,F ,P) as (εi) and (W, (T ∗

i )), and independent of (εi) as well as W . We
also let (M,N) be defined as earlier, which we may also regard as being independent of
(εi). Finally, corresponding to θ in (18), we define

θn = (ν, πn, σ2
n, µ3

n, κ4
n, τ4

n,Γn) (21)

where πn = 1/αn(1), and σ2
n, µ3

n, κ4
n, τ4

n and Γn are the sample analogue estimators of
σ2, µ3, κ4, τ4 and Γ, respectively.

As usual, P∗ and E∗ refer respectively to the probability and expectation operators given
a realization of (εi). They can be more formally defined as the conditional probability and
expectation operators P( · |(εi)) and E( · |(εi)) on the probability space (Ω,F ,P) introduced
above. For the functionals of (W,W ·,W ··, S) and (M,N), however, P∗ and E∗ agree with
P and E respectively, since they are independent of (εi) by construction.

For the subsequent development of our theory, it is convenient to introduce the bootstrap
stochastic order symbols. For a sequence of random sequences (Xn) on the probability space
(Ω,F ,P), we let Xn = o∗p(1) if P∗{|Xn| > ε} →a.s. 0 for any ε > 0. Likewise, we denote by
Yn = O∗

p(1) for (Yn) on (Ω,F ,P) if, for a.s. all realizations of (εi) and for any ε > 0, there
exists a constant K such that P∗{|Yn| > K} ≤ ε. The constant K may vary depending
upon the realizations of (εi). The symbols o∗p(1) and O∗

p(1) are the bootstrap versions of the
stochastic order symbols op(1) and Op(1). For the random sequences whose distributions
are independent of the realizations of (εi), the two notions become identical. It is easy to



15

see that Xn = o∗p(1) if E∗|Xn|s →a.s. 0 for some s > 0. Moreover, o∗p(1) and O∗
p(1) satisfy

the usual addition and product rules that apply to op(1) and Op(1), as one may easily check.
Needless to say, the definitions of o∗p(1) and O∗

p(1) naturally extend to o∗p(an) and O∗
p(bn)

for some numerical sequences (an) and (bn).

Theorem 3.10 Let Assumption 2.1 hold with r ≥ 8. Then we have for large n

F ∗
n = F + Fnn(θn) + o∗p(n

−1/2),

G∗
n = G + Gnn(θn) + o∗p(n

−1/2),

where Fnn and Gnn are introduced in (19) and θn is defined in (21).

Corollary 3.11 Let Assumption 2.1 hold with r > 12. Then we have for large n

P∗{F ∗
n ≤ x} = P{2Fn ≤ x}+ o(n−1/2) a.s.,

P∗{G∗
n ≤ x} = P{2Gn ≤ x}+ o(n−1/2) a.s.

uniformly in x ∈ R, where 2Fn and 2Gn are defined in (17).

The asymptotics for the bootstrap statistics F ∗
n and G∗

n are completely analogous to
those for the corresponding statistics Fn and Gn. Theorem 3.10 and Corollary 3.11 are
respectively the bootstrap versions of Theorem 3.7 and Corollary 3.8. In Theorem 3.10,
the parameters appeared in the asymptotic expansions of the original statistics are replaced
by their estimates, as in the bootstrap Edgeworth expansions for the standard stationary
models. Due to the law of iterated logarithm for iid sequences, we have for any ε > 0

θn = θ + o∗p(n
−1/2+ε)

under the given moment condition. We may therefore rewrite the results in Theorem 3.10
as

F ∗
n = F + Fnn(θ) + o∗p(n

−1/2),

G∗
n = G + Gnn(θ) + o∗p(n

−1/2).

Corollary 3.11 shows that these second-order expansions of F ∗
n and G∗

n actually provide the
refinements of their asymptotic distributions a.s.

Corollaries 3.8 and 3.11 yield under the required moment condition

P∗{F ∗
n ≤ x} = P{Fn ≤ x}+ o(n−1/2) a.s.,

P∗{G∗
n ≤ x} = P{Gn ≤ x}+ o(n−1/2) a.s.,

uniformly in x ∈ R. Now we define a∗λ and b∗λ as

P∗ {F ∗
n ≤ a∗λ} = P∗ {G∗

n ≤ b∗λ} = λ
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for tests with nominal rejection probability λ. The values a∗λ and b∗λ are the bootstrap
critical values for the λ-level tests based on the statistics Fn and Gn. Then it follows that

P {Fn ≤ a∗λ} , P {Gn ≤ b∗λ} = λ + o(n−1/2)

for large n. The tests using the bootstrap critical values a∗λ and b∗λ thus have rejection
probabilities with errors of order o(n−1/2).6

4. Asymptotics under Local Alternatives

We now consider local alternatives

H1 : α = 1− c

n
(22)

where c > 0 is a fixed constant, and let (yt) be generated as

yt = αyt−1 +
p∑

i=1

αi4cyt−i + εt (23)

where 4c = 1− (1− c/n)L is the quasi-differencing operator. The model given by (22) and
(23) is commonly referred to as the local-to-unity model, and introduced here to investigate
the asymptotic powers of the bootstrap tests.

For the local-to-unity model, it is well known [see, e.g., Stock (1994)] that

Fn →d F (c) = −c

(∫ 1

0
Wc(t)2dt

)1/2

+

∫ 1

0
Wc(t)dW (t)(∫ 1

0
Wc(t)2dt

)1/2
, (24)

Gn →d G(c) = −c +

∫ 1

0
Wc(t)dW (t)∫ 1

0
Wc(t)2dt

, (25)

where Wc(t) = W (t) − c
∫ t
0 e−c(t−s)W (s)ds is Ornstein-Uhlenbeck process, which may be

defined as the solution to the stochastic differential equation dWc(t) = −cWc(t)dt + dW (t).
As is well known,

P{F (c) ≤ x} > P{F ≤ x}, P{G(c) ≤ x} > P{G ≤ x}, (26)

for all x ∈ R, and we may thus expect that the unit root tests relying on Fn and Gn have
some discriminatory powers against the local-to-unity model.

6Note that the results here hold only under the assumption that the underlying model is AR(p) with
known p and iid errors. For the model driven by more general, possibly conditionally heterogeneous, mar-
tingale differences, only the first-order asymptotics are valid. If p is unknown or given as infinity, we may
increase p with the sample size and apply the results for the sieve bootstrap established in Park (2002).
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The limiting distributions of the bootstrap statistics F ∗
n and G∗

n are, however, unaffected,
i.e., their limiting distributions under local alternatives are precisely the same as their
limiting null distributions. This is shown below in Theorem 4.1. We may indeed expect
that the bootstrap samples asymptotically behave as the unit root processes under many
other alternatives as well, since they are generated under the unit root restriction regardless
of the true data generating mechanism. It is therefore not surprising that the bootstrap
statistics F ∗

n and G∗
n have the same limiting distributions under both the exact-unit root

and local-to-unit root specifications.

Theorem 4.1 Let Assumption 2.1 hold with r > 2. Then we have under the local-to-unity
model

F ∗
n →d∗ F a.s., G∗

n →d∗ G a.s.

as n →∞.

Under the alternative of the local-to-unity model, we have in particular

P{F ≤ a∗λ}, P{G ≤ b∗λ} → λ

as n →∞, and therefore,

lim
n→∞

P{Fn ≤ a∗λ} = lim
n→∞

P{F (c) ≤ a∗λ} > λ,

lim
n→∞

P{Gn ≤ b∗λ} = lim
n→∞

P{G(c) ≤ b∗λ} > λ

due to (24), (25) and (26). The bootstrap unit root tests would thus have non-trivial powers
against the local-to-unity model.

5. Tests in Models with Deterministic Trends

In this section, we investigate the unit root tests in the model

yt = Dt + αyt−1 +
p∑

i=1

αi4yt−i + εt (27)

where Dt is deterministic trend. In what follows, we only explicitly consider Dt specified as

Dt = β0 or β0 + β1t (28)

since they are most frequently used in practical applications. Our theories and methodolo-
gies here, however, apply to more general models with higher order polynomials possibly
with structural changes, i.e., Dt =

∑q
i=0 βit

i or
∑q

i=0 βit
i +

∑q
i=0 βiti{t ≥ si}, where si,

i = 1, . . . q, are known break points. We only need some obvious modifications for such
models.

We need to consider model (27), instead of (2), when it is believed that the observed
time series (yt) includes deterministic trend Dt and is generated as

yt = Dt + y◦t (29)



18

where the stochastic component (y◦t ) is assumed to follow (2). As an alternative to testing
for the unit root in regression (27), we may detrend (yt) directly from the regression given by
(29) with (28) to obtain the fitted residuals (ŷ◦t ), and base the unit root tests on regression
(2) using (ŷ◦t ). It turns out that they are asymptotically equivalent not only in the first
order, but also in the second order. All our subsequent results are therefore applicable for
both procedures.7

To obtain the asymptotic expansions for the Dickey-Fuller tests in the presence of linear
time trends, we need the following lemma and the subsequent proposition. We denote by ı
the identity function ı(x) = x in what follows.

Lemma 5.1 Let Assumption 2.1 hold. Then we have

(a)
1

n1/2σ

n∑
t=1

t

n
εt = J(ı, W ) + n−1/4M(V )

− n−1/2 [WV −J(W,V )−N(V )−ω] + op(n−1/2),

(b)
1

n3/2σ

n∑
t=1

t

n
wt−1 = I(ıW ) + n−1/2 [WV −I(WV )−J(ıW, V )−ω/2] + op(n−1/2),

for large n.

Proposition 5.2 Let Assumption 2.1 hold. Then we have

1
n3/2πσ

n∑
t=1

t

n
yt−1 = I(ıW )

+n−1/2 [WV − I(WV )− J(ıW, V ) + (ν − ω/2)] + op(n−1/2)

for large n

We now present the asymptotic expansions of the Dickey-Fuller tests for the models with
constant, Dt = β0, and for the models with linear time trend, Dt = β0 +β1t. They are quite
similar, and we present them together in a single framework. For both cases, we denote by
F̃n and G̃n the Dickey-Fuller statistics based on regression (27), or equivalently, the ones
defined as in (3) and (4) from the regression (2) run with the demeaned or detrended (yt).
We denote by W̃ the demeaned or detrended Brownian motion, for the case of Dt = β0

or Dt = β0 + β1t. Moreover, we let F̃ and G̃ respectively be the functionals of Brownian
motions defined similarly as F and G with W replaced by W̃ . It is well known that F̃n and
G̃n have the limiting distributions given by F̃ and G̃ respectively. We also define 2F̃n and
2G̃n to be the second-order expansions of F̃n and G̃n, similarly as 2Fn and 2Gn for Fn and
Gn.

7We do not consider in the paper the GLS detrending proposed by Elliot, Rothenberg and Stock (1996)
based on the local-to-unity formulation of the unit root hypothesis. Such detrending in general yields
asymptotics that are different from those for the usual OLS detrending considered here.



19

Theorem 5.3 Let Assumption 2.1 hold with r ≥ 8. Then we have for large n

F̃n = F̃ + F̃1/
4
√

n + F̃2/
√

n + op(n−1/2),

G̃n = G̃ + G̃1/
4
√

n + G̃2/
√

n + op(n−1/2),

where F̃1 = W̃M(V )/I(W̃ 2)1/2, G̃1 = W̃M(V )/I(W̃ 2) and

F̃2 =
(1/2)M(V )2 + W̃N(V )− [1 + J(W̃ , W̃ )][(V + 2U)/2 + πι′Γ−1Z]

I(W̃ 2)1/2

− J(W̃ , W̃ )[W̃ 2V − J(W̃ 2, V )− 2ωI(W̃ )]
2I(W̃ 2)3/2

,

G̃2 =
(1/2)M(V )2 + W̃N(V )− (V + 2U)/2− πι′Γ−1Z

I(W̃ 2)

− J(W̃ , W̃ )[W̃ 2V − J(W̃ 2, V )− 2ωI(W̃ )]
I(W̃ 2)2

.

Moreover, if Assumption 2.1 holds with r > 12, then for large n

P{F̃n ≤ x} = P{2F̃n ≤ x}+ o(n−1/2),
P{G̃n ≤ x} = P{2G̃n ≤ x}+ o(n−1/2),

uniformly in x ∈ R.

The asymptotic expansions for F̃n and G̃n in Theorem 5.3 are quite similar to those for
Fn and Gn in Theorem 3.7. We only have two differences. First, all of the terms in the
expansions for Fn and Gn representing the dependency on the initial value ν disappear,
and are not present in the expansions of F̃n and G̃n. This is naturally expected, since
the demeaning or detrending makes the statistics F̃n and G̃n invariant with respect to the
initial values. Second, the Brownian motion W is replaced by the demeaned or detrended
Brownian motion W̃ in all of the expansion terms. The demeaning or detrending thus
affects not only the first-order asymptotics, but also the second-order asymptotics.

Now we define the second-order expansion terms

F̃nn = F̃1/
4
√

n + F̃2/
√

n, G̃nn = G̃1/
4
√

n + G̃2/
√

n

for F̃n and G̃n, and let

F̃nn(θ) = F̃nn(θ, (W̃ , W ·,W ··, S)), G̃nn(θ) = G̃nn(θ, (W̃ , W ·,W ··, S)), (30)

analogously as in (19). Moreover, we let

2F̃n = F̃ + F̃nn, 2G̃n = G̃ + G̃nn, (31)

be the second-order approximations of F̃n and G̃n correspondingly to (17).
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Theorem 5.4 Let Assumption 2.1 hold with r ≥ 8. Then we have for large n

F̃ ∗
n = F̃ + F̃nn(θn) + o∗p(n

−1/2),

G̃∗
n = G̃ + G̃nn(θn) + o∗p(n

−1/2),

where F̃nn and G̃nn are introduced in (30) and θn is the sample moment estimator of the
parameter θ defined in (18). Moreover, if Assumption 2.1 holds with r > 12, then for large
n

P∗{F̃ ∗
n ≤ x} = P{2F̃n ≤ x}+ o(n−1/2) a.s.,

P∗{G̃∗
n ≤ x} = P{2G̃n ≤ x}+ o(n−1/2) a.s.,

uniformly in x ∈ R, where 2F̃n and 2G̃n are defined in (31).

The results in Theorem 5.4 make it clear that the main conclusions on the asymptotic refine-
ments of the bootstraps in Section 3.3 continue to hold for the tests in models with constant
and linear trends. Using bootstrap critical values would reduce the finite sample distortion
in rejection probability to the order o(n−1/2) also in models with such deterministic trends.

6. Monte Carlo Simulations

We perform Monte Carlo simulations to investigate the actual finite sample performances
of the bootstrap tests. The model we use for the simulations is specified as

yt = αyt−1 + β4yt−1 + εt

where α and β are parameters and (εt) are iid innovations. The parameter values are chosen
to be α = 1 and β = 0.4, 0.0,−0.4. We set α = 1 and investigate only the finite sample sizes
of the tests.8 The innovations are generated as standard normal N(0, 1), normal-mixture
N(0, 1) and N(0, 16) with mixing probabilities 0.8 and 0.2, and shifted chi-square χ2(8)− 8
distributions.9 We thus consider both normal and non-normal innovations, and for the
non-normal innovations we look at skewed ones as well as those that are not skewed. The
samples of sizes n = 25, 50, 100 are generated. The rejection probabilities for the tests with
fitted mean and time trend are given respectively in Tables 1 and 2. The nominal rejection
probabilities of the test are 5%.

The simulation results reported in Tables 1 and 2 are generally supportive of the theory
developed in the paper. In particular, they make it clear that the bootstrap does provide
asymptotic refinements for the tests of a unit root in finite samples. In all cases that we
investigate here, the bootstrap tests, i.e., the tests based on the critical values computed by

8We also looked at the finite sample powers of the tests for various values of α. The bootstrap tests have
essentially the same powers as the asymptotic tests. This confirms the findings by Nankervis and Savin
(1996).

9To make our results more comparable to theirs, we look at the distributions considered by Nankervis
and Savin (1996). However, we do not follow them in standardizing the distributions to have unit variance,
since the unit root tests considered here are invariant with respect to scaling.
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the bootstrap sampling, have rejection probabilities that are closer to their nominal values,
if compared with the usual asymptotic tests. The actual magnitudes of the refinements,
however, depend upon various factors such as the sample size, the model specification and
the distribution of innovations. Overall, it appears that the bootstrap offers more significant
refinements for small samples and for models with fitted time trend, respectively in terms
of the sample size and the model specification. The distribution of innovations seems to
have only minor effects. Our simulation results are largely comparable to those obtained
earlier by Nankervis and Savin (1996).

Indeed, it can be seen clearly from Tables 1 and 2 that the bootstrap correction in
finite samples is highly effective for the tests of a unit root. The rejection probabilities of
the bootstrap tests are quite close to their nominal values regardless of the sample size,
the model specification and the distribution of innovations. The discrepancies between the
actual and nominal rejection probabilities never exceed more than 0.5% in most cases. This
is in contrast with the asymptotic tests. For the asymptotic tests, the actual rejection
probabilities are larger than 10% in several cases for the 5% tests. It seems clear that the
use of asymptotic critical values can seriously distort the test results in finite samples, and
that the bootstrap provides an effective tool to prevent such a distortion. Our simulations
suggest that the bootstrap correction is needed more for the tests using smaller samples and
based on models with maintained time trend. The asymptotics provide poor approximations
especially when the sample size is small and the model includes a maintained time trend.

7. Conclusion

In the paper, we develop asymptotic expansions for the unit root models and show that
the bootstrap provides asymptotic refinements for the unit root tests. It is demonstrated
through simulations that the bootstrap indeed offers asymptotic refinements in finite sam-
ples and the bootstrap corrections are in general quite effective in eliminating finite sample
biases of the test statistics. Though we consider exclusively the Dickey-Fuller tests, it is
made clear that our results are applicable for other unit root tests as well. Our methodol-
ogy here can also be extended to analyze the bootstrap for more general models, nonlinear
as well as linear, with integrated time series and near-integrated time series. This will be
reported in future work.

8. Mathematical Proofs

We first present some useful lemmas and their proofs. They will be used in the proofs of the
main results in the text, which will follow subsequently. Throughout the proof, | · | denotes
the Euclidian norm, and K signifies a generic constant depending possibly only upon r,
which may vary from place to place.
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8.1 Useful Lemmas and Their Proofs

We write
εi

σ
√

n
=
∫ Tni

Tn,i−1

dW (t) = W (Tni)−W (Tn,i−1).

Then it follows from Ito’s formula that(
εi

σ
√

n

)k+2

= (k + 2)
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]k+1dW (t)

+
(k + 1)(k + 2)

2

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]kdt (32)

for k ≥ 0. Consequently, we have

Lemma A1 Let Assumption 2.1 hold with r ≥ 2. We have

(a) ε2
i /σ2 − 1 = δi + 2ηi.

Moreover, it follows that

(b) E
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]kdt =
2

(k + 1)(k + 2)

(
1

σ
√

n

)k+2

E εk+2
i

for any integer k ≥ 0 such that k ≤ r − 2.

Proof of Lemma A1 The result in part (a) may easily be deduced from(
εi

σ
√

n

)2

= 2
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dW (t) + (Tni − Tn,i−1),

which follows from Ito’s formula (32) with k = 0. To derive part (b), we rewrite the Ito’s
formula (32) as∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]kdt =
2

(k + 1)(k + 2)

(
εi

σ
√

n

)k+2

− 2
k + 1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]k+1dW(t).

The stated result follows immediately upon noticing that∫ ·

Tn,i−1

[W (s)−W (Tn,i−1)]k+1dW (s)

is a martingale, and therefore

E
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]k+1dW (t) = 0
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due to the optional stopping theorem. �

Let

ut = ϕ(L)εt =
∞∑
i=0

ϕiεt−i

and let υ2 =
∑∞

i=0 ϕ2
i . Also, we define Γij = Eut−iut−j , so that we have in particular

Γ0 = σ2υ2.

Lemma A2 If Assumption 2.1 holds with r ≥ 2, then

(a) E|ui|r ≤ υrE|εi|r,

(b) E|δi|r/2 ≤ K(1 + E|εi|r), E|1 + δi|r/2 ≤ KE|εi|r,

(c) E|ηi|r/2 ≤ K(1 + σ−r)E|εi|r.

If Assumption 2.1 holds with r ≥ 4, then

(d) E

∣∣∣∣∣
n∑

k=1

(1 + δk)uk−i

∣∣∣∣∣
r/2

≤ nr/4 (1 + υr) K
[
1 + (E|εi|r)2

]
,

(e) E

∣∣∣∣∣
n∑

k=1

δkuk−iuk−j

∣∣∣∣∣
r/2

≤ nr/4υrK
[
1 + (E|εi|r)2

]
,

(f) E

∣∣∣∣∣
n∑

k=1

(uk−iuk−j − Γij)

∣∣∣∣∣
r/2

≤ nr/4υrK (σr + E|εi|r),

for all i, j = 1, . . . , p.

Proof of Lemma A2 Part (a) is well known. Part (b) is due to Lemma 3.1. To prove
part (c), use part (a) of Lemma A1 and Minkowski’s inequality to deduce

E|ηi|r/2 ≤ K
(
E|1 + δi|r/2 + σ−rE|εi|r

)
from which and Lemma 3.1 the stated result readily follows. Given parts (a) and (b), parts
(d) and (e) can easily be deduced from the successive applications of Burkholder’s inequality
[see, e.g., Hall and Heyde (1980, Theorem 2.10)] and Minkowski’s inequality. Indeed we have

E

∣∣∣∣∣
n∑

k=1

(1 + δk)uk−i

∣∣∣∣∣
r/2

≤ KE

∣∣∣∣∣
n∑

k=1

(1 + δk)2u2
k−i

∣∣∣∣∣
r/4

≤ nr/4KE|1 + δi|r/2E|ui|r/2

and part (d) follows immediately, due to parts (a) and (b). Note that υr/2 ≤ 1 + υr and
E|εi|r/2,E|εi|r ≤ 1 + (E|εi|r)2. The proof for part (e) is entirely analogous. For part (f),
we write

n∑
k=1

(uk−iuk−j − Γij) =
n∑

k=1

∞∑
p=0

∞∑
q=0

ϕpϕq(εk−i−pεk−j−q − σ2δi+p,j+q)
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where δij is the usual Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise. The stated result
can then be easily obtained as above by applying Burkholder’s and Minkowski’s inequalities
successively. �

Our asymptotic expansions rely on a strong approximation of Bn by B. It involves
extending the underlying probability space to redefine Bn, without changing its distribution,
on the same probability space as B, and provides an explicit rate for the convergence of
Bn to B. The relevant theory will be developed in the lemma given below. Following
our earlier convention, we will not distinguish Bn from its distributionally equivalent copy
defined, together with B, in the newly extended probability space. We let

Bn = (A′
n, Z ′

n)′, B = (A′, Z ′)′ (33)

where A = (W,V,U)′ and An = (Wn, Vn, Un)′ is defined conformably with A, i.e., Wn, Vn

and Un are the partial sum processes that a.s. converge respectively to W,V and U .

Lemma A3 If Assumption 2.1 holds with r > 4, then we may choose An and Zn jointly
such that

P
{

sup
0≤t≤1

|An(t)−A(t)| > c

}
≤ n1−r/4c−r/2(1 + σ−r)K(1 + E|εi|r)

for any c ≥ n−1/2+2/r, and

P
{

sup
0≤t≤1

|Zn(t)− Z(t)| > c

}
≤ n−r/4c−r(1 + υr)K

[
1 + (E|εi|r)2

]
for any c ≥ n−1/4.

Proof of Lemma A3 The strong approximation by Courbot (2001) for general multidi-
mensional continuous time martingales is most directly applicable here, but his result only
provides the convergence rate that is far from optimal and depends also upon the dimen-
sionality parameter. Therefore, we will develop a more direct embedding for the martingale
difference sequence (ξi), and subsequently use the strong approximation by Einmahl (1987a,
1987b, 1989) for the iid random vectors (εi, δi, ηi). The first step embedding for (ξi) only
introduces a limit process independent of W , and therefore, does not interfere with the
second step embedding for (εi, δi, ηi), which are determined solely by W . On the other
hand, the distributions of (εi, δi, ηi) fully specify those of (εi, δi, ηi, ξi), since the values of
(εi) completely specify (ξi). The second step embedding would therefore provide the desired
strong approximation for (εi, δi, ηi, ξi).

Let

Cn(t) =
1
σ

n∑
i=1

xi−1 1{Tn,i−1 ≤ t < Tni}

and define a continuous martingale

Z ·
n(t) =

∫ t

0
Cn(s)dW (s)
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for 0 ≤ Tnn. Notice that
Zn(t) = Z ·

n(Tn,i−1)

for (i− 1)/n ≤ t < i/n. It follows that the quadratic variation [Z ·
n] of Z ·

n is given by

[Z ·
n](t) =

∫ t

0
Cn(s) C ′

n(s) ds =
1

nσ2

n∑
i=1

xi−1x
′
i−11{t ≤ Tn,i−1}+ Ra

n(t)

where

Ra
n(t) =

1
nσ2

n∑
i=1

δixi−1x
′
i−11{t ≤ Tn,i−1}+

n∑
i=1

(t− Tn,i−1)1{Tn,i−1 ≤ t < Tni}

for 0 ≤ Tnn. Moreover, the quadratic covariation [W,Z ·
n] of Z ·

n with W becomes

[W,Z ·
n](t) =

∫ t

0
Cn(s) ds =

1
nσ

n∑
i=1

xi−11{t ≤ Tn,i−1}+ Rb
n(t)

where

Rb
n(t) =

1
nσ

n∑
i=1

δixi−11{t ≤ Tn,i−1}+
n∑

i=1

(t− Tn,i−1)1{Tn,i−1 ≤ t < Tni}

for 0 ≤ Tnn.
We now embed the continuous martingale Z ·

n, up to a negligible error, into a vector
Brownian motion independent of W . Using the representation of the continuous martingale
(W,Z ·′

n)′ as a stochastic integral with respect to Brownian motion [see, e.g., Theorem 3.9 in
Revuz and Yor (1994, p175)], we may have

Z ·
n(t) = Γ1/2W ·(t) + Rn(t) (34)

where W · is a vector Brownian motion independent of W , and Rn is majorized in probability
by (

sup
t≤Tnn

|[Z ·
n](t)− tΓ|

)1/2

+

(
sup

t≤Tnn

|[W,Z ·
n](t)|

)1/2

.

Note that we may use a block lower triangular predictable process to represent (W,Z ·′
n)′

as a Brownian stochastic integral. The representation (34) for Z ·
n is thus possible without

changing W . However, we have

P
{

max
1≤i≤n

1
n
|δi| > c

}
≤ n1−r/2c−r/2K (1 + E|εi|r) ,

P

{
max
1≤i≤n

∣∣∣∣∣ 1n
i∑

k=1

δkxk−1x
′
k−1

∣∣∣∣∣ > c

}
≤ n−r/4c−r/2υrK

[
1 + (E|εi|r)2

]
,

P

{
max
1≤i≤n

∣∣∣∣∣ 1n
i∑

k=1

(1 + δk)xk−1

∣∣∣∣∣ > c

}
≤ n−r/4c−r/2(1 + υr)K

[
1 + (E|εi|r)2

]
,
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due to Markov’s inequality, Lemma A2 and the martingale maximal inequality [see, e.g., Hall
and Heyde (1980, Theorem 2.1, p14)]. Therefore, it follows that supt≤Tnn

|Rn(t)| = op(1),
if r > 4 as assumed. Moreover, we have

P

{
sup

t≤Tnn

|Rn(t)| > c

}
≤ n−r/4c−rK(1 + υr)

[
1 + (E|εi|r)2

]
(35)

which, in particular, implies that supt≤Tnn
|Rn(t)| = Op(n−1/4).

We let
Z = Γ1/2W ·

and write for (i− 1)/n ≤ t < i/n

Zn(t)− Z(t) = Z ·
n(Tn,i−1)− Z(t)

= [Z ·
n(Tn,i−1)− Z(Tn,i−1)]− [Z(t)− Z(Tn,i−1)]

= Rn(Tn,i−1)− [Z(t)− Z(Tn,i−1)] (36)

The first term is bounded as shown in (35) above. To obtain the bound for the second term,
we first note that

|Z(t)− Z(Tn,i−1)| ≤ |t− Tn,i−1|1/2−ε

for any ε > 0, due to the Hölder continuity of the Brownian motion sample path, and for
(i− 1)/n ≤ t < i/n

|t− Tn,i−1| ≤
1
n

+

∣∣∣∣∣ 1n
i−1∑
k=1

δk

∣∣∣∣∣
as we may easily deduce by considering three cases Tn,i−1 < (i− 1)/n, (i− 1)/n ≤ Tn,i−1 <
i/n and Tn,i−1 ≥ i/n separately. However, it follows from Markov’s inequality, Lemma A2
and the martingale maximal inequality that

P

{
max
1≤i≤n

∣∣∣∣∣ 1n
i∑

k=1

δk

∣∣∣∣∣ > c

}
≤ n1−r/2c−r/2K(1 + E|εi|r)

and consequently,

P

{
max
1≤i≤n

sup
(i−1)/n≤t<i/n

|Z(t)− Z(Tn,i−1)| > c

}
≤ n1−r/2+ε(c+n−1/2)−rK(1+E|εi|r). (37)

The stated result for Zn now follows from (35) and (37) using (36) and noticing that
n1−r/2+ε = o(n−r/4) if r > 4 and ε > 0 is sufficiently small.

Recall that Z is independent of W , and hence of (εi, δi, ηi), which are all defined from W .
Therefore, we may embed An into a vector Brownian motion A defined in the same prob-
ability space as Z. According to Einmahl (1987a, 1989), we may have up to distributional
equivalence

max
1≤i≤n

|An(i/n)−A(i/n)| = o(n−1/2+2/r) a.s.
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if E|εi|r/2,E|δi|r/2,E|ηi|r/2 < ∞ for some r > 4. It also follows that

sup
0≤t≤1

|An(t)−A(t)| = o(n−1/2+2/r) a.s.

since by the uniform continuity of the Brownian motion sample path

sup
|t−s|≤1/n

|A(t)−A(s)| ≤ K(2 log n/n)1/2 a.s.

for any constant K > 1 [see, e.g., Hida (1980, Theorem 2.6)]. We therefore have

sup
0≤t≤1

|An(t)−A(t)| = o(n−1/2+r/2) a.s.

as long as Assumption 2.1 holds for some r > 4. We may also directly deduce from Einmahl
(1987b) that

P
{

sup
0≤t≤1

|An(t)−A(t)| > c

}
≤ n1−r/4c−r/2K

(
E|εi|r/2 + E|δi|r/2 + E|ηi|r/2

)
for any c ≥ n−1/2+2/r, from which and Lemma A2 the stated result for An follows immedi-
ately. To complete the proof, note that (ξi) is completely determined by (εi), and therefore,
Zn can obviously be defined in the same probability space as An and A. �

Let Rn be a random sequence. We say that Rn is distributionally of order o(n−a) for
some a > 0, if and only if

P
{
|Rn| > n−a−ε

}
= o(n−a)

for some ε > 0. We may readily deduce various properties of distributional orders defined
as such. In particular, it can be easily shown that the sums of random sequences that
are distributionally of order o(n−a) become distributionally of order o(n−a) for any a > 0.
The following lemma gives the motivation for the definition and some useful results for the
distributional orders.

Lemma A4 Let Rn be distributionally of order o(n−a) for some a > 0.
(a) If Pn = Qn + Rn and Qn has density bounded uniformly in n, we have

P{Pn ≤ x} = P{Qn ≤ x}+ o(n−a)

uniformly in x ∈ R.
(b) If Sn has moments finite up to any order and bounded uniformly in n, then RnSn is
also distributionally of order o(n−a).
(c) Let a > b > 0, and let Sn = n−bTn. If Tn has finite (a/b + ε)-th moment bounded
uniformly in n for some ε > 0, then RnSn is distributionally of order o(n−a).
(d) If Sn is distributionally of order o(n−a), then so is RnSn.
(e) If Pn = Qn + Rn and Q−1

n has moments finite up to any order and bounded uniformly
in n, then we have P−1

n = Q−1
n + Sn with Sn distributionally of order o(n−a).
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Proof of Lemma A4 For the proof of part (a), we note that

P{Pn ≤ x} ≤ P{Qn ≤ x + n−a−ε}+ P{|Rn| > n−a−ε}

and ∣∣P{Qn ≤ x + n−a−ε} −P{Qn ≤ x}
∣∣ ≤ Kn−a−ε

where K is a constant, which majorizes the densities of (Qn). It therefore follows that
P{Pn ≤ x} ≤ P{Qn ≤ x} + o(n−a). A similar argument can be used to show that the
opposite inequality, i.e., P{Pn ≤ x} ≥ P{Qn ≤ x}+ o(n−a), also holds true. The result in
part (a) is thus established. To prove part (b), we first observe that

P
{
|RnSn| > n−a−ε

}
≤ P

{
|Rn| > n−a−2ε

}
+ P {|Sn| > nε}

and that
P {|Sn| > nε} = O(n−a−ε) = o(n−a)

which is due to Markov’s inequality, since, in particular, the (a + ε)/ε-th moment of Sn

exists for any ε > 0 and is bounded uniformly in n.
The proof of part (c) is just as easy. The stated result can be easily deduced from that

P
{
|RnSn| > n−a−ε

}
= P

{
n−b|RnTn| > n−a−ε

}
≤ P

{
|Rn| > n−a−ε

}
+ P

{
|Tn| > nb

}
and that

P
{
|Tn| > nb

}
≤ n−a−εE|Tn|a/b+ε = O(n−a−ε) = o(n−a),

which holds for some ε > 0. For part (d), note that

P
{
|RnSn| > n−a−ε

}
≤ P

{
|Rn| > n−a−ε

}
+ P

{
|Sn| > n−a−ε

}
,

from which the stated result follows immediately.
To prove part (f), we write Pn = Qn(1+Q−1

n Rn) so that P−1
n = Q−1

n (1+Q−1
n Rn)−1. Due

to part (b), multiplication by Q−1
n does not change the distributional order of the residual

under the given condition. We may therefore set w.l.o.g. that Qn = 1, and consider

1
1 + Rn

= 1−Rn +
R2

n

1 + Rn
.

Now it suffices to show that R2
n/(1+Rn) is distributionally of order o(n−a). This, however,

is rather straightforward. If |Rn| ≤ n−a−ε, we have

R2
n/(1 + Rn) ≤ (n−a−ε)2/(1− n−a−ε)

and, when n is large enough so that n−a−ε ≤ 1/2,

(n−a−ε)2/(1− n−a−ε) ≤ n−a−ε.

Thus it follows that

P
{∣∣∣∣ R2

n

1 + Rn

∣∣∣∣ > n−a−ε

}
≤ P{|Rn| > n−a−ε}

for all n sufficiently large. The proof is therefore complete. �
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8.2 Proofs of the Main Results

Proof of Lemma 3.1 See Hall and Heyde (1980, Theorem A.1, p269). �

Proof of Lemma 3.2 That Bn →d B directly follows from an invariance principle for
martingale difference sequences [see Hall and Heyde (1980, p99)]. The covariance matrix
of B can be obtained using the results in Lemma A1, and the orthogonality of (ξi) and
(εi, δi, ηi). Since we have

1
n3/2σ

E εiηi = E
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt,

1
n2

E η2
i = E

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt,

it follows immediately from part (b) of Lemma A1 that (1/σ)E εiηi = µ3/3σ3 and E η2
i =

κ4/6σ4. Furthermore, we may easily get (1/σ)E εiδi and E δiηi using the relationship in
part (a) of Lemma A1. In fact, we may multiply both sides of the relationship by εi/σ
and take the expectation and utilize (1/σ)E εiηi = µ3/3σ3 to deduce (1/σ)E εiδi = µ3/3σ3.
Moreover, squaring both sides of the relationship and taking expectation yield E δiηi =
(κ4 − 3σ4 − 3τ4)/12σ4. Finally, note that (ξi) is a martingale difference sequence, which is
uncorrelated with (εi, δi, ηi) at all leads and lags, and (1/σ4)Eξξ′ = Γ. �

Proof of Lemma 3.3 Part (a) follows directly from part (a) of Lemma A1 and the
discussion following Lemma 3.2. Part (b) is also immediate from Lemma 3.2 and the
subsequent remark. Note that we may have stronger results for parts (a) and (b) using
the strong approximations in Lemma A3. Part (c) can be easily deduced from part (f) of
Lemma A2. �

Proof of Proposition 3.4 Given (13) and (14), both parts (a) and (b) readily follow
from Lemma 3.3. �

Proof of Lemma 3.5 We subsequently prove each of parts (a) – (d). Here and elsewhere
in the proofs, we use ε > 0 to denote any arbitrarily small number. The value of ε may vary
from line to line. Let Vn and Un be the partial sum processes of (δi) and (ηi), respectively.
Therefore, we have in particular

Vn(1) = n1/2(Tnn − 1).

We let ni = i/n in the subsequent proofs.

Proof of Part (a) We write

1
n1/2σ

n∑
t=1

εt = W (Tnn) = W (1) + [W (Tnn)−W (1)]
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and let
Dn = n1/4[W (Tnn)−W (1)] = n1/4

[
W (1 + n−1/2Vn(1))−W (1)

]
. (38)

To obtain the stated result, it now suffices to show that

n−1/4Dn = n−1/4M [V (1)] + n−1/2N [V (1)] + o(n−3/4+2/r) a.s., (39)

which we set out to do.
Define

N ·(t) = [W (1 + t)−W (1)]1{t ≥ 0},
N ··(t) = −[W (1)−W (1− t)]1{t ≥ 0},

so that N can be written

N(t) = N ·(t)1{t ≥ 0}+ N ··(−t)1{t ≤ 0}.

Moreover, we let
Mn(t) = M ·

n(t)1{t ≥ 0}+ M ··
n(−t)1{t ≤ 0}

where M◦
n = M ·

n and M ··
n are defined by

M◦
n(t) = (1− n−1/2)−1/2

[
n1/4N◦(n−1/2t)− n−1/4N◦(t)

]
= n1/4N◦(n−1/2t)− n−1/4N◦(t) + Op(n−1/2)

respectively from N◦ = N · and N ··. Note that n1/4N◦(n−1/2t), N◦(t) = Op(1) uniformly
on any compact interval for N◦ = N · and N ··, and (1− n−1/2)−1/2 = 1 + O(n−1/2).

Now we may write Dn introduced in (38) as

Dn = Mn[Vn(1)] + n−1/4N [Vn(1)] + Op(n−1/2). (40)

To establish (39), we first show that Mn can be written as M for every n. The processes
M ·

n and M ··
n are continuous martingales with quadratic variations

[M ·
n](t) = [M ··

n ](t) = t

for all n. Therefore, due to Levy’s characterization theorem [see, e.g., Revuz and Yor (1994,
pp142-143)], they are standard Brownian motions. Moreover, their quadratic variation
vanishes, i.e.,

[M ·
n,M ··

n ](t) = 0

for all n. By the Knight’s theorem [see, e.g., Revuz and Yor (1994, p175)], therefore, they
are standard bivariate Brownian motion for all n. Since the distribution of (M ·

n,M ··
n) is

independent of n, we may designate it as (M ·,M ··). Accordingly, we also write M instead
of Mn in (40).

We now show that (M ·,M ··) is independent of W on R. It is clear that M · is independent
of W on [0, 1], since N · and W on [0, 1] are independent, due to the independent increment
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property of Brownian motion. To show that M · is independent of W on (1,∞), we only
need to establish the independence of M · and N · since for all t > 1

W (t) = W (1) + N ·(s)

with s = t − 1. The independence of M · and N ·, however, follows immediately from that
they are Brownian motions and that

[M ·, N ·](t) = 0.

We thus have shown that M · is independent of W on R.
The independence of M ·· and W on R can be deduced similarly. Since

[M ··, N ··](t) = 0

by construction, M ·· is independent of N ·· (and W (1), in particular). However, we have for
all t ∈ [0, 1]

W (t) = W (1)−N ··(s)

with s = 1 − t, and therefore, M ·· is independent of W on [0, 1]. The independence also
holds between M ·· and W on (1,∞), since for t > 1, W (t) can be written as the sum of
W (1) and N ·(s) with s = t − 1. Note that M is also independent of Vn and Un for all n,
since they are all F-measurable, where F = σ((W (t)t≥0).

To obtain (39), we now show that

n−1/4M [Vn(1)] = n−1/4M [V (1)] + o(n−3/4+2/r) a.s. (41)

Of course, the result in (41) is untrue for a given extended Brownian motion M satisfy-
ing the required properties. It is indeed well known to be impossible to have Vn(1) =
V (1) + o(n−1/2 log n) a.s. [see, e.g., Einmahl (1989, p21)] unless Vn(1) itself is normally
distributed. Here we claim that for each n there exists M satisfying (41) and other distri-
butional requirements, without affecting other expansion results given in Lemma 3.2.

Note that M is a (extended) Brownian motion independent of (Vn, Un) and (V,U). We
may therefore write up to the distributional equivalence

n−1/4M [Vn(1)] = n−1/4|Vn(1)|1/2M(1)

and
n−1/4M [V (1)] = n−1/4|V (1)|1/2M(1)

without having to change the expansions of other sample product moments in Lemma 3.2,
which are all functionals of (Vn, Un) whose expansions are represented by (V,U). Conse-
quently, we have∣∣∣n−1/4M [Vn(1)]− n−1/4M [V (1)]

∣∣∣ ≤ n−1/4|M(1)|
∣∣∣|Vn(1)|1/2 − |V (1)|1/2

∣∣∣
≤ n−1/4 |M(1)|

|Vn(1)|1/2 + |V (1)|1/2
|Vn(1)− V (1)|,
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which establishes (41). The result stated in (39) follows immediately from (40) (with M
instead of Mn) and (41), and that

|N [Vn(1)]−N [V (1)]| ≤ |Vn(1)− V (1)|1/2−ε = o(n−1/4+1/r+ε) a.s.

for any ε > 0. The proof is therefore complete. �

Proof of Part (b) We have

Vn(ni)− Vn(ni−1) = n1/2[(Tni − Tn,i−1)− 1].

Therefore, we may write

1
n3/2σ

n∑
t=1

wt−1 =
1
n

n∑
i=1

W (Tn,i−1)

=
n∑

i=1

W (Tn,i−1)(Tni − Tn,i−1)

−n−1/2
n∑

i=1

W (Tn,i−1)[Vn(ni)− Vn(ni−1)]. (42)

For the first term in (42), we have

n∑
i=1

W (Tn,i−1)(Tni − Tn,i−1) =
∫ 1

0
W (t)dt +

∫ Tnn

1
W (t)dt

−
n∑

i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt.

However, it follows that

n1/2

∫ Tnn

1
W (t)dt = W (1)Vn(1) + n1/2

∫ Tnn

1
[W (t)−W (1)]dt

= W (1)V (1) + o(n−1/2+2/r) a.s. (43)

since
n1/2(Tnn − 1) = Vn(1) = V (1) + o(n−1/2+2/r) a.s. (44)

and ∣∣∣∣∫ Tnn

1
[W (t)−W (1)]dt

∣∣∣∣ ≤ |Tnn − 1|3/2−ε ≤ n−3/4+ε|Vn(1)− V (1)|3/2−ε a.s.

for any ε > 0, due to the Hölder continuity of the Brownian motion sample path. Moreover,
we have from (32) with k = 1

n1/2
n∑

i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt
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=
1

3nσ3

n∑
i=1

ε3
i − n1/2

n∑
i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dW (t)

=
µ3

3σ3
+

1
3nσ3

n∑
i=1

(ε3
i − µ3)− n1/2

n∑
i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dW (t)

=
µ3

3σ3
+ Op(n−1/2) (45)

since, in particular,

E

(∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dW (t)

)2

= E
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]4dt

=
Eε6

i

15n3σ6

due to part (b) of Lemma A1. The asymptotic expansions of the first term in (42) may now
readily be obtained from (43) and (45).

For the second term in (42), we have
n∑

i=1

W (Tn,i−1)[Vn(ni)− Vn(ni−1)] =
∫ 1

0
Wn(t)dVn(t)

=
∫ 1

0
W (t)dV (t) + op(n−1/2+2/r). (46)

Note that∫ 1

0
Wn(t)dVn(t)−

∫ 1

0
W (t)dV (t) =

∫ 1

0
(Wn −W )(t)dVn(t) +

∫ 1

0
W (t)d(Vn − V )(t)

and that ∫ 1

0
W (t)d(Vn − V )(t) = W (1)[Vn(1)− V (1)]−

∫ 1

0
(Vn − V )(t)dW (t).

We thus have (46) due to the strong approximation in Lemma A3 and the result by Kurtz
and Protter (1991). The stated result now follows immediately. �

Proof of Part (c) The proof of part (c) is similar to that of part (b). We write as in
(42)

1
n2σ2

n∑
t=1

w2
t−1 =

1
n

n∑
i=1

W (Tn,i−1)2

=
n∑

i=1

W (Tn,i−1)2(Tni − Tn,i−1)

−n−1/2
n∑

i=1

W (Tn,i−1)2[Vn(ni)− Vn(ni−1)]. (47)
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We have
n∑

i=1

W (Tn,i−1)2(Tni − Tn,i−1) =
∫ 1

0
W (t)2dt +

∫ Tnn

1
W (t)2dt

−
n∑

i=1

∫ Tni

Tn,i−1

[W (t)2 −W (Tn,i−1)2]dt

and it follows that

n1/2

∫ Tnn

1
W (t)2dt = W (1)2Vn(1) + n1/2

∫ Tnn

1
[W (t)2 −W (1)2]dt

= W (1)2V (1) + o(n−1/2+2/r) a.s.,

similarly as in (43), and that
n∑

i=1

∫ Tni

Tn,i−1

[W (t)2 −W (Tn,i−1)2]dt

=
n∑

i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt + 2
n∑

i=1

W (Tn,i−1)
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt

= n−1/2 2µ3

3σ3n

n∑
i=1

W (Tn,i−1) + Op(n−1)

= n−1/2 2µ3

3σ3

∫ 1

0
W (t)dt + Op(n−1).

Note that
n∑

i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt = Op(n−1)

and that

E

[
n∑

i=1

W (Tn,i−1)

(∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt− µ3

3n3/2σ3

)]2

= n−3K
(
Eε6

i

)
E

(
n∑

i=1

W (Tn,i−1)2
)

= O(n−2)

due to (32) and part (b) of Lemma A1, where K is some absolute constant. The expansion
for the first term in (47) can therefore be easily obtained. For the second term in (47), we
note that

n∑
i=1

W (Tn,i−1)2[Vn(ni)− Vn(ni−1)] =
∫ 1

0
Wn(t)2dVn(t)

=
∫ 1

0
W (t)2dV (t) + op(n−1/2+2/r)

exactly as in (46). The proof for the result in part (c) is thus complete. �



35

Proof of Part (d) Write

n∑
t=1

wt−1εt =
1
2

( n∑
t=1

εt

)2

−
n∑

t=1

ε2
t

 .

The stated result now follows easily from part (a) of Lemma 3.3 and part (a) of Lemma
3.5. �

Proof of Proposition 3.6 It follows from (16) that
n∑

t=1

yt−1 = n πσν + π

n∑
t=1

wt−1 −$′
n∑

t=1

xt−1,

n∑
t=1

y2
t−1 = π2

n∑
t=1

w2
t−1 + 2π2σν

n∑
t=1

wt−1 + n π2σ2ν2 + $′
n∑

t=1

xt−1x
′
t−1$

− 2π$′
n∑

t=1

xt−1wt−1 − 2πσν$′
n∑

t=1

xt−1,

n∑
t=1

yt−1εt = π

n∑
t=1

wt−1εt + πσν

n∑
t=1

εt −$′
n∑

t=1

xt−1εt,

n∑
t=1

xt−1yt−1 = π
n∑

t=1

xt−1wt−1 −
n∑

t=1

xt−1x
′
t−1$ + πσν

n∑
t=1

xt−1.

Consequently, we have

1
n3/2

n∑
t=1

yt−1 = π
1

n3/2

n∑
t=1

wt−1 + n−1/2πσν + Op(n−1), (48)

1
n2

n∑
t=1

y2
t−1 = π2 1

n2

n∑
t=1

w2
t−1 + n−1/2

(
2π2σν

1
n3/2

n∑
t=1

wt−1

)
+ Op(n−1), (49)

1
n

n∑
t=1

yt−1εt = π
1
n

n∑
t=1

wt−1εt + n−1/2

(
πσν

1√
n

n∑
t=1

εt−$′ 1√
n

n∑
t=1

xt−1εt

)
, (50)

1
n

n∑
t=1

xt−1yt−1 = π
1
n

n∑
t=1

xt−1wt−1 −
1
n

n∑
t=1

xt−1x
′
t−1$ + Op(n−1/2). (51)

We may now easily deduce parts (a), (c) and (d) from Lemma 3.5, using (48) – (50).
Due to (51), part (b) follows if we establish

1
n

n∑
t=1

xt−1wt−1 = πσ2ι[1 + J(W,W )] + op(1)

or equivalently,
1
n

n∑
t=1

wt−1ut−i = πσ2[1 + J(W,W )] + op(1) (52)
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for all i = 1, . . . , p. This is what we set out to do. We can show after some algebra that

n∑
t=1

wt−1ut−i =
n∑

t=1

wtut +
i−1∑
j=1

n∑
t=1

εtut−j −
n∑

t=1

εt

i−1∑
j=0

un−j .

Moreover, it can be deduced that

n∑
t=1

wtut = π

n∑
t=1

wtεt +
p∑

j=1

πj

n∑
t=1

wt(ut−j−1 − ut−j)

and that
n∑

t=1

wt(ut−j−1 − ut−j) =
n∑

t=1

εt+1ut−j − un−j

n+1∑
t=1

εt.

Consequently, we have

1
n

n∑
t=1

wt−1ut−i = π

(
1
n

n∑
t=1

wt−1εt +
1
n

n∑
t=1

ε2
t

)
+ Rn

where

Rn =
1
n

p∑
j=1

πj

n∑
t=1

εt+1ut−j +
1
n

i−1∑
j=1

n∑
t=1

εtut−j

− 1
n

n+1∑
t=1

εt

p∑
j=1

πjun−j −
1
n

n∑
t=1

εt

i−1∑
j=0

un−j = Op(n−1/2). (53)

The result in (52) now follows directly from Lemma 3.3(a) and Lemma 3.5(a). The proof
is therefore complete. �

Proof of Theorem 3.7 We may deduce from Lemma 3.3 and Proposition 3.6 that

Pn

πσ2
=

1
nπσ2

n∑
t=1

yt−1εt

− π√
n

(
1

nπ2σ2

n∑
t=1

yt−1x
′
t−1

)(
1

nσ2

n∑
t=1

xt−1x
′
t−1

)−1(
1√
nσ2

n∑
t=1

xt−1εt

)

= J(W,W ) + n−1/4WM(V )

+ n−1/2

[
M(V )2

2
+WM(V )+νW−V +2U

2
−π(1 + J(W,W ))ι′Γ−1Z

]
+ op(n−1/2)
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and that

Qn

π2σ2
=

1
n2π2σ2

n∑
t=1

y2
t−1 + Op(n−1)

= I(W 2) + n−1/2
[
W 2V − J(W 2, V ) + 2(ν − ω)I(W )

]
+ op(n−1/2)

= I(W 2)
[
1 + n−1/2 W 2V − J(W 2, V ) + 2(ν − ω)I(W )

I(W 2)

]
+ op(n−1/2).

Consequently, it follows that

Q−1
n =

1
π2σ2I(W 2)

[
1− n−1/2 W 2V −J(W 2, V )+2(ν−ω)I(W )

I(W 2)

]
+ op(n−1/2),

Q−1/2
n =

1
πσ
√

I(W 2)

[
1− n−1/2 W 2V −J(W 2, V )+2(ν−ω)I(W )

2I(W 2)

]
+ op(n−1/2).

Moreover, we have from Proposition 3.4 that

σ−1
n = σ−1

[
1− n−1/2(V + 2U)/2

]
+ op(n−1/2),

αn(1)−1 = α(1)−1
[
1 + n−1/2α(1)−1ι′Γ−1Z

]
+ op(n−1/2).

Now the stated results follow easily after some tedious, but straightforward, algebra. �

Proof of Corollary 3.8 We first prove that all of the remainder terms of the asymptotic
expansions given in Lemmas 3.3 and 3.5 and Propositions 3.4 and 3.6 are distributionally
of order o(n−1/2), and subsequently show that the error terms in Theorem 3.7 are dis-
tributionally of order o(n−1/2). The stated results will then follow from the part (a) of
Lemma A4. The leading terms F and G of our expansions presented in Theorem 3.7 have
bounded densities and finite integral moments of all orders. This is shown in Evans and
Savin (1981) and Abadir (1993). Note that all of the expansion terms appearing in the
proof of Theorem 3.7 have bounded densities and finite moments up to arbitrary orders,
being simple functionals of Brownian motions. Therefore, they satisfy the conditions for Sn

and Tn respectively in the parts (b) and (c) of Lemma A4. Furthermore, following Evans
and Savin (1981) and Abadir (1993), we may also show that 1/I(W 2) has bounded density
and finite integral moments of all orders. Consequently, all our expansion terms included
in the lower order terms (F1, F2) and (G1, G2), being products of such terms, have bounded
densities and finite moments up to arbitrary orders. Finally, the denominators of Fn and
Gn have the expansion terms, the reciprocals of which have bounded densities and finite
moments of all orders. This is required to apply the part (e) of Lemma A4.

It is easy to see from the proofs of Lemmas 3.3 and 3.5 and Propositions 3.4 and 3.5
that the remainder terms are majorized by one of the following three types:

(A) Ra
n = n−p supt∈[0,1] |An(t)−A(t)| with some p ≥ 1/4,

(B) Rb
n = n−p supt∈[0,1] |Zn(t)− Z(t)| with some p ≥ 7/24, or
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(C) Rc
n = n−pSn and E|Sn|q < ∞ uniformly in n with some p > 1/2 and q > 1/(2p− 1).

If Assumption 2.1 holds with r > 12 as assumed here, we may readily show that all three
types of the remainder terms introduced here are distributionally of order o(n−1/2). We
may indeed easily deduce for the type (A) remainder term that

P
{
|Ra

n| > n−1/2−ε
}
≤ P

{
sup

0≤t≤1
|An(t)−A(t)| > n−1/2+p−ε)

}
≤ n1−rp/2+ε(1 + σ−r)K(1 + E|εi|r)

due to Lemma A3. However, we have n1−rp/2+ε = o(n−1/2) for sufficiently small ε > 0 if
r > 12 and p ≥ 1/4. Likewise, it also follows from Lemma A3 that

P
{
|Rb

n| > n−1/2−ε
}
≤ P

{
sup

0≤t≤1
|Zn(t)− Z(t)| > n−1/2+p−ε)

}
≤ nr/4−rp+ε(1 + υr)K

[
1 + (E|εi|r)2

]
for the type (B) remainder term. Note that, if r > 12 and p ≥ 7/24 as given, nr/4−rp+ε =
o(n−1/2) for sufficiently small ε > 0. On the other hand, it follows for the type (C) remainder
term that

P
{
|Rc

n| > n−1/2−ε
}
≤ P

{
|Sn| > np−1/2−ε

}
≤ n−(p−1/2)q+εE|Sn|q

and, since q > 1/(2p−1), we have n−(p−1/2)q+ε = o(n−1/2) as required to show. Respectively
for p = 1 and p = 3/4, it suffices to have q > 1 and q > 2.

For the remainder terms involving |Wn(1)−W (1)|, |Vn(1)−V (1)| and |Un(1)−U(1)|, the
result for the type (A) remainder term is clearly applicable. The terms including stochastic
integrals such as

∫ 1
0 (Wn−W )(t)dVn(t) and

∫ 1
0 (Vn−V )(t)dW (t) can be dealt with similarly,

since their stochastic orders are effectively determined by their quadratic variations that
are bounded by sup0≤t≤1 |Wn(t) − W (t)|2 and sup0≤t≤1 |Vn(t) − V (t)|2. All our type (A)
remainder terms are given with p ≥ 1/4. Similarly, the result for the type (B) remainder
term applies to the remainder term |Zn(1)− Z(1)|, if as in our case p ≥ 7/24. As the type
(C) remainder term, we have the remainder terms consisting of

S1n = n−1/2
p∑

j=1

n∑
i=1

ui−jεi,

S2n = n−1/2
n∑

i=1

(xi−1x
′
i−1 − Γ),

S3n = n−1/2
n∑

i=1

(ε3
i − µ3),

S4n = n

n∑
i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dW (t),
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S5n = n
n∑

i=1

W (Tn,i−1)

(∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt− µ3

3n3/2σ3

)
,

S6n = n3/2
n∑

i=1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt.

Under the assumption r > 12, all of S1n, . . . , S6n satisfy E|Sn|q < ∞ with the values of q
respectively greater than 12, 6, 4, 4, 4, 3, and the values of p should be greater than or equal
to 13/24, 7/12, 5/8, 5/8, 5/8, 1/3 correspondingly. The condition is met for all our type (C)
remainder terms.

The remainder terms in parts (a), (b) and (c) of Lemma 3.3 are majorized respectively
by the type (A) remainder terms |Vn(1)−V (1)| and |Un(1)−U(1)|, the type (B) remainder
term |Zn(1)− Z(1)|, and the type (C) remainder term with S2n defined above. Both parts
(a) and (b) of Proposition 3.4 inherit the remainder terms from Lemma 3.3. The remainder
term in part (a) consists of all four terms appearing previously, while part (b) only includes
the latter two of those. Part (a) of Lemma 3.5 has the remainder term essentially consisting
only of |Vn(1) − V (1)|. The remainder terms in parts (b) and (c) of Lemma 3.5 include
various additional terms, as well as those appeared earlier. Part (b) has the type (A)
remainder terms |Vn(1) − V (1)|,

∫ 1
0 (Wn −W )(t)dVn(t) and

∫ 1
0 (Vn − V )(t)dW (t), and type

(C) remainder terms with S3n and S4n. Part (c) includes the type (A) remainder terms
|Wn(1) −W (1)| and |Vn(1) − V (1)|, and the type (C) remainder terms with S5n and S6n.
There is no new remainder term in part (d) of Lemma 3.5. Proposition 3.6 does not
introduce any new remainder term except the type (C) remainder term with S1n and its
trivial variants. The rest remainder terms appearing in parts (a) - (d) of Proposition 3.6 are
inherited from our earlier results. Note that we may allow the remainder terms introduced
here to be multiplied by a random sequences satisfying the conditions in part (b) or (c) of
Lemma A4. Note also that the products of two remainder terms and the expansions for the
inverses can be dealt using the results in parts (d) and (e) of Lemma A4. This completes
the proof. �

Proof of Lemma 3.9 We let
B∗

n = (A∗′
n , Z∗′

n )′

similarly as in (33). Then it follows from Lemma A3 that we may choose the limit Brownian
motion B = (A′, Z ′)′ satisfying

P∗
{

sup
0≤t≤1

|A∗
n(t)−A(t)| > c

}
≤ n1−r/4c−r/2(1 + σ−r

n )K(1 + E∗|ε∗i |r) (54)

and

P∗
{

sup
0≤t≤1

|Z∗
n(t)− Z(t)| > c

}
≤ n−r/4c−r(1 + υr

n)K
[
1 + (E∗|ε∗i |r)2

]
(55)

where υ2
n is the sample analogue estimator for υ2, defined similarly as σ2

n for σ2. Note
that we have υ2

n =
∑∞

i=0 ϕ2
ni in terms of the coefficients (ϕni) in the MA representation of
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(u∗t ). The autoregression (6) is invertible a.s. for large n, and therefore, (ϕni) is absolutely
summable a.s.

To obtain the stated result, now it suffices to show that

E∗|ε∗i |r < ∞ a.s. (56)

for some r > 4. Given (56), the bootstrap invariance principle B∗
n →d∗ B∗ a.s. follows

immediately from (54) and (55). To show (56), we write

E∗|ε∗i |r =
1
n

n∑
i=1

∣∣∣∣∣ε̂i −
1
n

n∑
i=1

ε̂i

∣∣∣∣∣
r

≤ K(An + Bn + Cr
n)

where

An =
1
n

n∑
i=1

|εi|r,

Bn =
(

max
1≤i≤p

|αni − αi|r
)

1
n

n∑
i=1

p∑
j=1

|ui−j |r,

Cn =

∣∣∣∣∣ 1n
n∑

i=1

εi

∣∣∣∣∣+
(

max
1≤i≤p

|αni − αi|r
)

1
n

n∑
i=1

p∑
j=1

|ui−j |.

Note that
∑n

i=1 |εi|r/n →a.s. E|εi|r,
∑n

i=1 |ui|/n →a.s. E|ui| and
∑n

i=1 |ui|r/n →a.s. E|ui|r
by strong laws of large numbers. Also, we have

∑n
i=1 εi/n = O(n−1/2(log log n)1/2) by law

of the iterated logarithm. Moreover, we may easily show using the result in, e.g., Móricz
(1976) that max1≤i≤p |αni − αi| = o(n−1/2(log n)1/2) a.s. The condition in (56) thus holds
and the proof is complete. �

Proof of Theorem 3.10 The proof is analogous to that of Theorem 3.7. We just need
to show the remainder terms in Theorem 3.7 are now given in terms of o∗p(n

−1/2) in place of
op(n−1/2). This follows rather straightforwardly from our earlier results, as we will explain
below. We say that remainder term Rn in our expansion is majorized by certain moments
and parameters if E|Rn|s, for some s > 0, is bounded by those moments and parameters. If
Rn is majorized by some moments and parameters, their bootstrap counterpart R∗

n, say, is
majorized by the corresponding sample moments and estimators based on the expectation
E∗. Therefore, to show that the bootstrap remainder term R∗

n is O∗
p(n

−s) for some s > 0, it
suffices to have the corresponding ns|Rn| majorized by the moments and parameters whose
sample analogue estimators converge a.s.

Our strong approximations in Lemma A3 have the bounds majorized by the parameter
υ2 and the moment E|εi|r. Consequently, we may immediately deduce their bootstrap
analogues given in (54) and (55). The bootstrap strong approximations in (54) and (55)
in turn yield the bootstrap stochastic orders of the errors in approximating B∗

n by B. The
bootstrap stochastic orders of the bootstrap remainder terms bounded by supt∈[0,1] |B∗

n(t)−
B(t)| can therefore be easily determined.
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Other types of the bootstrap remainder terms can also be easily analyzed. For instance,
we may show that Rn given in (53) is majorized by υ2, σ2,Γ and $. Note that

E

 1
n

p∑
j=1

πj

n∑
t=1

εt+1ut−j

2

=
σ2

n
$′Γ$.

Also, we have that

E

 1
n

i−1∑
j=1

n∑
t=1

εtut−j

2

≤ (i− 1)
i−1∑
j=1

E

(
1
n

n∑
t=1

εtut−j

)2

≤ p2

n
σ2υ2.

Moreover, we have

E

(
1
n

n∑
t=1

εt

)2

=
σ2

n
, E

(
1
n

n+1∑
t=1

εt

)2

=
(n+1)σ2

n
,

E

 1
n

p∑
j=1

πjun−j

2

=
$′Γ$

n
, E

 1
n

i−1∑
j=0

un−j

2

≤ p2υ2

n
.

Consequently, it follows that

E|Rn| ≤
2σ

n

(
pυ +

1 +
√

2
2

($′Γ$)1/2

)

and that Rn = Op(n−1). Correspondingly, we have

E∗|R∗
n| ≤

2σn

n

(
pυn +

1 +
√

2
2

($′
nΓn$n)1/2

)

from which we may deduce that R∗
n = O∗

p(n
−1)

Moreover, if we write
1
n

n∑
t=1

xt−1x
′
t−1 = Γ + Rn,

then it follows from the part (f) of Lemma A2 that

E|Rn|r/2 ≤ n−r/4υrK (σr + E|εi|r)

and we have Rn = Op(n−r/4). Similarly, we have

E∗|R∗
n|r/2 ≤ n−r/4υr

nK (σr
n + E∗|ε∗i |r)

and R∗
n = O∗

p(n
−r/4). If r ≥ 8 as assumed, we have Rn = Op(n−2) and Rn = O∗

p(n
−2). �
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Proof of Corollary 3.11 Given Lemma 3.9 and Theorem 3.10 and their proofs, the proof
is entirely analogous to that of Corollary 3.8. The details are therefore omitted. �

Proof of Theorem 4.1 We let ut = 4cyt, so that (ut) becomes an AR(p) process as
earlier, and let

4yt = ut −
c

n
yt−1.

Moreover, we write

4yt =
p∑

i=1

αi4yt−i +

[
εt −

c

n

(
yt−1 −

p∑
i=1

αiyt−1−i

)]
. (57)

In what follows, we denote respectively by (αni) and σ2
n the least squares estimators of (αi)

and σ2, and by (ε̂t) the fitted residuals, in regression (57).
We first establish that

n∑
t=1

yt−iyt−j = o(n2 log n) a.s., (58)

n∑
t=1

yt−iut−j = o(n log n) a.s., (59)

which would follow immediately if we show

n∑
t=1

y2
t = o(n2 log n) a.s., (60)

n∑
t=1

yt−1ut = o(n log n) a.s. (61)

since, in particular,
∑n

t=1 ut−iut−j = O(n) a.s. by strong law of large numbers. Note that

n∑
t=1

yt−1ut =
1
2α

y2
n +

1− α2

2α

n∑
t=1

y2
t−1 −

1
2α

n∑
t=1

u2
t . (62)

The initialization of (yt) does not affect our result, and for simplicity we assume y0 = 0 a.s.
here and in what follows.

It can be readily deduced after recursive substitution that

yi =
i∑

j=1

uj −
1− α

α

i−1∑
j=1

αi−j

(
j∑

k=1

uk

)
.

However, we may show

max
1≤i≤n

∣∣∣∣∣
i∑

k=1

uk

∣∣∣∣∣ = o
(
(n log n)1/2

)
a.s.



43

as in the proof of Theorem 6 of Móricz (1976) [i.e., by applying his inequality in the bottom
line of page 309 to Mn in place of Sn]. Consequently,

max
1≤i≤n

∣∣∣∣ yi√
n

∣∣∣∣ = o
(
(log n)1/2

)
a.s. (63)

We may now easily obtain (60) from (63), and (61) from (62) together with (63).
It follows from (58) and (59) that

n∑
t=1

4yt−i4yt−j =
n∑

t=1

ut−iut−j + o(log n) a.s. (64)

and
n∑

t=1

4yt−i

[
εt −

c

n

(
yt−1 −

p∑
i=1

αiyt−1−i

)]
=

n∑
t=1

ut−iεt + o(log n) a.s. (65)

and we have immediately from (64) and (65) that

max
1≤i≤p

|αni − αi| = o(n−1/2(log n)1/2) a.s. (66)

as n →∞. Moreover, since

ε̂t = εt −
c

n

(
yt−1 −

p∑
i=1

αiyt−1−i

)
−

p∑
i=1

(αni − αi)4yt−i,

we have
σ2

n →a.s. σ2

as n →∞, and we may deduce exactly as in the proof of Lemma 3.9 that

E∗|ε∗i |r < ∞ a.s.

due to (63), (64), (65) and (66). The bootstrap invariance principle in Lemma 3.9 thus
holds also under the local-to-unity model. The proof is therefore complete. �

Proof of Lemma 5.1 For part (a), we simply note that

1
n1/2σ

n∑
t=1

t

n
εt = − 1

n3/2σ

n∑
t=1

wt−1 +
1

n1/2σ

n∑
t=1

εt.

The stated result then follows directly from Lemma 3.5 and the fact that W − I(W ) =
J(ı, W ), which can easily be deduced using integration by parts formula.

Let ni = i/n for i = 1, . . . , n. To prove part (a), we first note that

1
n3/2σ

n∑
t=1

t

n
wt−1 =

1
n3/2σ

n∑
t=1

t−1
n

wt−1 + Op(n−1)
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and write
1

n3/2σ

n∑
t=1

t−1
n

wt−1 =
1
n

n∑
i=1

ni−1W (Tn,i−1) = −An + Bn

where

An =
1
n

n∑
i=1

(Tn,i−1 − ni−1)W (Tn,i−1) and Bn =
1
n

n∑
i=1

Tn,i−1W (Tn,i−1),

each of which will be analyzed below.
It is straightforward to deduce that

An = n−1/2 1
n2

n∑
i=1

Vn(ni−1)W (Tn,i−1) = n−1/2I(WV ) + op(n−1/2). (67)

Furthermore, we may write Bn as

Bn = I(ıW ) + n−1/2[WV − J(ıW, V )]− Cn + op(n−1/2) (68)

where

Cn =
n∑

i=1

∫ Tni

Tn,i−1

[tW (t)− Tn,i−1W (Tn,i−1)]dt.

To deduce (68), note that

Bn =
n∑

i=1

Tn,i−1W (Tn,i−1)(Tni − Tn,i−1)

− n−1/2
n∑

i=1

Tn,i−1W (Tn,i−1)[(Vn(ni)− Vn(ni−1)]

and
n∑

i=1

Tn,i−1W (Tn,i−1)(Tni − Tn,i−1)

= I(ıW ) +
∫ Tnn

1
tW (t)dt−

n∑
i=1

∫ Tni

Tn,i−1

[tW (t)− Tn,i−1W (Tn,i−1)]dt.

Moreover, observe that

n1/2

∫ Tnn

1
tW (t)dt = WV + op(1)

and that
n∑

i=1

Tn,i−1W (Tn,i−1)[(Vn(ni)− Vn(ni−1)] = J(ıW, V ) + op(1)

due to Kurz and Protter (1992).
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Now we write

Cn =
n∑

i=1

Tn,i−1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt +
n∑

i=1

W (Tn,i−1)
∫ Tni

Tn,i−1

(t− Tn,i−1)dt

+
n∑

i=1

∫ Tni

Tn,i−1

(t− Tn,i−1)[W (t)−W (Tn,i−1)]dt

and show that

Cn = n−1/2 µ3

6σ3
+ op(n−1/2). (69)

Note that

n1/2
n∑

i=1

Tn,i−1

∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]dt

=
µ3

3σ3

1
n

n∑
i=1

Tn,i−1 + op(1) =
µ3

6σ3
+ op(1),

which becomes the leading term in Cn. The rest terms are negligible as we show below.
We have

n∑
i=1

W (Tn,i−1)
∫ Tni

Tn,i−1

(t− Tn,i−1)dt =
1
2

n∑
i=1

W (Tn,i−1)(Tni − Tn,i−1)2

=
1

2n2

n∑
i=1

W (Tn,i−1)∆2
i = Op(n−1).

Moreover, we have

E

∣∣∣∣∣
∫ Tni

Tn,i−1

(t− Tn,i−1)[W (t)−W (Tn,i−1)]dt

∣∣∣∣∣
≤ E

(∫ Tni

Tn,i−1

(t− Tn,i−1)2dt

)1/2(∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt

)1/2

≤

(
E
∫ Tni

Tn,i−1

(t− Tn,i−1)2dt

)1/2(
E
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt

)1/2

= Op(n−5/2)

since

E
∫ Tni

Tn,i−1

(t− Tn,i−1)2dt = O(n−3),

E
∫ Tni

Tn,i−1

[W (t)−W (Tn,i−1)]2dt = O(n−2),
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and therefore,
n∑

i=1

∫ Tni

Tn,i−1

(t− Tn,i−1)[W (t)−W (Tn,i−1)]dt = Op(n−3/2).

We thus have established (69). The stated result in part (a) now follows immediately from
(67), (68) and (69). The proof is therefore complete. �

Proof of Proposition 5.2 The stated result is immediate from Lemma 5.1 and (16). �

Proof of Theorem 5.3 For time series (zt), we let z̃t = zt−
∑n

t=1 zt/n for the case q = 0,
and let

z̃t = zt −
1
n

n∑
t=1

zt −

(
n∑

t=1

(t− cn)zt

/
n∑

t=1

(t− cn)2
)

(t− cn)

with cn = (n + 1)/2 for the case q = 1. Define P̃n and Q̃n by

P̃n =
1
n

n∑
t=1

ỹt−1ε̃t −
1
n

(
n∑

t=1

ỹt−1x̃
′
t−1

)(
n∑

t=1

x̃t−1x̃
′
t−1

)−1( n∑
t=1

x̃t−1ε̃t

)
,

Q̃n =
1
n2

n∑
t=1

ỹ2
t−1 −

1
n2

(
n∑

t=1

ỹt−1x̃
′
t−1

)(
n∑

t=1

x̃t−1x̃
′
t−1

)−1( n∑
t=1

x̃t−1ỹt−1

)
,

similarly as Pn and Qn in (11) and (12). Also, we let

σ̃2
n =

1
n

n∑
t=1

ε̃2
t −

1
n

(
n∑

t=1

ε̃tx̃
′
t−1

)(
n∑

t=1

x̃t−1x̃
′
t−1

)−1( n∑
t=1

x̃t−1ε̃t

)
and define

α̃n(1) = α(1)− ι′

(
n∑

t=1

x̃t−1x̃
′
t−1

)−1( n∑
t=1

x̃t−1ε̃t

)
,

which correspond to σ2
n and αn(1) in (13) and (14). Then we may write

F̃n =
P̃n

σ̃n

√
Q̃n

, G̃n =
P̃n

α̃n(1)Q̃n

,

correspondingly as Fn and Gn in (15).
For both the cases q = 0 and q = 1, it can be easily deduced that

1
n

n∑
t=1

x̃t−1x̃
′
t−1 =

1
n

n∑
t=1

xt−1x
′
t−1 + Op(n−1),

1√
n

n∑
t=1

x̃t−1ε̃t =
1√
n

n∑
t=1

xt−1εt + Op(n−1/2),

1
n

n∑
t=1

ε̃2
t =

1
n

n∑
t=1

ε2
t + Op(n−1).
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Note in particular that
1
n3

n∑
t=1

(t− cn)2 =
1
3

+ O(n−1)

and
1

n3/2

n∑
t=1

(t− cn)zt =
1

n1/2

n∑
t=1

t

n
zt + Op(n−1) (70)

for both zt = xt−1 and εt.
Moreover, we have for the case q = 0

1
n

n∑
t=1

ỹt−1ε̃t =
1
n

n∑
t=1

yt−1εt −

(
1

n3/2

n∑
t=1

yt−1

)(
1√
n

n∑
t=1

εt

)
,

1
n2

n∑
t=1

ỹ2
t−1 =

1
n2

n∑
t=1

y2
t−1 −

(
1

n3/2

n∑
t=1

yt−1

)2

,

1
n

n∑
t=1

x̃t−1ỹt−1 =
1
n

n∑
t=1

xt−1yt−1 − ι

(
1

n3/2

n∑
t=1

yt−1

)(
π

1√
n

n∑
t=1

εt

)
+ op(1),

and for the case q = 1

1
n

n∑
t=1

ỹt−1ε̃t =
1
n

n∑
t=1

yt−1εt −

(
1

n3/2

n∑
t=1

yt−1

)(
1√
n

n∑
t=1

εt

)

− 3

(
1

n3/2

n∑
t=1

t

n
yt−1 −

1
2n3/2

n∑
t=1

yt−1

)(
1√
n

n∑
t=1

t

n
εt

)
+ Op(n−1),

1
n2

n∑
t=1

ỹ2
t−1 =

1
n2

n∑
t=1

y2
t−1 −

(
1

n3/2

n∑
t=1

yt−1

)2

+ Op(n−1)

− 3

(
1

n3/2

n∑
t=1

t

n
yt−1 −

1
2n3/2

n∑
t=1

yt−1

)2

,

1
n

n∑
t=1

x̃t−1ỹt−1 =
1
n

n∑
t=1

xt−1yt−1 − ι

(
1

n3/2

n∑
t=1

yt−1

)(
π

1√
n

n∑
t=1

εt

)

− 3ι

(
1

n3/2

n∑
t=1

t

n
yt−1 −

1
2n3/2

n∑
t=1

yt−1

)(
π

1√
n

n∑
t=1

t

n
εt

)
+ op(1),

which follows from (70) and

1
n5/2

n∑
t=1

(t− cn)yt−1 =
1

n3/2

n∑
t=1

t

n
yt−1 −

1
2n3/2

n∑
t=1

yt−1 + Op(n−1)

The stated results now follow easily. �
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Proof of Theorem 5.4 Given the results in Theorem 5.3, the proof is entirely analogous
with the proofs of Theorem 3.10 and Corollary 3.11. The details are therefore omitted. �
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Table 1: Rejection Probabilities for Tests with Fitted Mean

Asymptotic Tests Bootstrap Tests
n β Fn Gn Fn Gn

Normal Innovations

25 0.4 0.063 0.084 0.050 0.055
0.0 0.060 0.080 0.049 0.053

–0.4 0.068 0.084 0.054 0.053
50 0.4 0.056 0.064 0.049 0.049

0.0 0.057 0.065 0.049 0.050
–0.4 0.057 0.064 0.048 0.050

100 0.4 0.053 0.057 0.050 0.050
0.0 0.051 0.047 0.048 0.049

–0.4 0.057 0.059 0.053 0.052

Shifted Chi-Square Innovations

25 0.4 0.059 0.083 0.047 0.052
0.0 0.061 0.080 0.051 0.051

–0.4 0.060 0.075 0.049 0.050
50 0.4 0.056 0.064 0.049 0.052

0.0 0.060 0.066 0.052 0.052
–0.4 0.055 0.064 0.049 0.050

100 0.4 0.052 0.056 0.049 0.049
0.0 0.053 0.056 0.050 0.049

–0.4 0.053 0.056 0.049 0.049

Mixed-Normal Innovations

25 0.4 0.061 0.084 0.050 0.054
0.0 0.065 0.082 0.053 0.055

–0.4 0.062 0.077 0.050 0.049
50 0.4 0.056 0.063 0.050 0.049

0.0 0.060 0.065 0.053 0.052
–0.4 0.057 0.064 0.051 0.051

100 0.4 0.057 0.058 0.053 0.051
0.0 0.052 0.056 0.049 0.049

–0.4 0.054 0.059 0.050 0.052
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Table 2: Rejection Probabilities for Tests with Fitted Time Trend

Asymptotic Tests Bootstrap Tests
n β Fn Gn Fn Gn

Normal Innovations

25 0.4 0.081 0.128 0.051 0.058
0.0 0.084 0.121 0.054 0.056

–0.4 0.082 0.112 0.054 0.053
50 0.4 0.063 0.082 0.048 0.051

0.0 0.066 0.081 0.050 0.051
–0.4 0.064 0.077 0.048 0.050

100 0.4 0.059 0.068 0.051 0.054
0.0 0.054 0.061 0.047 0.048

–0.4 0.061 0.065 0.052 0.051

Shifted Chi-Square Innovations

25 0.4 0.082 0.130 0.054 0.060
0.0 0.077 0.116 0.048 0.051

–0.4 0.073 0.104 0.046 0.047
50 0.4 0.066 0.083 0.051 0.054

0.0 0.067 0.080 0.052 0.052
–0.4 0.066 0.078 0.052 0.051

100 0.4 0.057 0.062 0.050 0.050
0.0 0.058 0.064 0.050 0.050

–0.4 0.060 0.064 0.053 0.051

Mixed-Normal Innovations

25 0.4 0.088 0.135 0.055 0.067
0.0 0.082 0.119 0.052 0.054

–0.4 0.079 0.109 0.053 0.053
50 0.4 0.065 0.084 0.049 0.055

0.0 0.064 0.077 0.050 0.048
–0.4 0.063 0.075 0.048 0.050

100 0.4 0.059 0.065 0.051 0.051
0.0 0.055 0.063 0.048 0.049

–0.4 0.056 0.060 0.049 0.048


