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Abstract

The concept of anon-extreme-outcome-addi ti ve capacity (neo-additive capacity) isintro-
duced. Neo-additive capacitiesmodel optimistic and pessimi sti ¢ attitudes towards uncer-
tainty as observed in many experimental studies. Moreover, neo-additive capacities can
be applied easily in economic problems, aswe demonstrate by examples. This paper pro-
vides an axiomati sation of Choquet expected utility with neo-capacities in aframework
of purely subjective uncertainty.
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“That the chance of gain is natural ly over -valued we may
learn fromthe universal success of latteries. [...] Thevain
hope of gaining some of the great prizesisthe sole cause of
this demand. The soberest people scarce look uponitasa
folly to pay a small sum for the chance of gaining ten or twen-
ty thousand pounds.’

ApAM SMITH (1776)
“The Wealth of Nations” (p.210).

“ Overconfidence, however generated, appearsto be a funda-
mental factor promoting the high volume of trade we observe
in specul ati ve markets. Without such confidence, one would
think that there would be little trading in financial mar kets.
ROBERT SHILLER (2001)
“Irrational Exuberance” (p.144/5).

1. Introduction

Optimismand pessi mism areimportant features of a person’s attitude towar ds uncertainty.
On an aggregate level, business cycl esand stock market fluctuations have been attri buted
to “irrationa” optimism and pessimism. Economic theory, however, finds it difficult to
see in such moods a mgjor factor determining economic behavior. With large amounts of
money and wealth at stake, asin the investment behavior of tradersin financial markets,
one hesitatesto attribute major influence on decisions to vague notions of belief.

Faced with uncertainty economists like to think of investors as cool analysts, carefully
weighing likelihoods of events relevant for their decisons. Yet, many observers of in-
vestment behavior in financial markets, from KEyNEs (1921) to ROBERT SHILLER
(2001), could not escape the concl usion that psychological effects seem to interact with
probabilistic information in shaping investors behavior.

Embracing RAMSEY’s (1926) and DE FINETTI'S (1937) personalistic view of proba-
bility, SAVAGE (1954) provided aset of behavioral postulatesshowing that it is possible
to view decison makers behavior in the face of uncertainty as guided by a consistent
system of probabilistic beliefs. His axioms gave researchers an opportunity to put these

postulatesto direct tests. ALLAIS (1953) and ELLSBERG (1962) werethemost promi-



nent arti cles reporti ng choi ce behavior of peopl e which contradicts Savage's postulates. In
parti cular, the Sure-Thing-Principl e which alows one to decompose a decision problem,
omitting “equivalent parts’ and focussing choice on the remaining parts, was quickly
identified as especially problematic.

There are behavioral regularities which influence individuas' betting behavior. People
di stinguish categorically between situations which they consider ascertain, just possible,
or strictly impossible. These consistently observed certainty and impossibility effects
cannot be modeled by atransition from zero probability of an event to a positive proba
bility, or from a positive probability to the probability of one.

A typical lottery with a high prize on a very unlikely event can turn the certainty of low
wealth for a poor person into the possibility of great riches, providing a reason for ac-
cepting an unfair gamble. Conversely, rich people may find the possibility of loosing
substantial amounts of wealth so dangerous that high expected returns are necessary to
induce them to an investment.

BELL (1985) interpretsthese psychol ogical biases as disappoi ntment aversion or el ation-
seeking behavior. He studies situations where these biases determine the behavior, such
as the process of releasing information, behavior in auctions and the Ell sherg paradox.
Based on these observati ons he arguesfor an inverse-S shaped pattern of decis on weights
as an adequate representation of individual attitudes towards uncertainty.

Optimistic behavior overestimates the likelihood of good outcomes while pessimistic at-
titudes exaggerate the likelihood of bad outcomes. Based upon mounting experimental
evidence for certainty and impossibility effects, WAKKER (2001) extends these no-
tions to arbitrary events with rank-ordered outcomes and characterizes optimistic and
pessmigtic attitudes. In the context of the Choquet expected utility (CEU) model, con-
cave capacities ref lect optimistic attitudes towards uncertainty, while convex capacities

model pessimism.

1.1 Experimental evidence

CAMERER (1995) reviewsnumerous studi esrefuting thevalidity of the expected utility



approach as a description of individual behavior. M ore recently, however, experiments
find evidence for typical patterns of deviation from the expected utility model. In par-
ticular, one often observes subjects willing to bet on high outcomes with low probability
whil erefusi ng to accept even small risks. For subjectschoosing between lotteries, one can
explain such behavior by afunction w(p) weighting the probability p of events. Experi-
mental studies by GONZALEZ & WU (1999), ABDELLAOUI (2000), BLEICHRODT

& PInTO (2000) and others show a pattern of probability weightsas in Figure 1.

Figure 1: Probability weighting function

The decision weight of an event £, w(p( E)), measured by the willingness to bet on this
event, differs usually from the probability of the event p(E'). Figure 1 shows aninverse-S
shaped wei ghting function, overweighting probabilities close to zero and underwel ght-
ing probabilitiescloseto one as. TVERSKY & WAKKER (1995) study the rel ationship
between decision wei ghts and attitudes towards risk and characteri ze the possibility and
certainty effects. WAKKER (2001) definesoptimism and pessimism intermsof decision
weights. This article contains also abrief survey of the relevant experimental literature.
KiLkA & WEBER (2001) demonstrate how decision weights and subjective probabilis-

tic beliefs can be distinguished in experiments.



1.2 Axiomatictreatments
A smple version of an inverse-S shaped weighting function w(p),
1 for p=1
wp)=¢ A+ (1 —-A—~)-p for 0<p<1 |

0 for p=20
is depicted in Figure 2.

Figure 2. Neo-additive capacity

This wei ghting scheme, which we call neo-additive capacity for reasons expl ained bel ow,
has a ssmple Choquet integral. Integrating over alottery yields a wei ghted average of the
expected utility of the lottery and its maximal and minimal outcomes.

In the context of choice of objective lotteries there are a few studies providing behav-
ioral axioms for functionals which combine expected utility with minimum utility and
maximum utility approach. GILBOA (1988) and JAFFRAY (1988) independently ax-
iomatize a functional which aggregates the expected utility functional and the minimum
utility functional in amonotonic function. Their representations capture only pessimistic
attitudes towards uncertainty. CoOHEN (1992), in contrast, provides axioms for arepre-
sentation of preferencesover lotteriesas aweighted average of expected utility, minimum
utility and maximum utility. For the context of choice over lotteries, her paper provides

the behavioral foundations for the representati on studied inthis paper. To our knowledge



there is no axiomatization for choice over acts in either the Anscombe-Aumann or the
Savage framework.

The neo-additive weighting scheme provides an easy way to model the certainty and
the impossibility effects. Combined with a probability function Pr (.) over ranges of
monetary outcomes, this weighting scheme models an individual who overweights the

likelihood of a monetary outcome x exceeding z,
wPr(z > 2))=A+(1—-A—7) Pr(z>7)
> Pr(z >7),
whenever Pr(z > 7) < A/ (A + ). In contrast, outcomes below z occurring with [ow
probability Pr(z < x) obtain a weight,
w(Pr(z < xz))=1-—w(l—Pr(z >x))
= (1-2)-(1=A=79)(Pr(z <x))
> Pr(z <z,
whenever Pr(z < z) < v/ (A +7).
I n the next section, we introduce some notation and concepts necessary for our analysis.
Section 3 studies the neo-additive weighting scheme in the context of the CEU model.
This parameterized CEU model can be easily applied to economic models in order to
analyse the implications of the certainty and impossibility effect. Section 4 illustratesthe
potential of the neo-additive CEU representation for economic applicationsin the context
of a portfolio choice model. Section 5 provides an axiomatic treatment of neo-additive

capacities in a framework of purely subjective uncertainty. Proofs are collected in an

appendix.

2. Capacitiesand theChoquet integral

We assume that the uncertainty a decision maker faces can be described by a non-empty
set of states, denoted by S. This set may be finite or infinite. Associated with the set
of states is the set of events, taken to be a sgma-algebra of subsets of S, denoted by £.



We assumethat for each s in S, {s} isin&. Capacities are rea-valued functions defined
on &, that generalize the notion of probability distributions. Formally, a capacity is a

normalized monatone set function.

Definition2.1 A capacity is a function v : £ — R which assigns real numbers to
events, such that

(i) E,Fe& ECF implies v(E) <v(F), monotonicity

(i) v(@) =0 andv(S)=1. normalization
A capacity viscalled convex if v(EUF) > v(E)+v(F) —v(ENF) holdsfor arbitrary
events F, F' € £. If thereverseinequal ity holdsthen the capacity iscalled concave. Prob-
ability distributions are special cases of capaciti es which are both concave and convex.
For each capacity v thereisa dual or conjugate capacity 7 defined by 7 (E) = 1 —
v (S —F)foral E € £.1fthedua capacity v isconvex, then the capacity v i sconcave.
The most common way to integrate functions with respect to a capacity is the Choquet
integral. Let f : S — IR bea&-measurable real-valued function. We consider finite
outcome acts and suppose that f hasfinite range, that is, the set f(S) is finite. We call
afunction f with these properties a simple function. The Choquet integral can therefore

be written in the following intuitive form.

Definition 2.2 For any simple function f the Choquet integral with respect to the ca-
pacity v is defined as
V(flv) = 2 uw-[v({s| f(s) 2 u}) —v({s] f(s) >u})].

ue f(55)
Each el ement in the range has adecision wei ght equal to the di ff erence between the capac-
ity of the states yielding an element better or equa than the one under consideration and
the capacity of the states yielding a strictly better outcome. The Choquet integra isinter-
preted asthe expected val ue of the function f with respect to the capacity . Thedecision
weights used in the computation of the Choquet integral will overwei ght high outcomes
if the capacity is concave and will overweight low outcomesif the capacity is convex. It

istherefore well-suited to model such responses to ambiguity as optimism or pessimism.
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SARIN & WAKKER (1998) provide a detailed discuss on of decision weights.

3. Neo-additive capacities

I n thissection weintroduce aspecial kind of capacity which we call aneo-additive capac-
ity becauseitisadditive on non-extreme outcomes. e begin by considering a partition
of the set of events £ into the following three subsets; the set of ‘null’ events, the set of
‘universa’ events and the set of ‘essential’ events, denoted N, U and £*, respectively.
Asits name suggests, a set is ‘null’ if ‘loosaly speaking’ it isimpossible for it to occur.
Formally, we assume that this set satisfies the following properties: (i) @ € N, (ii) if
A e N,then B € N, foradl B c A. A ‘universal’ set isone that is viewed as being
certain to occur. Farmally, it is the set of events obtained by taking the complements of
each member of the set of null events, that is,// = {E € £ : S — E € N'}. Noticethat
since g € N, it follows from the definition of the set of universal eventsthat S € U.
Finally, every other set is ‘essentia’ in the sense that is neither impossible nor certain,
thatis, £* = & — (M UU). A capacity v : € — [0, 1] will bedeemed congruent with the
set of null events NV if v (E) =0,foradl E e Nandv (F) = 1,fordl E € U.

Neo-additive capacities can be viewed as a convex combination of an additive capacity
and two capacities, one of which ref lects complete ignorance or complete ambiguity in
everything bar auniversal event occurring, denoted (. ), and the second which reflects

complete confidence in everything bar anull set, denoted y.'(.). Fix A, i/ and £*

Definition3.1 For all £ € €,
1 for EclU 0 for EeN

w(B) = { 0 otherwise M (E) ::{ 1 otherwise
Thecapacity 1°(.) isconvex. Thecapacity pi!(.) istheconjugateof p0(.), thatisu!(E) =
1 — (S — E)fordl Ein&, and therefore is concave.
Let 7(.) beafinitely additive probability distribution defined over £, suchthat = (4) =0,
foral A e N (and hencer (B) = 1foral B € {{) and denoteby A := {(«, 3)| a > 0,
B >0,a+ 3 < 1} thesimplex in R2.



Definition 3.2  For a given finitely additive probability distribution 7 on (S, ), and a
pair of numbers (v, \) € A, a neo-additive capacity v(-|m,v, A) is defined as

v(Em,y, ) =y g (B) + A pH(B) + (1= = ) - 7 (E)

forall Einé&.

It is straightforward to derive the Choquet integral of asimple function f with respect to
a neo-additive capacity in terms a wel ghted sum of the infimum, the supremum and the
expectati on with respect to 7 of theact. Wesay z = inf (f)if f~! (z : 2 > 2) € U andfor
everyy >z, f 1 (x: 2 >y) ¢U. Similarly, wesay z =sup (f)if f 1 (x:2 >2) e N
andforevery y < 2z, f 1 (z:2>9y) ¢ N.

Lemma3.1 The Choquet expected value of asimplefunction f : S — R with respect
to the neo-additive capacity v( E|r, v, A) is given by:

V(flv(|m, v, A)) =~ -inf (f) + A-sup (f) + (1 —v—A) - Ex [f]. 1)

Proof. Toseethisnotethat V(f|u°(:)) = inf (f), V(f|u'(-)) = sup(f) and V(f|r) =
Ex [f] . Theresult then follows from the linearity of the Choquet integral with respect to
the capacity (DENNEBERG (2000), Properties (ix) and (x) on page 49).

Notice that we have do not require that = (E) = 0implies E € N. Indeed nothing in
the discussion and definitions above, prevent N consisting only of the empty set, & (and
hence{ contains only the element S). In this case, even if for someevent £, 7 (E) =0,
the capacities v (E) = Aand 1 — v (S — E) =  are gill both positive. That is, an event
E may recelve a zero decision weight in the evaluation of the Choquet expected value
for any act with neither its infimum nor its supremum on E, but for an act, for which the
infimum (respectively, supremum) results in a state of £ the decision weight on F is~y

(respectively, \). For further illustration of this point, consider the following example.

Example 3.1 Suppose S istheunitinterval, [0, 1], £ ispower set of [0, 1] and N is the
set of singleton states and pairs of states. Thatis, £ € N if Eisan event consisting of

no more than two states. Suppose further that 7 is a finitely additive probability measure
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for which 7 (s) = 0 for all s in [0,1]. From the finite additivity of =, it follows that
7 ({0,1}) =7 ({0,0.5,1}) = 0 but only {0,1} isin A/. In particular, v ({0,1}) =0
and v ({0,0.5,1}) = A. Furthermore, although 7 (S — {0,1}) = 7 (S — {0,0.5,1}) =
1,only S —{0,1}isinY, and hencev (S — {0,1}) =1>v (S —{0,0.5,1}) =1 — 1.

Severa well-known decision criteria can be viewed as special cases of the Choquet in-

tegra of a neo-additive capacity:

M y=A1=0 expected utility,
(i) 1>y>0, A=0 pure pessmism,
(it) v=0,1>A>0 pureoptimism,
(iv) v+Arx=1 Hurwitz criterion.

Neo-additive capacities satisfy three conditions:

e They are additive for pairs of events which are not null and do not form a partition of
auniversal event.

e They exhibit uncertainty aversion for some events.

e They exhibit uncertainty preference for some other events.

I ndeed, as the following proposition shows, these conditions characterize neo-additive

capacities completely.

Proposition 31 Let v beacapacityon (S, £), whereE* contains at | east three elements
E, B and E3 which are pairwise digoint (that is, £; N E; = @ for all i # j). Thenthe
followi ng statements are equival ent:
(i) v isa neo-additive capacity,
(i) the capacity v satisfies the following properties:

(@) for any threeevents (£, F,G) € £* x £* x E*suchthat ENF = () = EN G,

EUF¢U,andEUG ¢ U,
v(EUF)—v(F)=v(EUQG) —v(GQ),
(b) for some (E, F) e & x E*suchthat ENF =0and EUF ¢ U,
v(EUF)<v(E)+v(F),

10



(c) for some (B, F) € &* x E*suchthat ENF=0and EU F ¢ U,
V(EUF)<U(E)+7v(F).

Proof. Appendix.

Notethat for aneo-additive capacity v on (S, £), whereE* containsat | east three elements,
as assumed throughout the paper, uniqueness of the pessimism and optimism coefficients
and of the underlying probability measure 7 is guaranteed. Thisis proved in alemma
preceding the proof of Proposition 3.1 in the appendix.

Property (iia) establishesadditivity of the neo-additive capacity for eventsthat yield non-
extreme outcomes. According to property (iib), the capacity overweights the event in
which the most preferred prize is obtained, hence A > 0. Property (iic) says the capacity

overwel ghts also the event with the least preferred prize. It impliesy > 0.

3.1 Optimism and pessmism

Inthis section we will provide two arguments why one may be justified to interpret the
overwei ghting of the extreme outcomeswith the nations of optimism and pessmism. The
first argument showsthat neo-additi vecapacitiesare aspecial caseof the behavioural con-
cept of optimism and pessimism advanced in WAKKER (2001). The second argument
appeals to theintuitive notion of optimism and pessimism suggested by the context of the
multiple prior approach.

3.1.1 Thebehavioural approach of Wakker (2001)

I nspired by the Allais and Ellsberg paradox ,WAKKER. (2001) suggests a notion of op-
timism and pessimism based on choice behaviour over acts. This approach derives its
appeal from its immediate testability in experiments and its natural representation by
properties of capacities.

Properties(iib) and (iic) of Proposition 3.1 imply the neo-additive capacity to be concave
on some events, which corresponds to the nation of optimism suggested in WAKKER
(2001), and convex on some others, hence pessimistic in the sense of WAKKER (2001).
To see this, consider thefollowing four acts £, fs, f3, f4 defined on apartition of the state

space (B, A, I, L) with lottery outcomes M > m > 0.
11



B|l|A|I |L
filM]|m|m|O
fol M| M]0 |0
fslm |m|m|m
falm | M0 [m

*)

Assumethat m is chosen such that V'(fi1) = V (f2). WAKKER (2001) callsa decision

maker pessmigtic if V(f3) > V(f4) and optimistic if V(f3) < V(fs). Of course, an

expected utility maximiser must be indifferent between f3; and f;.

If the decision maker isindifferent between acts f; and f,, then m measuresthe willing-

nessto pay for the gamble M on A and 0 on I conditional on the gamble M on B and

0 on L. If fsispreferred to f4, then the gamble M on A and 0 on [ isworth less than

m because there is no chance of losing in event L. This specia attention given to bad

outcomes is associ ated with pessmism. In contrast, an optimist, will be willing to pay

more for the gamble M on A and 0 on [ if thereis no chance of winning in event B.

Consi der a neo-additive capacity v(-|r,~, A). Since neo-additive capacities exhibit pes-

simism for some acts and opti mism for others, we have to distinguish two cases.
Case (i): pessimism
Assume B € N. From V (fi|v(+|m, v, ) = V(fo|v(:|m, ~, N)), we conclude that
A+(1=A=7)-7(AUD)] - m=A+(1—-A—7) -7(A)] - M.
Hence,
V(f4’l/('|7'(',")/, A))

= AN+ =A=7)-7(A)]- M+1—-A—7)-7w(L) -m

= A+ 0=X—79)-7(AUTUL)]-m

= (L=9)-m<m=V(fslv(|r,7,X).
Case (ii): optimism
Assume L € N. FromV (fi|v(:|m, v, ) = V(fs|v(:|7, 7, A)), we conclude now

Y+(1—=A=v)-7(AUD] - m=(1—-X—7) -7(A)- M.

12



Therefore,

V(falp(-fm v, A))

= AM+A-A=—7y)-7(A)- M+(1—-X—7)-n(B)-m

= AM+PH+1—-X—7) - 7(AUIUB)]-m

= ANM+1=X) -m>m=V(fzlv(:|m,A)).
It is easy to check that condition B € N. is necessary for pure pessimism, and L € N’
for pure optimism. 1f none of the four elements of the partition are e ements of \/, then
V(filv(-1S,m v, A) = V(falv(-|S,m, ~,A)) does not imply an unambiguous ranking of
V(fslv(-]S,m v, ) and V(f4|v(:|S,7,v,A)). Neo-additive capacities show both opti-
mism and pessimism as they relate to the certainty and the impossibility effect®.
3.1.2 Themultiple-prior approach
The multiple-prior approach assumes that uncertainty of adecision maker can be repre-
sented by a set of probability distributions D. The evauation of an act is the expected
utility with respect to the probability distributionsin theset D. Attitudestowardstheam-
biguity about the correct probability distribution can then be captured by weight which
the decision maker puts on the best or worst expected utility over the set D.
Without loss of generality, but for the ease of exposition, assume there is a finite set of
statesS = {1, ...,n}. Theset of probability distributionsover S isthe smplex A™ inthis
case. Lettheset of probability distributionsD C A™, which the decision maker cons ders
possible, be compact and convex. In the multiple-prior approach preferences over acts
(x1,...,m,) ae represented by the preference functional

+ (1 —a) max [Z u(ws) - %5] :

seS

V(x1, ..., Tn|a, D) := a- min [Z u(zs) - Ts

7eD
T seS

The parameter o € [0, 1] represents the weight given to the worst expected utility and
(1 — «) is the weight given to the best expected utility. Optimism corresponds to the
weight given the best expected utility and pessimism to the weight given the worst ex-

pected utility. A nicefeature of thisapproachisthe natural separation between ambiguity,

1

They are cavex in the sense of WAKKER (2001, p. 1049), that is concave for events which are
revealed unlikely and convex for events which arerevealed as likdy.
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reflected by the set D, and attitudes towards ambiguity, ref lected by the degrees of pes-
simism o and optimism (1 — «).

The Choquet expected utility of a neo-additive capacity defined in Equation 1 can be
viewed asa multiple-prior expected utility. Applied to the case of a finite state space, it

is not difficult to verify the following equality:

Vi(xy, o, xnlv(-|m, v, A)) =

~v-min u(xs) + A max u(xs) + (1 —75—A) - [Z u(zs) -Ws]

seS seS
seS

A -
T I [Z u(z,)- ]

. Y . ~
= i [ u(e,) -7,
’Y‘i‘)\ €D [865
D)
’}/—‘—A’ )

= V(zq, . 1y
with
D={mreA"|7s>(1—v—)\) -7, s€ S}.
Note that the set of probabilities D is convex and compact. Moreover, it has a nice geo-

metric structure as Figure 3 illustratesfor the case of n = 3. For aneo-additive capacity

m3 =1

Figure 3: Multiple priors
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v(-|m, v, A) the set of possible probability distributions D is centered around the proba-
bility distribution 7 and has a size determined by v + A. Hence, v + A can be viewed
as the degree of ambiguity about the additive probability distribution 7. The degree of
pessimism 7{7 and the degree of optimism v_ix measure the decision maker's attitude
towards this ambiguity. Thus, neo-additive capacities have also a natural interpretation
in the context of the multiple-prior approach.

Itisworth noting that it iswell-known that the Choquet expected utility approach is equiv-
alent to the multiple prior approach if capacities are convex. It isworth noting that, in

general, neo-additive capacities are neither convex nor concave.

4. Economic Applications

The ups and downs of economic activity during the business cycle which are usually
accompanied by swingsininvestors sentiments, ranging from bull to bear spiritsin fi-
nancia markets, provide numerous examples of the impact of uncertainty on economic
behavior.

Neo-additive capacities provide a natural way for modelling optimism and pessimism
influencing economic activities. The parameters of a neo-additive capacity can be inter-
preted as measuring confidence in beliefs and degrees of optimism and pessimism. A
neo-additive capacity v(E|m, v, A) is based on an additive probability distribution 7 re-
flecting the subjective beliefs of the decision maker. It represents an assessment of the
likelihood of events consistent with the individual's belief. The weight (1 —~ — X) given
to w isameasure of the degree of confidence which theindividual holdsinthisbelief. The
core belief of a neo-additive capacity represented by the additive probability distribution
7 can be determined endogenously in equilibriun?. Thus, standard equilibrium analysis
isawaysthe special case of full confidence, v = A = 0.

Positive parameters v and \ represent the impact of pessimism and optimism respec-

tively. Neo-additive capacities can therefore model psychological phenomena such as

2 EICHBERGER & KELSEY (2000) provide a thorough analysis of strategic games when beliefs are

modelled as non-additive capacities.
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excessive optimism and pessi mi sm whi ch have been put forward as explanations for eco-
nomic behavior in depressions or bubbles and which have been confirmed in laboratory
experiments.

In this section we show by example that opti mism and pessimism can explain behavior
incongistent with expected utility maximization. Inthesescases, optimismand pessimism
can help to explain well-known economic puzzles. We will reconsider the paradox of
people buying insurance and gambling, and we will review portfolio choice behavior
where one observes unreasonably high risk premia (the equity premium puzzde) and a
willingnessto invest in high-risk stock of unknown start-up companies (the small stock

puzzle).

41 Insuranceand gambling

The sameindividua is often observed to buy both insurance against risk and lottery tick-
ets. Asour introductory quotation of Adam Smithillustrates, such behavior is ubiquitous
but hard to reconcile with rational decision making based on probabilistic calculus. For
expected utility maximizers with a von Neumann-M orgenstern utility function such be-
havior is hard to explain.® Buying insurance suggests apref erence for reduced risk, while
paying for a lottery implies preference for arisky gamble, often at very unfair odds.

To see how both types of behavior can be accommodated by a neo-additive capacity,
consider an individual endowed with wealth x, whose preferences over | otteries can be
represented by the Choquet expected utility of a neo-additive capacity, with parameters
v > X > 0 for the neo-additive capacity and utility index « (taken to be concave). This
individual faces a(small) probability 7, of incurring aloss of size L. | nsurance coverage
isavailable at apremium ¢. Also available at aprice p isalottery ticket that ‘wins’ with
(avery small ) probability 7y and pays out the single prize of size W and otherwise
pays out nothing. Suppose that the individual viewsthe event in which heincurstheloss

and the event in which he winsthe lottery (should he purchase aticket) are i ndependent.

3 FRIEDMAN & SAVAGE (1948) suggest an S-shaped von Neumann-Morgenstern utility function.
This approach to recondle such behaviour has been critisised by M ArRkowITZ (1952). See HIRSH-

LEIFER & RILEY (1992) for adiscussion of the Friedman-Savage gpproach (pp. 26-28).
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Further suppose that [y + (1 — v — A) - wz] - L > ¢ > 7, - L. The wesk inequality is a
feasbility condition for the insurance premium to cover at |east the expected loss (and if
strict it means that the insurance coverageis actuarialy unfair). The strict inequdlity is
satisfied if the individual has a positive degree of pessmism ~ and if the potential |oss
L is sufficiently large.

The difference in the Choquet expected utilities between buying and not buying the in-

surance is

uw@—q) = (A+0=7=A)-A=mp)]-u(@) +[y+ 1=y =A) 7] -u(z- L))

> u@-—q)—u(A+AQ-y=A)- Q=7 z+[y+ 1 =v=A) 7] (z- L))
= u(lz—q)—u(z—|[y+1—=y—=XN7m]L) >0
Thefirst inequality foll ows from Jensen’sinequality applied to the convex function —u,

and the second inequality follows from monotonicity of «. Figure 4 illustrates the desir-

ability of purchase of full coverageat theunfair premium for the casewhere u is affine.

purchase of insurance
no accident

F
,

_ V(=N
M-(14-A)(1-77)

L4

Qe slope:

. s
slope: —7&

-7

~
S M (1—~y—N)7 s
Soper ~ TN )

0 z—L r—q accident

Figure 4: I nsurance

Having purchased the insurance, the difference in Choquet expected utilities between
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buying the lottery ticket and not may now be expressed as

MA@ ==X mw] -u(z+W—-p—q)

T+ A=r=N-0—mw)] u(—p—q) —u(z—q)
> Xu(@+W-p—q+(1 =N -u(x—p—q) —ulz—q
> AMu@+W-—p-—q —ulz—q]-p-v(x—q).
Thelast inequality follows from the concavity of w. For A > 0 and « strictly increasing,

thereisalottery (W, mmy, p) with W highenough and 7y small enoughsuchthat 7y W <

p and
ANu@E+W —p—q) —u(r—q)]
p
Notice that thisis true for any degree of concavity of «. Optimism makes lotteries with

> (z—q).

high prizes and low probabilities of winning attracti ve even for individual swho areaverse
to accepting actuarialy fair fifty-fifty gambles. Figure 5illustrates the desirability of the

purchase of an unfair |ottery ticket for the case where u is affine.

42 Portfolio choice

There are numerous puzzles in portfolio choice theory. THALER (2000) provides a
stimulating exposition of some well-known irregularities. These puzzles highlight incon-
sistencies between standard economic theories and empirical regularities. Naturally, not
all can be related to optimism or pessmism. The following two puzzl es however can be
explained easily by asmall degree of optimism and pessimism.

The equity premium puzzle refersto the large difference between the average return on a
stock portfolio and the return of a fixed interest bearing bond which was first noted by
MEHRA & PrREscoTT (1985). Theimplied risk premium appears to be too big to be
explained by risk aversion as modelled by a concave von Neumann-Morgenstern utility
function. The conservative behavior in the face of uncertainty suggested by such a high
risk premium stands in stark contrast to the observation that small firms with high-risk

stocks seem to attract investors interest more than is warranted by their average returns.
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Figure 5: Gambling

To invest in stock of young “promising” companies appears to be extraordinarily risky.
Yet such uncertainty did not deter investors who otherwise requested a surprisingly high
risk premium.

We study a smple financia market system with arepresentative investor, one risky and
onerisklessasset and an exogenous supply of assets. This framework sufficestoillustrate
the impact of optimism and pessimism on portfolio choice. With well-known modifica
tions these results carry over to more general models of financial markets.

Consider an investor with initial wealth 17, who can invest in two assets, a stock with
uncertain returns and a bond with a certain payoff. The following table summarizes the

notation of the assets.
asset | quantity | price | payoff in state s € .S
stock a q T
bond b 1 r

Preferences of the investor are represented by a Choquet expected utility V (W7, ..., Ws)
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of end-of-period wedth, W, = rs - a + r - b, with respect to a neo—additive capacity
V(W,..., W)
= - min{u(W1), ..., u(Ws)} + A - max{u(W1),...,u(Ws)}
+(1 -7 )‘) Z Ts - U(Ws)

seS
Using the budget constraint, W, = ¢ - a + b, to substitute for the bond, one gets wesalth

as a function of stock transactions a,
Wy=r-Wy+[ry—q-r]-a.

Denoting by 7 = max{ry,...,rs} and r = min{ry, ...,rs} the maximal and minimal
returns of therisky stock, one can write the Choquet expected utility from a stock invest-

menta > 0 as
Via) = ~v-ulr-Wo+c—q-r]-a)
+X-u(r-Wo+[F—gq-r]-a)
+(1_7_>‘)' ZFS'U(T'WO"i_[rs_Q'T]'a)‘

seS
For a stock market equilibrium price ¢* with an aggregate endowment of equity A > 0

and bonds B = 0 where the single investor maximizes Choquet expected utility V' (a),
VI(A)= y-d(r-Wo+[e—q"-r]-A)-[£—q* 7]
+A-uw(r-Wo+[F—q*-r]-A)-[F—q" -7
1=y =N S (e Wot [r =" 1] A) - [ro—g" 1] =0
seS

must hold in equilibrium. Substituting for the initial wealth Wy = ¢* - A, this equilibrium

condition can be solved explicitly for the equilibrium stock price ¢*,

Youl(e A) 2 F AT A) T L=y = A D e A)
q* _ seES . (*)
re |y (e A)F XN A) F (L =y = A) Y s (s - A)
seS
The case of subjective expected utility, y = A = 0, is the reference Situation against

which we can assess the impact of optimism or pessmism. Denate by ¢ the equity price

in this case,
Z g+ u/(rs : A) ‘T
* — SES
o re > ws-u(rs - A)
seS

The equity premium is defined as the ratio
Z Ts = Ts

* S
a(g) =
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The smaler ¢* the greater the equity premium.
Consider first the case of a risk-neutral investor, v'(-) = k. In this case, the equilibrium
stock price equals the discounted expected return of the stock plus an optimism and pes-

simism related premium

Zﬂ-s'rs '7'(f_zﬂ-s'rs)‘f‘)\'(F_Zﬂ-s'rs)
+ __ sE€S s€S s€S

qg = +

T T

= q8+%~[7- (£ —&xrs) + X+ (1 —&Enrs)] s
where we denote the expected return of the stock by &,rs :=>" 7 - rs.
Sincer > &£,r, > r, optimismwil | add apositive premium, Af%s— E,rs) , tothereference
price g, while pessmism will make the premium negative, ~y - (r — Ex7s). For arisk-

neutral investor, we can note that

e the equity premium will be the higher the more pessmistic the investor is, i.e. the
smaller v;

e if there is no optimism, A = 0, then the equity premium required by a pessimistic
investor will be strictly higher than the one based on the subjective probability distri-
bution 7 alone, a(q*) > a(qp);

e if both optimism and pessmism prevail, but v > X asin most experimental studies,
then a sufficient condition for an equity premium «(q*) exceeding «(qg) isan average

return exceedi ng the average of the minimum and the maximum return,

T+r
2

< Ers.

For arisk-averseinvestor with a strictly decreasing marginal utility function «/(-) similar

results can be deduced which we summarize in alemma.

Lemmad4.l A risk-averse and pessimistic investor, i.e, with A = 0,y > 0, ¥/(+)
strictly decreasing, requires an equity premum exceeding the equity premium with risk
but no pessmism,

a(q*) > a(qg).
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Proof. Appendix.

In recent years “new stock markets’ have emerged in many devel oped countries where
stock of gstart-up firmsistraded. These markets were opened in order to provide ven-
ture capital for new high-risk enterprises with great potential. In the light of the rather
conservative behavior reflected in the equity premium puzzle it is even more surprising
that investors were willing to bet substantial amounts of wealth on firms with no record
of earnings.

Optimism and pessimism as modell ed with a neo-additive capacity enables usto explain
such behavior. In fact, we can show that for an arbitrary small degree of optimism there
are maximal returns of afirm high enough to induce a positive stock price for high-risk
firms with potertially high returns. Reconsider the stock market equilibrium price of
Equation (*) and assume, without lossof generality, that the firm’s stock pays off areturn
Ronly instatel. Hence,» =r; = Randr =r, = 0for all s # 1. Suppose the expected
return of the firm is bounded away from zero, m; - R > « > 0. Then the equilibrium

price satisfies

A-w(R-A)-R+(1—y—X -m-u(R-A)-R

=

y-u(0)+ X W(R-A)+(1—y=A) |m1- W (R-A)+ ;1719-’&/(0)

_ R U(R-A) - AN+ 1—y—X) 7]

T R A D Ly Nl e (0) B -0 ()
> Pt (-2 m]

> }7%-)\,

where the first inequality follows from«/(0) > «/(R - A) and the second strict inequality
from the positive expected return.

It is clear that with some optimism, A > 0, even a vanishing probability of success 7
will not deter investors provided thereturnrisessufficiently, R > x/m1. Thestock market
price will not collapse. Thereis no contradiction if investors buy high-risk stock because

of optimism, A > 0, and require an“excessive” equity premium. Adam Smith’s observa-
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tion that even “ sober people”’ do play lotteriesand Robert Shiller'sobserved “ exuberance”
in the stock market can be reconciled with rational decision making under uncertainty; if

one alowsfor optimism and pessmism as modelled by neo-additive capacities.

5. Behavioral axioms

We present our theory in the context of avariant of SAVAGE's (1954) purely subjective
uncertainty framework employed by GHIRARDATO & MARINAcCI (2001) and GHI-
RARDATO, M ACCHERIONI, MARINACCI & SINISCALCHI (2002) (hereafter, GMMYS).
The state space S is taken to be the same as was defined in section 2 above. Let X, the
set of outcomes, be a connected and separable topological space. An act is a function
(measurable with respect to £) f : S — X with finite range, F denotes the set of such
actsand is endowed with the product topology induced by the topology on X. We shall
identify eachz € X withtheconstantact, f(s) = = forall s € S. Forany pair of acts f, g
inFandanyevent £ € &, fgg will denotetheact h € F, formed from the concatenation
of thetwoacts f and ¢, in which h (s) equals f (s) if s € E, and equals g (s) if s ¢ E.
Let >~ denote the individual’s preference relation on F. For any f € F, the certainty
equivalent of f, denoted by m (f), isthe set of constant acts that are indifferent to f.
Thatis, x € m(f),if x ~ f. Although many constant acts may be equival ent, when there
isnorisk of confusion, we shall writem ( f) toindicate an arbitrary member of the set.
We say f and g are comonotonic if for every pair of states s and s’ in S, f (s) = f ()
impliesg (s) = g(s'). Wesay anevent £ € Eisnull if fgg ~ gforal f,g € F. Let
N denote the set of null events. Anevent F isuniversal, if its complement is null, that
is, S — E € N. Weshal denote by £*, the set of events that are neither impossible nor
certain, that istheset £ — (M U U).

For ease of exposition and without any essential loss of generality we assume there exist
outcomes 0 and M in X, that are, respectively, the “best” and “worst” outcomesin X,
inthesensethat M - 0and M - x - Oforal z € X.

Neo-additive capacitiesarea special case of the Choquet expected utility theory. In order
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to obtain a behavioral characterization, we seek to modify the axioms of GMMS appro-
priately. Their key innovationisto definea behavioral definition of *subjective mixtures
of acts which allows them to define in a Savage framework of purely subjective uncer-
tainty, analogs to axioms based on probability mixtures that play such a key role in the
Anscombe-Aumann framework.

The firgt is the standard ordering axiom.

Axiom 1 (Ordering)

The preferencerelation - on F iscomplete, reflexive and transitive.

The neo-additive expected utility representation all owsfor the ‘ discontinuous over-wei ghting’
of events on which extreme, i.e. either best or the worst, outcomes obtain. Hence, stan-
dard continuity with respect to the product topology cannot be expected to hold for the
whole preference relation. Fdlowing GHIRARDATO & MARINACcI (2001) we only
require a weaker nation of pointwise convergence, where in this product topology, we
say anet {f,}.cp C F converges pointwiseto f € F, if andonly if f, (s) — f(s)
foral s € S.

Axiom 2 (Continuity).

Let {fo}aep € F beanet that converges pointwiseto f and such that al f,sand f are
measurabl e with respect to the same finite partition.. If f,, - g (respectively, g =~ f,) for
al a € D, then f - g (respectively, g =~ f).

We al so adopt the monotonicity axiom of CHEW & KARNI (1994) which combines
statewise dominance with aweakening of Savage’s axiom P3.

Axiom 3 (Eventwise Monatonicity).

For any pair of acts, f,g € F,if f(s) Z g (s)foradl s € S, then f >~ ¢. In addition, for

any triple of outcomes x,y,z € X, and any event £ ¢ N/
@ ifzzz,yszthenx = y= xpz > yp2;

(b)yifzzz,zoythenx =y = zpz > yrz.

The next axiom due to GHIRARDATO & MARINACCI (2001) builds on the idea of
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NAKAMURA (1990) and GuL (1992) of a‘subjective mixture’ of two acts f and g.
Fix someevent F, and then construct state by state an act whichyields at each state s, the
certainty equivalent of the bet f (s) , g (s). Formally, the statewi se (event) E-mixture of
f and ¢, denoted as f¥g, is taken to be the act

fPg(s) =m(f(s)za(s)).
Adopting the shorthand {z,y} = z forx 7 zandy = 2z, and z Z{x, y} for z 7 x and

z - x, the next axiom may be stated as foll ows.

Axiom 4 (Binary Comonotonic Act Independence)

Forany event A € £* (thatis, neither A nor S — A isnull), any event B € £, and for all
f,g,h € F,suchthat f = x4y, g = sy, h = 2}y". If f, g, h are pairwi se comonotonic,
and {z, 2’} 7 2" and {y,y'} Z ¥’ (or z”  {=z,2’} and y" Z {y,y'}), then

fzg= fPhz g"h.

Asits names suggests, Binary Comontonic Act Independence, meansthat the preference
relation restricted to acts that are measurable with respect to two-element partitions, con-
formsto the theory of Choquet Expected Utility. With these four axioms, GHIRARDATO
& MARINACCI (2001) were ableto provethat the preference rel ation admits what they
dubbed a(canonical) biseparabl e representation, namely, a Choquet Expected Utility rep-
resentation defined on this restricted set of acts.

Proposition 5.1 (Ghirar dato and Marinacci [2001], Theorem 11) Let X bea connected
and separable topol ogical space and let 7~ be a binary relation on F for which there exist
outcomes 0 and M in X, suchthat M/ >~ 0and M Z = 7z 0 for all x € X. Then the

following are equivalent:

(i) 7z satisfies Axioms 1-4 and there exists an event A such that A and S — A are both
non-null.
(i) There exist a unique continuous utility index v : X — [0, 1], with »(0) = 0 and
u (M) = 1, and aunique capacity v : £ — [0, 1] such that for al =, y, 2/, ', such that
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r-yandd Zy'anddl E,E € &

rpy T ey 2

& v(B)u(@)+ (1 —v(E))uly) 2v(E)u(d)+ (1 —v(E)u(y)

It remains to impose an appropriate version of an independence-type axiom that extends
the biseparable CEU representation obtained in Proposition 5.1 to the whole domain F
and moreover entail s that the capacity in that representation is neo-additive. To do this,
wefirst need to define GMMS's notion of a ‘ subjective mixture’ of two acts. e begin

with their definition of a‘ preference average’ of two consequences..

Definition5.1 Fixx,y € X, suchthat x > y. We say that a consequencez € X isa

preference average of z and y (given E) if x 7~ z 7 y and
rgy ~m (xpz)gm(zeYy)

The reason for their nomenclature becomes apparent if we consider for a preference re-
|ation that satisfies Axioms 1-4, the preference average of = and y given an event E that
isnot null and whose complement isa so not null. From Proposition (5.1) we obtain the
equality
v(E)u(z) + (1 —v(E)) uly)

= v(B)u(m(zgz)) + (1 —v(E))u(m (zpy))

= WE)N u(@)+2v(B) (1 —v(E)u(z)+ (1 -v(E) uly).
Notice that if neither the event £ nor its complement is null then 0 < v (E) < 1, and

so solving for u (z) yields

u(2) = Su (@) + uly).
which isindependent of E. We shall therefore denote by (1/2) 2 & (1/2) y the preference
average of the outcomes x and y. To deliver weighted averages of « and y, we follow
the line of argument detailedin GMMS. That is, by using iterated averages (for example,
(1/2)x @ ((1/2) x® (1/2)y) corresponds to a (3/4,1/4) —weighted average of = and
y) and appealing to standard continuity arguments, it is possible to identify, for any « in
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[0,1] and every x and y in X, the weighted preference averages characterized by
u(z)=ou(z)+ (1—a)u(y). 3
With slight abuse of notation, we shall let az & (1 — «) y (or, equivaently, (1 — o)y &

ax) denote an arbitrary element of the indifferent set of outcomes for such preference

averages. \We are now in a position to define subjective mixtures of acts.

Definition5.2 Fix f,g € F and a € [0,1]. A subjective mixture of f and g with
weight aisany act h € F suchthat h (s) ~af (s)® (1 —a)g(s) for each s € S.

As GMMS note, al subjective mixtures of f and g with weight o are state-wise in-
different, and hence by Axiom 3 (i), indifferent. So we follow them and denote by
af ® (1 — «)g any one of them.

Our final axiomiskey to characteri zing the decision maker’s attitudes towards eventsthat
yield extreme outcomes. We first need, however, to define for each act which events the
decision maker views asyielding the extreme outcomes. e begin with preference-based

definitions for the infimum and the supremum of an act.

Definition 5.3 Fix f € F. Anoutcome z € X issaid to bein the indifference set of the
infimumof f, z € inf-(f),iffor A := f~1(z: 2 = ), zaf ~ f andif for everyy = 2
and B := f Yz :y = ), ygf = f. Smilarly, an outcome z € X is said to bein the
indifference set of the supremum of f, z € sup, (f) iffor A:= f~Ya : 2= 2), 2af ~ f

and if for every y suchthatz =y and B .= f'(z: = %), f > ys/f.

Although inf, ( f) and sup, (f) are defined to be indifference sets of outcomes, when
there is no risk of confusion, we shall write inf,-(f) and sup,(f) to indicate arbitrary
members of these respective sets.

From the definition of a subjective mixtureand equation (3) it fol lows that for every f, g
€ F,a€ [0,]]ands € S

u(af(s) & (1—a)g(s) =au(f(s) +(1—-a)ulg(s)).
Hence, if there is anon-null event on which both acts f and ¢ attain their supremum,
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thatis theset E = {s € S: f(s) esup.(f)} N{s€S:g(s) €sup_(g)} isnotnull,
then asubjecti ve mixture of these two actswill also attain its supremum onthis set. That
is, for any o in (0,1), af @ (1 —a)g(s) € sup.(af @ (1 —a)g), foral s € E.
On the other hand, if theset £ is null, then a subjective mixture of these acts need not
necessarily attain its supremum on any eventin {s € S : f(s) € sup.(f)} nor on any
eventin{s € S: g(s) € sup,(g)}. Inthis case, the supremum attained will beless than
that which woul d have been attai ned if there had been acommon non-null event on which
both acts attained their supremum. Similarly, if theset ' = {s € S: f (s) € inf-(f)}
N{se S:g(s)€infs(g)}isnon-null, thenforany a € (0,1), af & (1 —a)g(s) €
inf-(af & (1 —a)g), foral s € F. While the infimum attained for that subjective
mixture would be no smaller if the set £ were null.

The idea behind the next axiom is that if the decison maker is sensitive about extreme
events, both for good and bad outcomes, then subj ecti ve mixturesof actsfor which supre-
mum outcomes are obtained on common non-null events will be viewed relatively fa-
vorably while subjective mixtures of acts for which infimum outcomes are obtained on
common non-null eventswill be viewed relatively unfavorably.

Tofacilitate the formulation of thisfinal axiom, denote by Z( f) theset of acts with some

infimum outcomes on a common non-null event as the act f
E(f) ={heF| {seS:f(s)emf(f)}n{seS:g(s) einf(9)} ¢N}.

Similarly, denote by 7—“( f) the set of acts with some maximum outcomes on acommon

non-null event asthe act f,

F(f) = {heF| {seS:f(s)esup(f)} N{s€S:g(s) esups(9)} ¢ N'}.
In GMMS's axiomati zation of Choquet Expected Utility, their key axiom is the restric-
tion of an independence type axiom to subjective mixtures of co-monotonic acts. The
Choquet integral of a neo-additive capacity satisfies the independence axiom for all acts
with the best and worst outcomes on the same events, respectively. Hence, we effec-
tively strengthen their co-monotoni c independence axiom by requiring it to hold for all

acts which obtain their infimum (and, respectively, their supremum) on some common
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non-null event in common.
Axiom 5 (Extreme Events Senditivity )
Forany f,g,h € F suchthat f ~ g and h € F(g) N F(g), andany o € (0, 1],

1L Ifhe E(f)thenag® (1 —a)h Z af & (1 — a)h,
2. Ithe F(f)thenaf & (1 —a)h = ag & (1 — a)h.

Acts that are comonotonic with f are elements of Z(f) N F(f). Hence Axiom 5implies
comonotonic i ndependence for theindifferencerelation. Inthe proof of our representation
result, we show that in conjunction with the other axioms it characterizes a subclass of

the family of Choquet expected utility functionals.

Theorem 5.1 Let X be a connected and separ abl e topol ogical space, let £* contain at
least four elements F, E,, E'5 and E, that together form a partition of .S, and let 7~ be a
binary relation on F for which there exist outcomes 0 and M in X, suchthat M > 0 and

M 7 x 7 O0for al z € X. Thefollowing two statements are equival ent:

1. The preference relation - on F satisfies Ordering, Continuity, Eventwi se Monotoni c-
ity, Binary Comonatonic Act Independence and Extreme Events Sensitivity.
2. Thereexists aunique neo-additive capacity ~ on £ andaunique continuous real-valued

function v on X, with« (0) =0andu (1) =1, such thatfor al f, g € F

frog @/uofduZ/uong.

Proof. Appendix.

Remark: Comparing the conditions of Proposition 3.1 and Theorem 5.1, one may won-
der why the set of possible events £* was required to haveat least three non-intersecting
elements but had to have at least four such events in the latter. In Proposition 3.1 three
such eventsarerequired to make statement (ii @) meaningful but this statement had not to
be derived. In Theorem 5.1 four non-null and non-universal events are necessary in order
to prove that the capacity ~ which we deduce satisfies statement (ii @) of Proposition 3.1.

In order to seethat four states are necessary for v to satisfy statement (ii @), consider the
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following counterexample. The capacity v on S = {s1, s2, s3} defined by

v(si) = %, v(s2) = éa v(s3) = 7117
v({s1,52}) = v({s1,s3}) = v({s2,83}) = 3

satisfies statements (ii b) and (ii ¢) but not (ii @ of Proposition 3.1 Hence, it is not neo-
additive.

6. Concluding remarks

Optimism and pessimism have long been recognized as important determinants of eco-
nomic behavior. Subjective expected utility theory assumes that theimpact of uncertainty
can be reduced to the statistical properties of a probability distribution. This reduction
extends economic analysi s to situati ons under uncertainty where one could rightfully ne-
glect psychological aspectsrelating to the focal attraction of the best and worst outcome
of economic choices.

I n this paper we haveintroduced aspecial caseof capacity and its Choquet i ntegral which
captures aspects of optimism and pessimism without abandoni ng the subjectively proba-
bili stic approach all together. I n particular, subjective expected utility is always contained
asagpecia parametric casein this approach. M oreover, asin EICHBERGER & KELSEY
(2000), the additive part of a neo-additive capacity can be determined endogenoudly in
equilibrium.

M ast importantly neo-additi ve capacities open new avenues of research. It appears nat-
ura to view the degree of confidence which a decison maker holds in a probabilistic
assessment of an uncertai n situation as dependent on past experi ence and subject to inf lu-
ence from other people’s beliefs. Optimism and pessimism may spread in a population.
Attitudes towards uncertain outcomes may be contagious leading to general swings in
optimism and pessimism. So “irrational exuberance” as observed by SHILLER (2001)

may become amenable to formal economic analysis after al.
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Appendix A

Thefollowing preliminary lemma establishes uniqueness of v, A\, and .
Lemma: Let v be acapacity on (S, £), where £ contains at least three elements E1, Eo,
and Es, such that £; N E; = @, forall i # j, and v (E;) > 0, for dl i. Then (v, A\, m)

IS unique.

Proof. Let (v, A\, 7) be agiven vector of parameters of ». Denoteby 6 :=1 — v — X and
T(E) =6 -n(E)fordl E € £.

Forany E € £*and F € & suchthaa ENF = (Qand E U F ¢ U, 7(E) isuniquely
defined by 7(E) := v(E U F) — v(F).

Assume now that £ € £*, then there exists (E1, E3) € £ x £* suchthat E1 N Fy = ()
and £y U Ey = E. Hence, 7 (E) isuniquely defined by 7 (E) = 7(E1) + 7(E»).

This implies that 7(£') is uniquely defined for el £ € £* and that \ is uniquely defined
by A := v(E) — 7(E) fordl E € &£*.

Let {E; € & i = 1,..,3} beapartition of S. Then « is uniquely defined by « ::i
7 (E;). Hence, v is unique. For, either o = 0 and thereis no 7 in the expression of u,l;;
a > 0 and wisuniquely defined for any F € £* by n(FE) := ﬂa@

A.1 Proof of Propostion 3.1

(i) = (ii). Thisfollows from the definition of a neo-additive capacity.

(i) = (i).

(a) First we define a non-negative smple additive measure © on £*.

Cael: Ec&:={Ec&|IFe& ENF=0EUF¢U}.

Definem(E) = v(EUF) —v(F)fordl FF € E*suchthaa ENF =0, EUF ¢ U.
Property (a) implies that 7 (E) is well-defined.

Case2 E € £*—E.HenceF = S—E ¢ £* isasingleton and there existsafinite partition
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of E,{E;€&|i=1,..,n} Definex(E) =5

n
i=1

#(E,). It is well defined because

zn: T(E;) = [V(EyU..UE,) —v(EU..UE,)]

oo + [V(Eno1 UE,) —v(Ey)] + T(Ey)
= v(E) —v(E,) + 7(E,)
= v(E) —v(F)+7(F).
M onotonicity of v impliesthat 7(E) > 0 for al E € £*.
Let us check now:
T(EUF)=m(FE)+7(F)

fordl E,F € £&*suchtha ENF =0, EUF ¢ U.
If EUF € & — € then this falows directly from Case 2.
f EUF € Ethenfor G € & suchthaa GN(EUF) =0andGU(EUF) ¢ U

one obtains
T(EUF) = v(EUFUG)—-v(G)
= WEUFUG)—v(FUQG)]+ [V(FUG)—v(G)]

— FE)+7(F).

(b) Next we extend 7 on dl of £ to anon-negative smple additive measure.

Clearly, defining 7(E) = 0 for adl E € N isconsistent with the restricted additivity of
mie T(EUF)=7(E)+7(F)fordl E,F € £ suchtha ENF =0, EUF ¢ U.
Consider afinite partition of S, {E; € £*| i = 1,...,n}, and define 7(S) ::zn: T (E;).
To check that 7 (S) iswell-defined, let {F; € £*| j = 1,..., m} beanother finitlgéwartition
of S, then one obtains

7(S) :Z%(Ei):Z[ T(E;N F)

=1 j=1

m

— Z [zn: 7(E; N Fy)

m

=> 7 (F).

Jj=1

Jj=1
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Let a := 7(S). Clearly, « > 0.

Itremainstoprovethat 7(EUF) = 7(E)+7(F) foral E, F € £* suchthat ENF = ),
EUF ¢ U. Since £&* contains at least three elements, one can assume, without |0ss
of generdity, that £ = F; U Ey with Fy, B> € £, E1 N B2 = (. Hence, 7(E) =
7(E1) + 7 (E2) and, from the definition of 7 (), the desired result follows.

(c)We prove that there exists A € R, suchthat v(E) = A+ 7(E) forall E € £*.
If E € £ — £ then, from Case 2, thereexists A € £* such that

v(E) =7(E) +v(A) —7(A).
If E € € thenthereexists F € £*and B € £* suchthat EUF UG = S. Hence, one has
T(EUF)=v(EUF)+v(B) —7(B),
and, therefore,
T(E)+7(F)=v(EUF)—-v(E)+v(E)+7(B) — v(B),

which gives

Hence,
v(A) -7 (A}) =v(B) - 7(B)
foral A,B € &~
It remains to check that the common value A := v(A) — 7(A) is non-negative. Let
E, F € & satisfy Property (b) and consider A C EF'and B C F. Applying Property (a)
twice gives
0 < vE)+v(F)—v(EUF)=v(A)+v(B)—v(AUB)
= v(A)—7(A) =\

(dWe provethat o + A < 1.
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By Property (c), thereis E, FF € £* such that

0 < B(E)+7(F)-T(EUF)
= 1-v(S—E)—v(S—F)+v(S—(EUF))
= 1- M +FS—E)— (A +7(S—F)+ (A+7(S— (EUF)))

= 1—-X—aqa.

(e) Setting v := 1 — X\ — «, wefindly obtain: v(E) = v- u®(E) + X - ' (E) + (1 —
v—A)-m(F) foradl E € £where, for 1 — v — X\ > 0, the probability measure = (E) is
defined by #n(E) = —— - 7(E).

1—y—A

A.2 Proof of Lemma4.l

Proof. From Equation (*), we get
voul(z- A p+ (L —7) 3w u(rs- A) -y
* seS

b r [W'U’(J:-A)Jr(l—v)'Z7T8~U’(TS~A)]

seS

you'(z-A) -+ (1 —7)- [r-q;;- > Ws-u’(rs-A)]

s€S

r- [7-u’(_1:-z4)+(1_7>' ZWM’(HA)}

seS

(e A)rogg+(1—7)- l?‘-qzﬁ- ZWS-U’(TS-A)}

seS

r {W-U’(z-A)—i—(l—7)-§gﬂs-u’(rs-z4)}

The inequality follows because
oms-u(rs- A) s

* seS

r-qy = Zﬂs'U'(Ts'A)

seS

<Lr.

A.3 Proof of Theorem 5.1

We begin with an observation and a couple of preliminary results. The observationisthat
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any act f € F may be expressed as[z; on Ey;...; x, On E,|, where {Ey, ..., E,}isthe
coarsest finite 2~ -ordered partition of S with respect to which f measurable. By that we
mean for any pair of states s,¢t € S, if both s and¢ arein some E € {E,,...,E,}
then f(s) = f(¢), otherwise f (s) # f(t). Furthermore for any s € E; andt €
Ej, i < jimplies f(s) 77 f(t). Throughout this proof, if an act is expressed in the
form [z, on Ey;...; z, 0on E,] then it should be taken as given that =; = z;,, for
1 =1,...,i — 1. We also note that Axiom 5 (Extreme Events Sensitivity) and Axiom
1 (Ordering) imply that if the preference rel ation expresses indifference between two co-
monotonic acts then indifference i s preserved when those two acts are each mixed with a

third act that is pairwise co-monotonic with both.

Lemma: (Comonotonic Independence of Indifference) Axiom 5impliesthat 7 satisfies
the following independence property for pairwise comonatonic acts. For any «a € [0, 1]
and any three acts f,g,h € F, that are pairwise comonotonic, if f ~ g then af &
(1-—a)h ~ ag® (1 —a)h.

Proof : From the pairwise co-monotonicity of ~ with both f and g, it follows that h €
FE(g) N Flg) and h € E(f) N F(f). Hence Axiom 5 impliesthat of & (1 —a)h =
ag®(1l—a)handag® (1 —a)h Z af & (1 — «) h, asrequired. O

Finally wereport GMM Ss result (2002, Proposition 6) that the triple (X, ~, &) congti-
tutesamixtureset. Thatis, foral z,y € Xandal «, 5in[0, 1],(MO) az®(1 —a)y C X,
M)z € (led0y), M2 az ® (1 — a)y = (1 — a) y & ax (commutative law), and
M3 f(azd(l—a)y)® (1—-0)y =apfzr & (1 —af)y (distributive law). Applying
thisresult state by state, to Definition 5.2 (the definition of a subjective mixture of f and
g withweight o in [0, 1]) it readily followsthat the triple (F, ~, @) isa so a mixture set

and hence exhibits the anal ogous properties.

Proof of Theorem 5.1-
1. Sufficiency
We first show that >~ has a CEU representation, Part (i), and then that the capacity is
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neo-additive, Part (ii).
Part (i). - admits a CEU-representation. Let « (.) and v (.) be the continuous utility
index and capacity of the canonical bi seperabl e representation that from Proposition (5.1)
we know -, admits. Recall that « (.) represents 7~ restricted to the constant acts, and that
V([rionE; zo0nS — E]) = v(E)u (1) + (1 — v (E))u (z2) represents - restricted
to the set of actsthat are measurable with respect to atwo-element partition of S.
Fix,f =[ziOnEy;...; z,onE,]. Foreachi =1,..., n,itfollowsfrom the definition
of & and the connectedness of X, that there exists aunique A; € [0, 1] for which z; €
AiM @ (1 — \;) 0 and aunique v; for which

[MonE,U...U E; 0onE;,U...U E,|] ~y;M& (1 —v;)0.

Equation (3) impliesthat 1 > A1 > ... > A\, > 0and0<v1 < ... <wpq < 1.

Hence we have, by construction and the mixture set properties of (F, ~, @) that

[$1 onEl'I [Aﬂ%@(l—)q)() 0nE1'|
f= : : = : :
[xn onEnJ I_AnM@(l—/\n)O onEnJ
[0 onkE; T M onkE; 7 [ M onkE,
0 onks 0 onky M on Es
0 onk;s 0 on Ej 0 on Fjs
= (1 — )\1) : : @()\1 — )\2) : : @()\2 — )\3) : :
0 onk,_1 0 onk, 0 onk,_1
| 0 onk, | | 0 onE, | | 0 onk,
M onkE; 7 M onE; T
M onEs M on Es
M onEs M onEj3
@"'@()\n—l_An) . . @)\n . .
M onkE,_; M onFE,_1
0 onk, M onkFE,

By applying the comonotonic indebendence of indi_fference_propeNy of Lemma6.3n —1

times and utilizing the distributive law of (F, ~, &), we obtain
[ (=2) 08 (A =) M & (1= v1) 0] ® (A2 — A3) [vaM & (1 — v2) ]

D...D (>\n71 - )\n) [anlM s> (]- - anl)o] SP, )\nM

n—1

Z (A = Aip) vi+ Ay

=1

M ®
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Hence it followsfrom equation (3) that for any pair of acts
r1 OnkEp r] OonkE]
f= . .

and f'= | :
Tn ON En x;l/ on E’;l'

applying the above methods we have
f = f'if and only if

n'—1
> [2{:(A;-A;+1)u;+-A;

J=1

n—1
[Z (A — X)) vi + A

i=1
By congtruction, u (0) = 0, u (M) = 1, u(x;) = N, v(0) := 0, v(S) := 1 and

v (U_,Ei) = vi. Thus we have established that 7 can be represented by the Choquet
expected utility functional

[ r1 onkE; -| n—1

CEU ( [ : : J) = Z (u(zi) —u(zip)) v (U§:1Ej) +u ()
r, Onk,

as required.

2. Necessity.
v satisfies conditions (i) of Proposition 3.1.
(a) We prove that for any threeevents (E, F,G) € £* x £* x £&* suchthat ENF = () =
ENG, EUF ¢ U EUG ¢ U.
VEUF)—v(F)=v(EUQG) —v(G),

Since there are at |east four pairwise digoint events in £*, we can assume that there are
EFGe&* x& x& auwchtha ENF=ENG=FNG=0andEUFUG ¢ U.
The following lemma contains the key argument.
Lemma: If thereare £&* x £&* x &* suchtha ENF = ENG = FNG = () and
EUFUG ¢ U. Then

VIEUFUG)—v(FUG)=v(EUF)—v(F). ™*)

Proof: Assume, without loss of generality, v(E U F') < v(F U G) and let 5 € [0, 1] be
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suchthat v(E U F) = 8- v(F U G). Consider

| M on EUF
fo |0 on S—(EUF) |’

[ p-Me1-8)-0 on FUG
g - |0 on S—(FUG) |’
- [ M on FUG

" [0 on S—(FUQG)

Clearly, f ~ g, h € E(f) N F(f) and h € E(g) N F(g). By Axiom 5, Extreme Event

Sengitivity, we have

%-g@%'hwéf@—;h.
Hence,
%{MEUFU®+WMN::%-U+@-MFU@
::émmFum+u@uF»
Thus, weconcludev(EUFUG)—v(FUG) = v(EUF)—v(F).

Let us now show that (E, F,G) € & x E* x E* suchtha ENF =0 = EN G,
FEUF ¢ U, EUG ¢ U implies
V(EUF) —v(F) =v(EFUG) —v(Q).

Severa cases have to be considered when F' # G.
Case 1.1: F C G. Using Equation (*), we get

VEFUG)—v(G) = v(EUFU(G-F))—v(FU(G-F))

= v(EUF)—uv(F).

Case1l2: G C F. Similar to Case 1.1.
Cae2l: F—-G#0+#G—FandFNG # () Using Equation (*), we get

VIEUF)—v(F) = v(EU(FNG)U((F -Q))—v(FNG)U(F —-Q))
= v(FU(FNG)) —v(FNG)
G-F

( )
( )
— WEUFNG) U ) — v((FNG)U (G — F))
— V(EUG) - v(G).
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Cae22: F-G#0#G—-FadFNG=0If EUFUG ¢ U, then the result
follows immediately from Equation (*).
Suppose FU F UG € U. Since £* contains at | east four elements we may assume that
one of theevents E, F' or GG can be partitioned into two events. Without lossof generality,
suppose F can be partitioned into £, and E». Then Equation (*) implies
VEUF)—v(F) = v(Ey,UEUF)—v(F)
= W(EAUEUF) —v(E1UF)]+ [v(E1UF)—v(F)]
= [W(E2UF)—v(E)]+[v(E1UF)—v(F)]
= [V(EUG)—v(@)]+ [v(E1UG)—v(G)]
= [V(EYUEyUG) —v(E1UG)] + [v(E1UG) —v(G)]

= YEUG)-v(G).

(b) We prove that for some (E, F) € £* x £* suchthaa ENF =0and EUF ¢ U,
V(EUF)<v(E)+ v(F).

Consider (E,F) € £&* x E*suchthat ENF = (0and EU F ¢ U. Assume, without | oss

of generality, that v(F) = 3 - v(F) for some € [0, 1]. Let

f-—_M on E

|0 on S—-FE |’

[ Bp-Me(1-5)-0 on F
g'__O on S—F |’
h-—-M on F

'__O on S—F |’

Clearly, f ~ g, h € E(f)and h € E(g) N F(g). By Axiom 5(1), Extreme Event

Sengitivity, we have

Hence,

NN TN N [P
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Thus, we conclude v(E U F) < v(E) + v(F).

(c) We provethat for some (E, F) € £* x &* suchthaa ENF =0and FUF ¢ U,
V(EUF) <U(E)+7(F).

Consider (E,F) € £&* x E*suchthat ENF = 0and EU F ¢ U. Assume, without | oss
of generality, that v(S — FE) = 8- v(S — F) for some € [0,1]. Let

f-—_M on S—E

© |0 on E ’

- [BMe1-8)-0 on S—F
g'__O on F ’
h-—-M on S—F

|0 on F '

Clearly, f ~ g, h € F(f)and h € E(g) N F(g). By Axiom 5(2), Extreme Event

Sengitivity, we have

-;-f+-;ht—;-g+— h
Hence,
LY (S—mUS—F) > 2.0+8) vS—F)
2 2 - 2
= 2 (S = F)+u(S - B))
or
L v P+ (- S =B =5 [L-v((S - B)U(S—F)].

Thus, we conclude 7(E U F) < v(E) +v(F).

The necessity of the representation follows straightforwardly from the definition of the

neo-additive representation and so the proof is omitted.
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