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1 Introduction

In subjective expected utility theory choice under uncertainty is perceived as the maximiza-
tion of the mathematical expectation of a utility function with respect to the subjective
probabilities that represent the individual’s subjective assessment of the relative likelihood
of events (see Savage [1954] for the definitive statement and Anscombe and Aumann [1963]
for an alternative, simpler, treatment.) Motivated by examples such as the well-known Ells-
berg paradoxes and an increasing body of experimental and empirical evidence, decision
theorists have developed and analyzed models for decision making under uncertainty that
entail the mathematical expectation of a utility function with respect to ‘non-additive prob-
abilities’ or capacities. This generalization of subjective expected utility has been dubbed
Choquet Expected Utility as it utilizes the Choquet integral for non-additive measures (see
Gilboa [1989] for an axiomatization in the Savage purely subjective uncertainty setting and
Schmeidler [1989] for an alternative and simpler treatment in the Anscombe and Aumann
setting.)

In this note we adopt the Anscombe and Aumann setting of the horse/roulette lotteries
representation of alternative courses of action. That is, courses of action, or acts, are func-
tions from a set of states of nature to the set of simple lotteries defined over an arbitrary set
of outcomes. Our aim is to exploit this rich structure to provide a set of simple and intuitive
axioms that allow us to provide a direct and constructive proof of the Choquet Expected
Utility representation. Nothing that we do constitutes a technical advance on Schmeidler’s
(1989) pioneering work but we submit that our constructive proof allows a more direct and
intuitive comparison with the standard Expected Utility model. Indeed to quote Anscombe
and Aumann (1963)

“The novelty of our presentation, if any, lies in the double use of [expected|
utility theory, permitting the very simple and plausible assumptions and the

simple construction and proof.” (p. 203)

2 The Set-up and the Axioms

We set our analysis in the context of the well-known Anscombe-Aumann framework (Anscombe
& Aumann (1962)). We assume that the uncertainty a decision maker faces can be described
by a non-empty set of states, denoted by S. This set may be finite or infinite. Associated
with the set of states is the set of events, taken to be a sigma-algebra of subsets of S, denoted
by £. We assume that for each s in S, {s} is in £. Let X be an arbitrary non-empty set of
outcomes (finite or infinite) and denote by £ the set of lotteries (simple probability measures)

on X. An act, or horse-race lottery, is a function (measurable with respect to &)



f S — L with finite range, F denotes the set of such acts. We shall identify each L € £
with the constant horse-race lottery [L on S] (that is, f(s) = L for all s € S) and so with
slight abuse of notation, we shall let £ also denote the set of constant acts. For each x in X,
let §, denote the (degenerate) lottery that yields the outcome x with probability one.

Let 7~ denote the individual’s preference relation on F. For ease of exposition and clarity
we impose without essential loss of generality a structural assumption that there exists a

maximally preferred outcome and a minimally preferred outcome.

Axiom 0 Their exist two outcomes M and 0, such that dp; = dg, and Sy 7= 6, 2 do,
forall x € X

Both the sets £ and F are mizture spaces. In particular, for any pair of lotteries L’
and L” in £, and any « in (0,1), oL’ + (1 — «) L” is the lottery L in £ for which L (z) =
al’ ()4 (1 —a) L" (x), for each  in X. Similarly, for any pair of horse-race lotteries f” and
f"in F, and any « in (0,1), we define af’ + (1 — «) f” to be the horse-race lottery f € F,
for which f(s) = af’(s) + (1 —«) " (s), for each s in S. A utility function U : £L — R
defined on the lottery space is said to be affine if for any pair of lotteries L' and L” in L,
and any « in (0,1), U(al/ + (1 —a)L") = U (L')+ (1 —a)U (L").

Capacities are real-valued functions defined on £, that generalize the notion of a proba-

bility measure. Formally, a capacity is a normalized set function.

Definition 1. A capacity is a function v : £ — R that assigns real numbers to events,
such that
(i) E,Feé&, EC F implies v(E) < v (F), (monotonicity)
(ii) v (@) =0 and v (S) = 1 (normalization).
A probability measure i : £ — R is a capacity that also satisfies the following property
(iv) E,Fe& n(EUF)=p(E)+p(F)—p(ENF) (additivity).

In order to define the Choquet integral with respect to a capacity and to compare it with
the usual Lebesgue integral taken with respect to a probability measure, it is convenient to
associate with an act f € F, the coarsest (finite) partition over S, of the form {E1,..., E,}
to which the act f is measurable and ordered. That is, for any pair of states s,t € S, if both s
and ¢ are in some E € {Ey,...,E,} then f(s) = f (t), otherwise f (s) # f (t). Furthermore
for any s € E; and t € Ej, i < j implies f(s) Z f(t). For each i = 1,...,n, if we let L;
be the lottery prize resulting if a state in E; obtains, then f may be expressed in the form
f=1[Lion Ey;...; L, on E,|. Throughout the rest of this paper, if an act is expressed in
this form, then the associated partition should be taken to be one with respect to which that

act is measurable and ordered.



Definition 2. Fix an affine utility function U : £ — R, capacity v : £ — [0, 1], and any
act f = [Li on Ey;...; L, on E,]. The Choquet expected utility of the act f with respect
to U and v is defined to be

CEU(f) — /}Jofdu
n—1

= S (U (L) = U (Lis1))v (Ui Ej) + U (L) (1)

=1

= U (L) (B)+ Zj U L) (v(UmE) —v (UZE)) ()

The expression on the right-hand-side of (2) may be interpreted as saying that the decision
weight placed on the event yielding a lottery prize equal in preference to a particular lottery
L, is equal to the difference between the capacity of the event that yields a lottery prize
equal to or better than L and the capacity of the event yielding a strictly better lottery
prize. If the capacity in definition 2 is actually a probability measure p (.) (that is, it also
satisfies additivity) then the expression on the right-hand-side of (2) collapses to the standard
expected utility formulation, SEU (f) = > """, U (L;) p (E;).

Notice that, when restricted to the set of constant acts, the Choquet Expected Utility
functional is simply U (.) and so is affine. If we normalize this utility function by setting
U(dpr) :==1 and U (dg) := 0, then the CEU representation may be viewed as involving the
assignment to each lottery L a utility equal to the probability U (L) which makes the lottery
U(L)opy~+(1—U (L)) dp indifferent to L. Furthermore, the CEU representation also entails
the assignment to each event F € &, a capacity equal to the probability v (E) which makes
the constant act v (E)dy + (1 — v (E)) §p indifferent to the act [0ps on E; dp on EJ.

For a simple example illustrating how these assignments can be combined to construct the
Choquet Expected Utility of an act, consider the act g = [L on A; L' on S — A]. Suppose
L~U(L)opy+(1—=U(L))bo, L' ~U(L)ép + (1 —=U (L)) dp. Since by our convention
L L', we have U (L) > U (L). So, if we replace L by U (L) oy + (1 — U (L)) §p and L' by
U)oy + (1—=U(L")do in g, we form the act ¢’ =

U(L)oy + (1 —=U(L))do on A

UL+ (1 —U(L) 5y onS—A



Now, suppose further that v (A) dps+ (1 — v (A)) dg ~ [0ar on A; dg on S — A]. If we replace
[0ar on A; dp on S — A] in (3) by v (A) dar+(1 — v (A)) dp then the act ¢’ is transformed into
the constant act

¢" = L=-UL)éo+ [UL)-U(L)] v (A) by + (1 —v(A)do] +U (L) oum
= (W -U @) w()+U (L) dar + (1= [UL) = U (L)] v (4) U (L)) o

Notice that the probability weight on d,; for ¢’ is the Choquet expected utility of g
according to the rule given by the expression in the right-hand-side of (1). The following
axioms provide a set of conditions that are both necessary and sufficient to allow us to infer
that g ~ ¢’ and ¢’ ~ ¢” and so (by transitivity of indifference) that g ~ ¢”, thereby allowing
us to make the assignment CEU (g) := [U (L) — U (L')]v (A) + U (L).

We begin with the standard ordering axiom and the most elementary forms of continuity

and monotonicity axioms for the preference relation.

Axiom 1 (Ordering)

The preference relation - is complete, reflexive and transitive.

For any pair of outcomes z and y in X, let Ly, 1 denote the set of lotteries whose support
is a subset of {z,y}. We only require the following weak Archimedean property with respect

to probability mixtures of two lotteries which share a common two-outcome support.

Axiom 2 ([Two-outcome] Mixture Continuity).
For any pair of outcomes z,y € X and any pair of roulette lotteries L', L” € Lz, and
any act f € £, where L' > f > L”, there is , 5 € (0,1) such that oL/ + (1 —a)L"” = f >~
BL' + (1 —B)L".

We impose the simplest monotonicity axiom for lotteries: if two lotteries have a common
two-outcome support, then the one that places more weight on the preferred outcome ranks

higher.

Axiom 3 ([Two-outcome] Mizture Monotonicity).
For any pair of outcomes z,y € X, such that 6, > ¢,, any pair of numbers «, 8 € (0, 1],
ady+ (1 —a)dy = B0+ (1—-P)dy & a>p.

We also impose the simplest notion of set dominance for elementary bets: if A is a subset

of B then ‘betting on A’ is not strictly preferred to ‘betting on B’.

Axiom 4 (Event Dominance).
For any pair of outcomes x,y € X, such that J, > d,, and any pair of events A, B € &, such
that A C B, [0, on B; §, on S — B| = [0, on A; §, on S — A].
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The last two axioms are the principle substitution axioms, that in conjunction with
the first four, permit us to apply von Neumann-Morgenstern’s theorem twice. The first
application enables us to calibrate the utility of lotteries and the second enables us to calibrate
the capacity of every event, in the manner suggested above. More specifically, the axiom,
Lottery Substitution of Indifference, considers the replacement of a lottery prize on an event
in an act with an equally desirable lottery prize. Such a replacement is assumed to leave
the overall desirability of the act unaffected.

Axiom 5 (Lottery Substitution of Indifference).
For any act f = [L; on Ey;...; L, on E,] € F, and lottery L’ and any i = 1,...,n,
if L/ ~ Li then f ~ [Ll on El; ceey Li—l on Ei—l; L/ on Ei; Li—H on Ei—i—l; ceey Ln on En] .

The final axiom, is the independence axiom restricted to pairs of comonotonic acts belong-
ing to the same indifference class taking mixtures of a third act that is pairwise comonotonic
with the other two.

Axiom 6 (Comonotonic Independence of Indifference)
For any « in (0, 1], and any three acts f, g, h € F such that f (s) = f (¢) implies ¢ (s) Z g (¢),
g(s) > g(t) implies h(s) 7 h(t), and h(s) > h(t) implies f(s) 2z f (t), for all s,t € S; if
f~gthenaf+(1—a)h~ag+ (1 —a)h.

3 The Representation and Proof

Theorem 1 Suppose 7 satisfies Axiom 0, then the following two statements are equivalent:

(a) The preference relation = on F satisfies Axioms 1-6, that is, Ordering, Mixture Con-
tinuity, Mixture Monotonicity, Event Dominance, Lottery Substitution of Indifference

and Comonotonic Independence of Indifference.

(b) There exists a unique capacity v on € and a unique affine real-valued function U on L,

with U (0pr) =1 and U (dp) = 0, such that for all f, g € F

fzyg @/Uofduszogdy.

Proof. We begin with a preliminary result that states that if an act lies in preference
between a pair of degenerate lotteries, then there is a unique probability mixture of those
two lotteries which is indifferent to that act.



Lemma 2 ([Two-outcome| Mixture Solvability) Azioms 1-3 (that is, Ordering, Miz-
ture Continuity and Mixture Monotonicity) imply that 7~ satisfies the following solvability
property: for any pair of outcomes x,y € X, such that §, = 6y, and any act f € F, such
that 0, 75 f 7 0y, there exists a unique « in [0,1], such that ady + (1 — ) oy ~ f.

For a proof see FISHBURN (1979), Lemma 3.1, p.33.

We are now in a position to show (a) implies (b), by explicitly constructing the CEU-
representation for 7~. We proceed by first deriving an Expected Utility representation for the
preference relation restricted to the set of constant acts. That is, we construct the affine real-
valued function U defined on £. In the second step, we use this U to calibrate the decision
weights on events to construct the capacity v defined on &£, that enables us to extend the
representation to the entire set of acts.

Step 1. Constructing the EU-Representation on - restricted to £, the set of constant
acts.

Set U (0p) := 0 and U (dp) := 1. For any y € X set U (0,) := 3, where, by Lemma 2
(Mixture Solvability), £ is the unique solution to Sdar + (1 — /3) do ~ . Since all constant
acts are pair-wise comonotonic, notice that for any L =" | @;d,, € £ we can apply Axiom
6 (Comonotonic Independence of Indifference) and transitivity of indifference (Axiom 1) m

times to obtain

L ~ a1 (U(0e)0u+(1=U(bz))00) + > cide,
=2
~ ---NZaZ 2)Oar + (1= U (6,)) do)

_ (Zaz )5M+<1—<Zaz i, )) :

Hence for any pair of constant acts L = Y ;" a0y, and L' = Z;n:l B0z;, transitivity of
preference (Axiom 1) implies L - L if and only if

(S (1S

- ZﬁjU(awj) S+ [1- ZﬁjU(émj) 8.
j=i J=1

But by Axiom 3 (Mixture Monotonicity) this holds if and only if

(Z aiU(ém)) > ZﬁjU (6z,)



Hence the affine function U (37", aida;) = > iy iU (d,) represents 7 restricted to L.

Step 2. Constructing the CEU-Representation for 7.

Fix any f = [L; on Fy;...; L, on E,| € F. For each i = 1,...,n, it follows from Step 1
that there is a unique number U (L;) € [0, 1], for which

Li~U (L) oy + (1 =U(L;))0g,-
For each i = 1,...,n — 1, it follows from Lemma 2 that there exists a unique v; satisfying
{5M on FLU...UE;; dp on EZ‘+1U...UER] NUi(SM+(1—Vi)50.

From Axiom 3 (Mixture Monotonicity) it follows that 1 > U (Ly) > ... > U (L) > 0. From
Axiom 4 (Event Dominance) it follows that 0 < vy < ... <w,_; < 1. By applying Axiom 5

(Lottery Substitution of Indifference) n times we obtain

L1 on E; U(Ll) (5M+(1—U(L1)) 6g on E;
f ey ~Y
L, onkE, U(Lp,) oy +(1—=U(Lyp))dp on E,
dop on Fy op  on By
dp on FEy do on Ej
dp on Ej dp on Fj
=(1-U(L1)) + (U (L) = U (L2)) +---
50 on En,1 50 on En,1
6o on E, op on E,
o on By Sy on Ey
oM on F» o on Ep
oy on B3 Op on Ej
+(U (Lnfl) - U(Ln)) + U(Ln)
5M on En—l 5M on En—l
dp on Ej, oy on By




By applying Axiom 6 (Comonotonic Independence of Indifference) n — 1 times we have
f is indifferent to:

(1 -U (Ll)) 50+(U (Ll) -U (Lg)) [V15M + (1 - 1) 50]+(U (LQ) -U (Lg)) [1/25M + (1 — V) 50]

+...+ (U (Lnfl) -U (Ln)) [I/n,15M + (1 - I/nfl) 50] +U (Ln) Om

n—1 n—1
= D (U L) = U (Lix1)) vi + U (L) | Sar + |1 = U (Ln) = > (U (L) = U (Lis1)) vi | o
i=1 i=1
Hence if we take any given pair of acts
L1 on E; Ly onE|
f=| i ¢ | andg=
L, onkEk, L, onE/,

and apply the above methods, it follows from Axiom 3 (Mixture Monotonicity) that

f 7= gif and only if

i (U(Li) = U (Liy1) vi +U (Ln) | > {Z (U (L) =U (L)) v+ U (L) | -

Hence, if we set, v (0)) := 0, v (S) ;=1 and v (U§:1E1-> := v; then we have established that
>~ can be represented by the Choquet expected utility functional

L o E | 1
CEU : : = ”Z_l (U (Li) = U (Lis1)) v (Us=1 Ej) + U (Ln)
| Lo on B, | :
= U(L)v(E)+ : (U (L)) (y (Ui Ey) —v (uz;llEj))
as required. 0

Finally we show (b) implies (a). Axioms 1-3 are immediate from the existence and form
of the functional representation. Axiom 4 follows since for any pair of events A, B € £, and
any two outcomes, x and y for which U (d,) > U (dy),

CEU ([6; on B; §, on S — B])—CEU ([0, on A; §, on S — A]) = [v(B) — v (A)]| [U (6) — U (64)] > 0.



Since v is a capacity, A C B implies v (A) < v (B), which means CEU ({6, on B; 6, on S — B])
> CEU ([ on A; §, on S — A]), as required.

To see that Axiom 5 holds, notice that for the act f = [L1 on Ey;...; L, on E,] con81der
the act obtained by replacing L; on E; with L' where L’ ~ Lj, that is U (L )
Observe that the act obtained by this replacement, is the act

g = [Ll on El; c. Lj,1 on Ejfl; L, on Ej; Lj+1 on Ej+1; ceey Ln on En] .
Hence
CEU (f) = CEU (g) = (U (L;) = U (£})) (v (Ui Be) — v (ViZiB) ) = 0

as required. To see that Axiom 6 holds, consider any three pairwise comonotonic acts
f, g and h. Let {Ej,...,E,} be the coarsest ordered partition with respect to which all

three acts are measurable. That is, we can express f = [L; on Ei;...; L, on E,|, g =
[Lj on Ey;...; L on E,] and h = [L} on Ey;...; L on E,], where LZ Zi Liv1, L 72 Ly
and LY =, L;’H, for alli =1,...,n — 1. Thus, for any « in (0, 1], we obtain

CEU (af + (1 — @) h) — CEU (ag + (1 — @) h)
= [U (aL1 +(1—a)Lf) = U (aL]+ (1 - ) L])] v (E1)

+Z (aLi+(1—a) Lf) = U (aLi+ (1= a) If)] (v (Uies B) —v (UZ1 )

— aU (L — L} v(Er) + iaU (Li = 17) (v (Ui By) — v (U2 )

— a(CEU(f) - CEU(g)).

And in particular this implies that if f ~ ¢ then af + (1 —a)h ~ ag + (1 — @) h, as
required. |
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