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Rice University

Marla Ripoll∗

University of Pittsburgh

September, 2002

Abstract

Theoretical studies have shown that under unorthodox assumptions on preference and produc-
tion technologies, collateral constraints can act as a powerful amplification and propagation
mechanism of exogenous shocks. We investigate whether or not this result holds under more
standard assumptions. We find that collateral constraints generate a typically small output
amplification. Large amplification is a “knife-edge” type of result.
JEL classification: E32, E44
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1 Introduction

Business cycle models typically rely on large exogenous shocks to explain fluctuations in aggregate

output. This approach is often criticized because shocks of the required magnitude are hard to find

in the data (Summers 1986, Cochrane 1994). An alternative explanation is that the economy has

some amplification mechanism that transforms relatively small shocks into large output fluctuations.

Kiyotaki and Moore (1997) and Kiyotaki (1998) have argued that such mechanism is a particular

form of credit-market frictions. Specifically, when debts need to be fully secured by collateral, say

land, and the collateral is also an input in production, then a small shock to the economy can

be largely amplified. For instance, a small negative shock that reduces the net worth of credit-

constrained firms forces them to curtail their investment in land. Land prices and output fall

because credit-constrained firms are by nature more productive in the use of land. The fall in the

value of the collateral reduces even more the debt capacity of constrained firms, causing additional

∗We thank Daniele Coen-Pirani, David DeJong, Jack Ochs, and participants to the Stanford Institute for Theo-
retical Economics Workshop 2002 for useful comments.
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falls in investment, land prices, and output. The cumulative effect could be dramatic, as they show

using a carefully designed economy.

The results of Kiyotaki and Moore (1997) (KM henceforth) have launched a significant body of

mainly theoretical research. Examples are Krishnamurthy (1998), Kocherlakota (2000), Caballero

and Krishnamurthy (2001), and Paasche (2001). However, there has not yet been a systematic

assessment of the quantitative significance of collateral constraints as an amplification mechanism.

This assessment seems particularly important because theoretical models have used some extreme

assumptions in order to boost the amplification. For example, KM introduce enough assumptions

to induce constrained agents to fully invest all of the unexpected income; to prevent any response

of the interest rate (lenders’ preferences are linear); and to enhance the role of collateral in the

economy (borrowers’ technology is linear in land).1 Are shocks still significantly amplified under

more standard choices of preferences and technologies?

The objective of this paper is to address this question using a simple dynamic general equi-

librium model. The model is a two-agent closed economy, in the spirit of KM, but modified to

introduce standard specifications of preferences and technologies. In particular, all agents in our

economy have concave preferences, have access to concave production technologies, and are re-

quired to collateralize their debts. In order to generate productivity gaps between constrained and

unconstrained agents, we employ the standard, but nonessential, assumption that agents differ in

their discount factors. We constrain the parameters of the economy so that shocks are persistent

and the rational expectations equilibrium is unique around the steady state of the model, i.e., the

steady state exhibits monotonic saddle-path stability. We use the model to examine the features

and parameter values needed in order to achieve large amplification.

The main finding of this paper is that collateral constraints can in fact amplify unexpected

shocks to the economy, but the effect is generally small. For the standard values of a capital share

of around 0.3, and an elasticity of intertemporal substitution (EIS) of 1, the amplification is close

to zero. Large amplification is a “knife-edge” type of result: on the one hand, it occurs at the right

1Both the appendix of Kiyotaki and Moore (1997) and Kiyotaki (1998) attempt to relax some of the unorthodox
assumptions, but there is no assertion on whether these models can generate large output amplification.
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combination of a typically small EIS (below 0.2) and a large share of capital (the collateralizable

asset) in the production function. But if the EIS is too small, or the capital share is too large, then

the steady state may not be a monotonic saddle path. Instead, the equilibrium may exhibit jagged

dynamics, or may not even exist.

To understand why the amplification is typically small, it is useful to break up the response of

output to a shock in the following four components:

output response = (productivity gap)× (collateral share in production)×

(production share constrained agents)× (redistribution of collateral) .

This expression states that the response of output to shocks is bigger the larger the produc-

tivity gap between constrained and unconstrained agents, the larger the share of collateral in the

production function, the larger the fraction of output produced by constrained agents, and the

larger the redistribution of collateral from unconstrained to constrained agents originated by the

shock. Notice that the amplification is caused by the redistribution of collateral from low-productive

unconstrained agents to high-productive constrained agents. The expression suggests that the re-

sponse of output is generally small. For example, if constrained agents are 50% more productive,

produce 50% of the total output, and the collateral share is 50%, then constrained agents must

increase their holdings of collateral by 800% just to increase output in 1%.

More specifically, there are three main reasons why amplification is typically small. First, the

concavity of the production imposes a natural limit on the size of the first three components of the

expression above. In that case, the share of collateral is below 1, and there is a trade-off between

the productivity gap and the production share: a large productivity gap requires constrained agents

to hold a small fraction of the collateral in the economy, which means that their share of the total

production must be small. KM avoid this trade-off by assuming that the technology of constrained

agents is linear in the collateral.

Second, the concavity of the preferences imposes a natural limit on the size of the fourth
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component. As constrained agents use the unexpected resources from a positive shock to secure

more debt and demand more capital, the interest rate increases to induce unconstrained agents

to provide the additional loans. This response of the interest rate limits the magnitude of the

redistribution of capital and the response of output to the shock. If preferences are linear, as is the

case in KM, then constrained agents can provide the additional loans without any increase in the

interest rate. Thus, the asset price effect emphasized by KM is partially offset by the interest rate

effect when preferences are concave. We find that for plausible values of the EIS the response of

the interest rate almost completely eliminates the asset-price effect.

Finally, concave preferences also limit the size of the fourth component in second way. Consump-

tion smoothing implies that part of the unexpected resources are invested and part are consumed.

In KM economy, however, constrained agents invest all the unexpected resources in capital.

The finding that amplification is generally small holds even in the case in which we allow agents

to differ not only in their discount factors, but also in the EIS and the capital share in their

respective technologies. Overall, our results show that for an empirically plausible calibration,

collateral constraints by themselves are not enough to account for the large fluctuations of output

observed in the data.

Our exercise is similar in spirit to Kocherlakota (2000). He shows that the quantitative sig-

nificance of the amplification effects generated by endogenous collateral constraints depends cru-

cially on the parameters of the economy, in particular on factor shares. Our paper differs from

Kocherlakota’s in two ways. First, our economy is closed so that the interest rate is endogenously

determined. This allows us to account for general equilibrium effects. Second, as in KM, the distri-

bution of collateral across agents plays a crucial role in our model: this role is lost in Kocherlakota’s

specification, which eliminates the leverage effect present in KM.

There is a related literature on the importance of financial factors on the investment behavior

of firms which emphasizes the role agency costs (see, for example, Bernanke and Gertler, 1989;

Bernanke, Gertler and Gilchrist,1999; and Calstrom and Fuerst, 1997 and 2000), and of limited

enforceability (see Cooley, Quadrini and Marimon, 2001). These models do not directly incorpo-
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rate collateral constraints, and consider different mechanisms to the ones analyzed here. We study

directly the role of collateral constraints because they can be thought of as the most “extreme”

case of credit constraints. Specifically, when agents face collateral constraints, borrowing is tightly

constrained by the level of net worth, and so the productivity gap between constrained and uncon-

strained agents is at its largest. This would in principle generate large amplification effects because

when agents differ significantly in their marginal productivity, redistribution of the productive asset

can increase output substantially.

The reminder of the paper is organized as follows. Section 2 presents our basic model economy.

In Section 3 we characterize the dynamics of the model and derive the conditions under which

monotonic saddle-path stability holds for the special case of CRRA utility, and Cobb-Douglas

production function. We also present and discuss numerical simulations. We first consider the case

in which agents differ only in their discount factors, and then we allow agents to differ also in the

EIS and their capital share. Section 4 concludes.

2 The model

2.1 Economic environment

Consider an economy inhabited by two types of agents who differ in their rate of time preference.

Agents may also differ in other dimensions such as the degree of risk aversion or the production

technologies. There are two goods in this economy: a durable asset (capital, K), and a non-durable

commodity (output, C). Agents maximize their expected lifetime utility as given by

E
∞X
t=0

βtiui(cit) for i = 1, 2

where 1 > β1 > β2 > 0, and cit is consumption of agent i at time t. The momentary utility

function, ui, is assumed to satisfy usual properties. We allow for the possibility that u differ across

agent’s types. There is a continuum of agents of each type with population size mi > 0, i = {1, 2}.
For simplicity, we normalize m2 = 1 and refer to m1 as m. Following steady state considerations,
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we often call agents type 1 lenders and agents type 2 borrowers. Except for the unanticipated

shock, there is not uncertainty in the model.

Agent i produces using a concave technology, fi(ki), where ki is capital and limk→∞ f 0i(k) =∞.
Similar to u, f may also differ across agent’s types. Agents face a budget constraint given by

cit + qt(kit+1 − kit) + ait = fi(kit) + ptait+1

where q is the price of the capital, ait+1 is amount (of consumption good) promised to be paid by

the borrower (includes principal plus interest rates) at t+1, and pt is the price of one unit of such

promise at time t. Agents behave competitively taken prices as given.2

We assume that borrowers can disappear without repaying their loans with no other penalty

than losing their capital. As a result, loans need to be secured by the value of the capital, i.e.

ait+1 ≤ qt+1kit+1.

Capital is available in a fixed aggregate amount, K. This assumption can be interpreted as

either investment taking a long time-to-build, or as the adjustment costs of investment being very

high.3

It is useful to rewrite the budget constraint in terms of the present value of the net wealth,

wit+1 ≡ pt (qt+1kit+1 − ait+1), and the users cost (or down payment) of capital, st ≡ qt − ptqt+1 as
follows:

cit + stkit+1 +wit+1 = xit ≡ fi(kit) +wit/pt−1

where xit represents total resources available to agent i at the beginning of period t. The advantage

of this formulation is that it reduces the individual state vector to one variable, xit, and the collateral

2We exclude the possibility of renting capital. Adding this possibility would not change the perfect-foresight
equilibrium path but it would affect how the economy responds to an unanticipated shock. In particular, shocks
could be less amplified if capital can be rented.

3As will become clear below, this assumption helps the model to generate larger amplification. The harder is to
accumulate capital the larger is the response of asset prices to unexpected shocks, and the larger the redistribution
of resources.
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constraint can now be expressed simply as wit+1 ≥ 0.

2.2 Recursive competitive equilibrium

Let variables in capital letters denote the aggregate quantities corresponding to the variables in

lowercase. Thus, Ki = miki, Ci = mici, Xi = mixi, etc. Let X be the aggregate state of the

world. X is usually the vector describing the distribution of x across agents, i.e. X = {X1,X2}.
We will be able to reduce this state vector to an scalar, as will be seen below. Assume that capital

and bond prices can be expressed as functions of the aggregate state of the world: q = q(X), and

p = p(X). Likewise, suppose that X evolves according to the law of motion X 0 = G(X).

Each period, agents choose their consumption, ci, stocks of capital, k
0
i, and wealth, w

0
i so as to

solve the following dynamic programming problem,

V i(xi;X) = max
ci,k0i≥0,w0i≥0

©
ui(xi − s(X)k0i − w0i) + βiV

i(fi(k
0
i) + w

0
i/p(X);X

0)
ª

(P1)

given the law of motion for the aggregate state, G(X). Let µi(xi,X) be the Lagrange multiplier

associated to the collateral constraint. The constraint for capital never binds due to the properties

of f . We now proceed to define a competitive equilibrium for this economy:

Definition 1. A competitive equilibrium is a set of prices s(X), p(X), value functions V i(xi;X
0),

allocation rules ci(xi,X), ki(xi,X), wi(xi,X), and aggregate law of motion G(X) such that:

1. V i(xi,X), ci = ci(xi,X), k
0
i = ki(xi,X), and w

0
i = wi(xi,X), solve problem (P1), given s(X),

p(X), and the aggregate law of motion G(X).

2. Capital, goods, and asset markets clear:
P2
i=1miki(Xi,X) = K,

P2
i=1mici(Xi,X) =

P2
i=1mifi(ki),

and
P2
i=1miwi(Xi,X)/p(X) = q(X)K.

3. The aggregate law of motion is consistent with the individual decision rules.

This completes the description of the economy and the equilibrium concept. It is important to

stress three features of the model that make it suitable for our purpose. First, the model is a slight
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modification of a standard representative-agent economy. If borrowing constraints are eliminated

(or discount factors are identical) then the economy will collapse into a standard representative-

agent economy. The model is thus designed to highlight the role of collateral constraints as the sole

cause for amplification and persistence effects.

Second, we make no assumptions to keep the interest rate (the inverse of pt) constant as other

papers in the literature do4. We can thus study if changes in the interest rate dampen or enhance

the asset price effect usually stressed as the key element behind the amplification. Third, the model

requires only a small set of parameters on preferences and technologies: the intertemporal elasticity

of substitution, factor shares, discount factors, and the mass of credit-constrained agents. We can

use evidence about some of these parameters to impose some discipline in the analysis.

Standard arguments can be used to show that the solution to (P1) is characterized by the

following optimality conditions:

u0i(ci)s(X) = βif
0
i(k

0
i)u

0
i(c

0
i) (1)

u0i(ci)p(X) = βi
£
u0i(c

0
i) + µi

¤
(2)

ci = xi − s(X)k0i − w0i (3)

µiwi = 0, µi ≥ 0, w0i ≥ 0 (4)

The first condition equates the marginal cost of holding capital to its marginal benefit. The

second condition states that unconstrained agents equate the marginal benefit of borrowing to its

marginal cost. On the other hand, the marginal benefit of borrowing is larger than marginal cost

for constrained agents.

Notice that if there were no collateral constraints, equations (1) and (2) imply that production

would be efficient, i.e., all agents have the same marginal product of capital. The distribution of

4Kiyotaki and Moore (1997) and Kiyotaki (1998) assume linear preferences or technologies, Kocherlakota (2000)
assumes a small open economy.
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capital in that case satisfies

f 01
¡¡
K −Ke

¢
/m
¢
= f 02(K

e)

where Ke is the capital held by impatient agents. Also, if the production functions are identical for

both types of agents, then Ke = K
1+m , so that all agents would hold the same amount of capital.

2.3 Steady State

Let αi denote the steady state capital share of output for agents type i. The following proposition

summarizes the main properties of the steady state.

Proposition 1. There exist a unique steady state. In steady state impatient agents are credit

constrained, and their capital holdings satisfy K∗2 < Ke. In addition, the following equations

hold:

p∗ = β1

f 02(K∗2)
f 01
¡¡
K −K∗2

¢
/m
¢ = β1

β2
> 1

A∗2 = q
∗K∗2 =

β1
1− β1

β2
β1

α2Y
∗
2

s∗ = β1f
0
1

¡¡
K −K∗2

¢
/m
¢

q∗ =
s∗

1− β1

C∗1 = mf1
¡¡
K −K∗2

¢
/m
¢
+ s∗K∗2

C∗2 = f2(K
∗
2)− s∗K∗2

Proof: In equilibrium agents of at least one type are not credit constrained. Therefore, equation

(2) evaluated at the steady state implies that

p∗ ≥ βi for i = 1, 2 and p
∗ = βi for at least some i.
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Since β1 > β2, it follows that p
∗ = β1 and p

∗ > β2. Thus, µ
∗
2 > 0, i.e., impatient agents are

credit constrained. In addition, equation (1) evaluated at steady state implies that

f 02(k∗2)
f 01(k∗1)

=
f 02(K∗2)

f 01
¡¡
K −K∗2

¢
/m
¢ = β1

β2
> 1

Thus K∗2 < Ke. The remaining equations are easy to derive from equations (1) through (3).

The first equation of Proposition 1 states that the steady-state interest rate is completely

determined by the discount factor of the patient agents. The second and third equations stress the

role played by β2 in the model: it determines the degree of inefficiency, i.e. the gap in marginal

productivities, as well as the debt to output ratio of the constrained agents. A lower β2 increases

the gap in marginal productivities and reduces the debt to output ratio.

Figure 1 illustrates the determination of the steady state of the economy. The efficient allo-

cation with no debt-enforcement problem would imply K∗2 = Ke. Notice that in this case, since

agents differ in their discount factor, impatient agents will eventually end up with zero consump-

tion. The existence of credit constraints reduces the borrower’s capital holdings to K∗2 < Ke and,

more importantly, induces a gap in the marginal productivities. This gap is crucial for the model

to generate amplification effects. If marginal products were equal in equilibrium, then marginal

changes in the distribution of capital would have no effect on output.

3 Dynamics

The previous discussion shows that shocks are amplified as long as some agents are constrained.

One possible situation is that along the equilibrium path agents may be constrained only for a while.

In order to simplify the analysis and enhance the amplification effects we focus on economies in

which constrained agents are always constrained, i.e., W2t(Xt) = 0 for all t.
5 The following lemma

shows that this is in fact the case if the steady state is globally saddle-path stable and monotonic,

and X20 ≤ f2(Ke). By monotonic we mean that X2t monotonically converges to X
∗
2 . Thus, Lemma

5In equilibrium, W2(X) is only function of the aggregate state of the world, X.
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1 states that if borrowers start with a level of resources below their first-best level, then they will

always remain below that level.

Lemma 1. Suppose the steady state exhibits monotonic global saddle-path stability and X20 ≤
f2(K

e). Then, W2t(X2t) = 0 for all t.

Proof: From Proposition 1, it follows that X∗2 < f2(Ke). Since the steady state is monotonic and

saddle-path stable, then X2t < f2(K
e) implies X2t+1 < f2(K

e). Thus X2t < f2(K
e) for all t.

This inequality also implies that f2(K2t) < f2(K
e), or K2t < K

e. Thus, f 02(k2t) > f 01(k1t) for

all t. Equations (1), (2) yield

f 0i(kit+1) =
s(Xt)

p(Xt)− βi
µit

u0i(cit)
.

The last two conditions imply that µ1t = 0 and µ2t > 0 for all t. Thus, borrowers are credit

constrained for all t > 0.

Monotonic saddle-path stability also guarantees that the rational expectations equilibrium is

unique, and that deviations from the equilibrium are persistent. Uniqueness and persistence are

usually properties of the rational expectations equilibrium of frictionless economies, but economies

with frictions may also have these properties as is the case of KM or Kocherlakota (2000). Our

model, however, may exhibit multiple equilibria and/or cyclical behavior, or may have no equilibria

at all. It turns out, however, that for plausible parametrizations our model displays monotonic

saddle-path stability as we show below.

From now on we assume that the conditions of Lemma 1 hold so that borrowers are always credit

constrained. We do not provide conditions to guarantee monotonic global saddle path stability, but

rather derive conditions under which such property holds locally around the steady state. These

conditions are provided in the next section. We also comment on the cases in which these conditions

do not hold.

Along credit-constrained paths the aggregate state vector can be reduced to only one variable,

X2. In that case X2 = f2(K2) so that K2 is a sole function of X2, i.e., K2 = K2(X2). We can then
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solve for X1 as an implicit function of X2 by using the definition X1 = mf1((K −K2(X2) /m) +
q(X1,X2)K. Thus, along credit-constrained paths the aggregate state is described by X2 = f2(K2).

For convenience we define the aggregate state as X ≡ K2 rather than f2(K2). Let K 0
2 ≡ G(X) be

the aggregate law of motion of K2.

When borrowers are credit constrained, their budget constraint (3) becomes

C2(X) = f2(X)− s(X)G(X). (5)

In addition, using this equation along with the aggregate resource constraint results in

C1(X) = mf1

µ
K −X
m

¶
+ s(X)G(X). (6)

Now, using equation (1) along with (5) and (6), we obtain a two dimensional system of functional

equations in G(X) and s(X):

u02 [f2(X)− s(X)G(X)] s(X) = β2f
0
2(G(X))u

0
2 [f2(G(X))− s(G(X))G(G(X))] (7)

and

u01

µ
f1

µ
K −X
m

¶
+
s(X)G(X)

m

¶
s(X) (8)

= β1f
0
1

µ
K −G(X)

m

¶
u01

µ
f1

µ
K −G(X)

m

¶
+
s(G(X))G(G(X))

m

¶
.

This system of two functional equations summarizes the equilibrium of the model. It is clear

from this system that the functional equations only depend on the capital stock of borrowers,

X = K2.
6

In order to analyze the dynamics of the model, we linearize equations (7) and (8) around the

steady state and solve the linear system by the method of undetermined coefficients. Let ωz =
∂Z
∂X

6This holds as long as the solution to this system is unique, as guaranteed by the conditions of Lemma 1. Otherwise,
multiple equilibria may arise.
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be the response of a control variable Z = {C1, C2, q, p, s} to changes in the state variable, X; and let
ωx =

∂G
∂X describe the motion of the state variable. Define ui ≡ ui(ci) and fi ≡ fi(ki). Linearizing

the two equations around the steady state, using the fact that s∗ = β2f
0
2 = β1f

0
1, and collecting

terms we obtain

sω2x + xωsωx = ²2ωx + ζ2ωs − f 02 (9)

sω2x + xωsωx = ²1ωx + ζ1ωs − f 01

where ²i =
³
f 00i u

0
i

f 0iu
00
i
+ f 0i + s

´
> 0, and ζi =

³
x− (−1)i miu

0
i

su00i

´
R 0. Equating these two equations and

solving for ωs we obtain

ωs =
(²2 − ²1)
ζ1 − ζ2

ωx +
f 01 − f 02
ζ1 − ζ2

. (10)

This equation provides the solution for ωs once ωx is determined. Substituting this result into

(9) we obtain a second order polynomial equation which roots provide the solutions for ωx

π(ωx) ≡ θ1ω
2
x + θ2ωx + θ3 = 0 (11)

where θ1 = s (ζ1 − ζ2) + x (²2 − ²1); θ2 = ²1ζ2 − ζ1²2 + x (f
0
1 − f 02) and θ3 = ζ1f

0
2 − ζ2f

0
1. Provided

the solutions for ωx, and ωs we can solve for ωc1, ωc2, ωq, and ωp, as shown in the Appendix.

3.1 Symmetric case

To derive more precise results it is convenient to assume specific functional forms at this point.

Suppose that f(k) = kα and u(c) = c1−σ−1
1−σ , so that 1/σ is the intertemporal elasticity of substitu-

tion. Note that we assume that α and σ are the same for both agents, so that they only differ in

their discount factors. We call this case “symmetric”. Next section we study the case in which α

and σ differ across agents.

The following proposition characterizes the restrictions on the parameters (σ,α,β1,β2,m) such

that the steady state exhibits monotonic saddle-path stability.
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Proposition 2. The steady state exhibits monotonic saddle-path stability if and only if

σ < bσ (α,m,β1,β2) ≡ 1 + 1 +m
³
β1
β2

´ 1
1−α

α (β1 − β2)
(12)

and

σ < eσ (α,m,β1,β2) ≡ β1
β1 − β2

1

α

1

m
(13)"

m2
µ
β1
β2

¶ α
1−α

+m

µ
(1− α)

β2
β1
+ α+ α (1− α)β2

¶
+

µ
β2
β1

¶ 1
1−α

(1− α)αβ2

#

Proof: See Appendix.

These conditions state that very large values of σ (i.e., close to zero EIS), low values of m, and

certain values of α are not admissible. In other words, the model may display multiple equilibria, in-

stability, and/or cycles in those cases. It is easy to derive the following properties of bσ (α,m,β1,β2)
and eσ (α,m,β1,β2):
Lemma 2. Properties of bσ (α,m,β1,β2) and eσ (α,m,β1,β2):
• bσ (α,m,β1,β2) > 1 and eσ (α,m,β1,β2) > 1
• bσ (0,m,β1,β2) = bσ (1,m,β1,β2) =∞
• eσ (0,m,β1,β2) = eσ (1,m,β1,β2) =∞
• bσ (α,m,β1,β1) = eσ (α,m,β1,β1) =∞
• ∂bσ(α,m,β1,β1)

∂m > 0 and ∂eσ(α,m,β1,β1)
∂m is not monotonic in m.

Special economies that satisfy these conditions include an economy with log utility function

(σ = 1); a representative-agent economy (β1 = β2); an economy with a large mass of unconstrained

agents (m → ∞); and AK or AL type economies (i.e. α ' 1 or α ' 0). On the other hand, the
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larger the steady-state the productivity gap, β1−β2, the smaller the set of parameters (α,m,β1,β2)
that is consistent with monotonic saddle-path stability.

We now study the response of the model economy to an unanticipated shock by using mostly

numerical simulations. Assume that the economy is at the steady state at time zero, and that

a one-time unexpected productivity shock occurs so that production is z0 times the steady-state

production. To find the equilibrium path we assume that the recursive solution holds from time

one onward, and find the solution at time zero backwards by using the recursive solution for time

t = 1. Details are discussed in the appendix.

The productivity shock z0 provides more resources to both constrained and unconstrained

agents. Since this is a temporary shock, both types of agents save part of the extra resources

in order to smooth consumption. The difference between the two types of agents is that the un-

constrained are indifferent between buying capital or bonds because they have an interior solution,

while the constrained, who are borrowers, will smooth the shock by buying capital. In fact, con-

strained agents are in a corner solution so that the only way to borrow more is to buy more capital.

Since borrowers’ marginal product of capital is higher, aggregate output increases following the

productivity shock. Thus, the fundamental channel behind amplification is the redistribution of

capital toward agents with high productivity.

The two main variables of interest are amplification and persistence. We define amplification

as the elasticity of output in period one with respect to a productivity shock in period zero, ²Y Z .
7

Persistence is measured by ωx.

3.1.1 Amplification

Output in period one can only vary if the state variable X1 varies. We can then write ²Y Z as the

product of two components: the elasticity of output at time one with respect to X1, ²Y X , times

7The elasticity of output in period zero with respect to a productivity shock in period zero is always 1 in this
model.
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the elasticity of X1 with respect to Z0, ²XZ

²Y Z = ²Y X²XZ . (14)

²XZ represents the redistribution of capital toward constrained agents. Using the definition of

total product, it follows that

²Y X =
¡
f 02 − f 01

¢ X
Y

=
(f 02 − f 01)
f 02| {z }

productivity gap

· α|{z}
collateral share

· Y2
Y|{z}

output share

This equation suggests that ²Y X is typically a small number. For example, if constrained agents

were 50% more productive, produce half of the total output, and have a capital share of 1/2, then

²Y X = 1
8 . One can in principle try to increase ²Y X by inducing a larger productivity gap and a

larger output share, given certain plausible value for the capital share. There is a limit, however, to

how much can be accomplished this way due to the trade-off between the productivity gap and the

output share. Under standard concave technologies, a large productivity gap requires borrowers to

hold little capital. But if borrowers hold little capital, then Y2
Y is small. Thus, if the model is to

produce significant amplification, then ²XZ must be significantly large to compensate for the small

value of ²Y X . In other words, significant amplification requires a very large redistribution of capital

toward constrained agents. However, a large redistribution of capital toward constrained agents is

not sufficient to guarantee significant output amplification.

KM show that in their model ²XZ is significantly large, in the order of
1

1−β1 . They, however,

do not discuss at all the size of ²Y Z or ²Y X in their model. Their claims about the power of

their propagation mechanism refer only to the redistributive properties of their model but not

to its ability to generate large responses in output. It turns out, however, than under certain

parameterization ²Y X can be made arbitrarily close to 1 in KM, which implies a large elasticity of

output to the shock. The reason is that constrained agents in their model use a linear technology
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which avoids the trade-off between the productivity gap and the output share.8

Figure 2 illustrates both the magnitude of output amplification and the size of capital redistri-

bution in our model for different pairs (α, 1/σ), and for β1 = 0.99, β2 = 0.9β1, and m = 0.5. As

shown below, our main results are not sensitive to the particular choice of parameters. There are

at least four important observations from this figure: (i) Output amplification is “small” (below

one) for most parameter configurations. (ii) There are configurations of parameters that produce

significant amplification (larger that one). They require a low EIS and large capital share. (iii) The

transition between the area of low to high amplification is sharp: amplification is generally small,

but it quickly changes to be very large for certain configurations of parameters. (iv) Although

capital redistribution is also “small” for a large set of parameters, it responds more than output

and can be quite sizeable when the EIS is low and α is large.

An additional important observation is obtained looking more closely into the area of largest

output amplification, around the hill of Figure 2. Figure 3.a. shows a top perspective of this area.

The white hump-shaped area corresponds to (α, 1/σ) parameters for which monotonic saddle-path

stability does not hold. In other words, parameters on this hump violate the conditions stated in

Proposition 2. Notice how the largest amplification, which corresponds to the darkest shade, is

right at the border of the hump. Thus, the configurations of parameters that produce the largest

amplification are at the edge of the space of monotonic saddle-path stability.

Figure 3.b. illustrates the types of dynamic behavior generated by the parameters on the hump-

shaped area. First, the top-left part of the hump corresponds to the area in which the only stable

root is negative. Recall that in Proposition 2 we have ruled out these roots to avoid non-monotonic

dynamics. This area is not interesting because it implies jagged dynamics, which are clearly non-

plausible. Second, notice that most of the hump corresponds to unstable roots, i.e., an area where

there is no forward looking equilibrium. Finally, there are two stretches that correspond to multiple

equilibria cases, i.e. two positive stable roots, and two complex roots. Even though the cases of

multiple equilibria exhibit stable dynamics, one can easily eliminate these cases by allowing agents

8In addition to the linear technology, a low saving rate is required to generate large amplification in KM.
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to differ not only in β but also in α and σ, as we do next section.

The previous observations cast doubts on the ability of collateral constraints to produce sig-

nificant amplification for two main reasons. First, large amplification is not a robust result of the

model. The model produces large amplification only as a “knife-edge” type of result: it requires a

very particular combination of parameters at the edge of the space of monotonic saddle-path stabil-

ity. In other words, a small change in parameters can either reduce the amplification dramatically,

produce jagged dynamics, instability, or multiple equilibria.

Second, the parameters required to generate large amplification are not empirically plausible.

On the one hand, the share of collateral in the production function is probably lower than 1/3 which

is approximately the capital share of output in the U.S. But the results in Figure 2 (and Figure

5 below) indicate that the capital share must be at least 0.5 in order to obtain some significant

amplification. In addition, the EIS in the U.S. is probably well above 0.3, as recently documented

by Vissing-Jorgensen (2002). However, the results in Figure 2 (and Figure 5 below) indicate that

large amplification requires the EIS to be well below 0.2.

It is easy to understand why large amplification requires a large capital share. It directly affects

the elasticity of output to the shocks (see equation (14)). It is less obvious to explain why a lower

EIS increases the amplification. To understand this, notice first that the shock provides more

resources to all agents in the economy. Since the shock is temporary, all agents save part of the

extra resources in order to smooth consumption. Unconstrained agents are indifferent between

buying capital or bonds because they have an interior solution. However, constrained will smooth

consumption by buying capital. They are in a corner solution so that the only way to borrow more

is to buy more capital. Since borrowers’ marginal product of capital is higher, aggregate output

increases following the productivity shock. Consider now the effect of lowering the EIS. In that

case constrained agents spend a larger fraction of the unexpected resources buying capital because

the smoothing motive becomes stronger. Thus, a lower EIS implies an even larger redistribution of

capital toward the more productive agents, and a larger amplification.

Up to now we have illustrated the magnitude of amplification for pairs (α, 1/σ) but for a given
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mass of unconstrained agents, m, and productivity ratio, β2/β1. How does amplification depend

on m and β2/β1? Figure 4 illustrates this relationship for given values of α, σ and β1. Notice that

amplification is non-monotonic in β2/β1: it first increases and then decreases. If β2 is very low,

then borrowers own very little capital in the economy and their effect on aggregate variables is

small. Therefore, amplification effects are low. As β2 increases, borrowers own a larger fraction of

capital in the economy, and so amplification effects become more important. However, as β2 gets

closer to β1 then the productivity differentials start to vanish, so that the amplification is small.

The impact of m on the amplification is mixed but overall a small m seems to help amplification.

However, m cannot be arbitrarily small because when there are too many credit-constrained agents

and the productivity shock occurs, there will be a large boom in demand for credit, and the interest

rate may increase so much that the conditions for saddle-path stability may be violated.

It may seem important at this point to come up with some empirically plausible values for β2/β1

and m. However, it is hard to find convincing information about this parameters. Fortunately, we

do not really need to know much about these parameters for our purposes. We can choose β2/β1

andm to maximize the amplification (²Y Z) for each pair (α, 1/σ) given a plausible value for β1. This

procedure provides an upper bound for ²Y Z . If the upper bound is small, then we must conclude

the model cannot generate much amplification. Figure 5 depicts the outcome of this exercise given

β1 = 0.99. It confirms that for empirically plausible values of α and σ the amplification is almost

nil. Large amplification requires a very large α and a very low EIS.

3.1.2 Prices, persistence, and other variables

In this section we discuss the behavior of some key variables of the model to gain further insight

into the origin of the amplification effects. Figure 6 presents the impulse responses of the borrowers’

output Y , capital stock K2, bond prices p, capital prices q, the users cost of capital s, and the split

of Y into C1 and C2. All values are percentage deviations from the steady state. The parameters

used for this simulation are β1 = 0.99, β2 = 0.9β1, α = 0.8, σ = 15 and m = 0.3. First notice that

at the time of the shock t = 0, Y increases by 1%, which is the magnitude of the shock, while next
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period t = 1, output reaches a maximum amplification of about 1.2%. This ‘large’ amplification is

obtained using relatively high values for α and σ.

The panel for K2 clearly shows that the large redistribution of capital across agents is key

to generate amplification. Borrowers increase their capital holdings by about 30%. Part of this

increase is explained by increase in the value of the collateral, which increases around 30% the

period after the shock. This large price increase could have produce a much larger redistribution of

capital but the large increase of the interest rate, of around 20%, partially offsets the price effect.

There is an interesting split of Y into C1 and C2: in the period of the shock, borrowers are both

consuming more and buying more capital. In fact, C2 increases around 1%, almost the full increase

in Y . Instead, lenders increase consumption very little in the period of the shock, but they wait

until next period to enjoy the higher returns in bonds. In effect, C1 barely increases at t = 0, but

it is around 0.6% higher than the steady state in t = 1. In summary, as in KM, most of the action

in this model occurs in the period of the shock and is associated to a large redistribution of capital

from lenders to borrowers. This redistribution is so large that prices react substantially.

Finally, it turns out that persistence in the model is generally small, and it is increasing in

α. The reason is that the effects of the shock are persistent in this model as long as borrowers’

net worth is high enough to allow them to continue buying capital. The larger the α, the more

extra output borrowers obtain from an extra unit of capital, and the higher their net worth is. It

is interesting to note that the region of parameters for which amplification is largest corresponds

to close-to-zero persistence in the model. This is so because the largest amplification is achieved

with a substantial redistribution of capital toward borrowers, which implies a large increase in the

interest rate that makes this amplification effects short lived.

3.2 Asymmetric Case

Up to this point we have discussed simulations in which agents only differ in their discount factors.

One of the conclusions from these simulations is that large amplification can be obtained with a

low EIS, and a large, but not too-close-to-one capital share. The evidence on the value of σ is
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controversial, and some of it indicates that the EIS is very close to zero, at least for a set of agents

in the economy (Guvenen, 2002). Thus, an interesting exercise would be one in which we allow

agents to differ in σ. In particular, in order to “help the model” generate large amplification, we

would like borrowers to have a low EIS.

Another interesting simulation is to allow for different α’s across borrowers and lenders. It is

generally assumed that for the U.S. the aggregate capital share is α = 0.3, but as reported by Barro

and Sala-i-Martin (1995), α can be in a range from 0.45 to 0.69 for developing countries.9 If we

want to “help the model” generate large amplification, then we can let borrowers have a high α,

and lenders a low α, so that the aggregate capital share is consistent with the empirical evidence.

Figure 7 shows the amplification achieved when agents differ in β, σ and α. In particular,

α1 = 0.3, σ1 = 0.1, m = 0.5, β1 = 0.99, and β2 = 0.9β1. This figure confirms our previous

finding that amplification is typically small. Large amplification requires a very large α2 and a

very low EIS for the credit-constrained agent. Finally, notice that all parameter combinations in

Figure 7 guarantee monotonic saddle-path stability, i.e. the hump-shaped area of Figure 3.a. has

disappeared.

4 Concluding comments

The purpose of this paper is to evaluate the role of collateral constraints as an amplification mecha-

nism of exogenous shocks to the economy. In particular, we analyze a simple deterministic economy

that incorporates the main mechanism proposed by KM. According to this mechanism, what causes

amplification is the fact that a group of agents in the economy are credit-constrained and have a

higher marginal product of capital. Thus, adverse shocks to the net worth of constrained agents

negatively affect investment in collateral, output and asset prices. The fall in the value of the col-

lateral worsens the downturn because it further limits the ability of constrained agents to borrow.

We analyze how amplification changes for different parameters when we allow for standard

utility and production functions. Our approach is to “help the model” generate amplification by

9See Table 10.8, page 380-1.
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analyzing equilibrium paths along which a group of agents is always against the constraint. Further,

we also “help” it by considering only unexpected shocks, ruling out a market for renting capital,

and preventing capital from being accumulated. The idea is that if even under these “favorable”

conditions the model does not generate amplification, then it would be difficult for more general,

less-stylized models with collateral constraints to do so.

As the simulations indicate, in this deterministic model large amplification can be obtained

only with the “right” combination of a low EIS; a large, but not too-close-to-one capital share; and

a sizeable, but not too-close-to-one share of constrained agents. Thus, unless one has this right

combination of parameters, collateral constraints can generate amplification when compared with

perfect-market models, but this amplification is small.

Our findings would still hold if agents were heterogenous in other dimensions. Here we introduce

heterogeneity in the discount factors, but this is nonessential. Any heterogeneity that induces

differences in productivity across agents would produce similar results. This is so because the

fundamental channel to produce amplification is the redistribution of a productive asset from lower

to higher-productivity agents. In general, when technology exhibits marginal decreasing returns

in the productive asset, the largest output amplification would be attained when this asset is

transferred to agents who hold a very small fraction of it. However, by the same token, since high-

productivity agents hold a very small fraction of the productive asset, their impact on aggregate

production is small. All in all, our results show that collateral constraints by themselves are not

enough to account for the large fluctuations of output observed in the data.
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A Linearization

Provided the solutions for ωx, and ωs from equations (9) and (10), the remaining variables can be
solved for. First, ωc1 and ωc2 can be found from equations (5) and (6)

ωc1 = −f 01 + β1f
0
1ωx + xωs = xωs − f 01 (1− β1ωx) (15)

ωc2 = f
0
2 − β2f

0
2ωx − xωs = −xωs + f 02 (1− β2ωx) (16)

Note that ωc1 + ωc2 = f
0
2 − f 01. To find ωq, define W (X) ≡ u0

³
C1(X)
m

´
q(X). From (1) and the

definition of s(X) we obtain

W (X) = β1u
0
µ
C1(G(X))

m

¶
f 0
µ
K −G(X)

m

¶
+ β1W (G(X))

Linearize this expression around the steady state and collect terms to obtain

ωw =
β1ωx

1− β1ωx

1

m

£
u001f

0
1ωc1 − u01f 001

¤
. (17)

Next, use the definition of W (X) to solve for ωq as

ωq =
1

u01

µ
ωw − β1f

0
1

1− β1

1

m
u001ωc1

¶
. (18)

Finally, the solution for ωp reads

ωp = −β1
u001
u01

1

m
ωc1 (1− ωx) . (19)

B An unanticipated shock

Assume that the economy is in steady state at time zero. At that moment, a one-time unanticipated
productivity shock occurs so that total production is z0 times the steady state production. To find
the equilibrium path notice that the recursive solution holds true from time t = 1 on. Given
the solution at time t = 1, time zero can be solved backwards. The equations that describe the
equilibrium at time zero are (7), (8), (2), and the definition of st. Let X0 and X1 be the state
variable at time 0 and time 1 respectively. Then the following equations describe the solution at
time zero

u02 [z0f2(X0) + (q0 − q∗)X0 −X1s0] s0 = β2f
0
2(X1)u

0
2 [C2(X1)]

u01

·
z0f1(

K −X0
m

) +
X1s0 − (q0 − q∗)X0

m

¸
s0 = β1f

0
1

µ
K −X1
m

¶
u01

·
C1(X1)

m

¸
u01

·
z0f1(

K −X0
m

) +
X1s0 − (q0 − q∗)X0

m

¸
q0 = β1u

0
1

µ
C1(X1)

m

¶·
f 01

µ
K −X1
m

¶
+ q(X1)

¸
.

This is a system of three equations in three unknowns: X1, s0, and q0. Define bxt = K2t −K∗2 ,
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bst = st − s∗, bqt = qt − q∗, and bzt = zt − 1. The following is the linearized version of the previous
system, where we used the facts that q∗ = β1 [f

0
1 + q

∗] and ωc1 + ωc2 = f
0
2 − f 01¡

²2 + ωc2 − f 02
¢ bx1 − xbq0 + ζ2bs0 = f2bz0 (20)¡

²1 + ωc2 − f 02
¢ bx1 − xbq0 + ζ1bs0 = −mf1bz0µ

(1− β1)
u01
f 01u001

£
f 001 −mωq

¤− ωc1 + s

¶ bx1 +µmu01
qu001

− x
¶ bq0 + xbs0 = −mf1bz0 (21)

The two first equations can be use to find a solution for bs0
bs0 = ²2 − ²1

ζ1 − ζ2
bx1 − mf1 + f2

ζ1 − ζ2
bz0 (22)

Equations (20), (21), and (22) can be used to solve time zero values. One can use these solutions
to find bc10, bc20 and bp0 as follows

bc10 = mf1bz0 − xbq0 + sbx1 + xbs0
bc20 = f2bz0 + xbq0 − sbx1 − xbs0
bp0 = β1

u001
u01

1

m
(ωc1bx1 − bc10) .

C Proof of Proposition 2

We want to derive restrictions on the parameters so that the roots of the following polynomial
equation

π(ωx) ≡ θ1ω
2
x + θ2ωx + θ3 = 0

are positive and guarantee that the steady state exhibits monotonic saddle-path stability. Recall
that monotonic saddle-path stability requires that the roots are real, and only one of them less
than one.

The idea of the proof is as follows. First we show that it is always the case that π(1) =
θ1 + θ2 + θ3 > 0. Second, we derive conditions under which θ3 < 0. Note that π(0) = θ3. We
need θ3 < 0 because given that π(1) > 0, if it was the case that θ3 > 0 then we would either have
multiple equilibria (two real or two complex roots, both stable), or unstable roots. Finally, we
derive conditions under which θ1 < 0. We need θ1 < 0 because otherwise there would be a negative
stable root.

Thus, we derive conditions under which π(ωx) is initially increasing, crosses the ωx axis before
1, continues increasing, and then eventually starts decreasing and crosses the ωx axis for a second
time after 1, and tends to minus infinity.

The following are the definitions

θ1 = s (ζ1 − ζ2) + x (²2 − ²1)

θ2 = ²1ζ2 − ζ1²2 + x
¡
f 01 − f 02

¢
25



θ3 = ζ1f
0
2 − ζ2f

0
1

²i =
1− α

σ

c∗i
ki
+ s∗ + f 0i = hi + s

∗ + f 0i

ζ1 = x−
mc∗1
σs∗

and ζ2 = x+
c∗2
σs∗

ωx =
−θ2 ±

q
θ22 − 4θ1θ3
2θ1

Notice that we need θ22 − 4θ1θ3 ≥ 0 for the roots to be real. The following are some useful
results used below

K∗1
K∗2

= m

µ
β1
β2

¶ 1
1−α

Y ∗1
Y ∗2

=
β2
β1

K∗1
K∗2

= m

µ
β1
β2

¶ α
1−α

Y ∗ =
µ
1 +

β2
β1

K∗1
K∗2

¶
Y ∗2 =

Ã
1 +m

µ
β1
β2

¶ α
1−α
!
Y ∗2

C∗2 = (1− αβ2)Y
∗
2

C∗1 = Y
∗
1 + sK

∗
2 =

"
m

µ
β1
β2

¶ α
1−α

+ αβ2

#
Y ∗2

K∗2
Y ∗2

Y ∗1
K∗1

=
β2
β1

C.1 Solution for θ1 + θ2 + θ3

Using the definitions of θ1, θ2and θ3

θ1 + θ2 + θ3 = s (ζ1 − ζ2) + x (²2 − ²1) + ²1ζ2 − ζ1²2 + x
¡
f 01 − f 02

¢
+ ζ1f

0
2 − ζ2f

0
1

= x (h2 − h1) + h1ζ2 − h2ζ1
= h1

C∗2
σs∗

+ h2
C∗1
σs∗

=
1− α

σ2

µ
C∗1
s∗K∗1

C∗2 +
C∗2
s∗K∗2

C∗1

¶
> 0

and thus

θ1 + θ2 + θ3 = x (h2 − h1) + h1
µ
x+

C∗2
σs∗

¶
− h2

µ
x− C∗1

σs∗

¶
= h1

C∗2
σs∗

+ h2
C∗1
σs∗
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which implies

θ1 + θ2 + θ3 =
1− α

σ2

µ
C∗1
s∗K∗1

C∗2 +
C∗2
s∗K∗2

C∗1

¶
> 0

as desired.

C.2 Solution for θ3

Using the definition of θ3

θ3 = ζ1f
0
2 − ζ2f

0
1 =

f 02
β1
(ζ1β1 − ζ2β2)

=
f 02

σs∗β1
(σs∗K∗2 (β1 − β2)− β1C

∗
1 − β2C

∗
2)

From this equation, we conclude that θ3 < 0 iff

σ < bσ ≡ 1

(β1 − β2)

β1C
∗
1 + β2C

∗
2

s∗K∗2

where the right-hand-side does not depend on σ because the steady state does not depend on σ.
Solving for bσ

bσ =
1

(β1 − β2)

β1 (Y
∗
1 + Y

∗
2 − C∗2) + β2C

∗
2

s∗K∗2

=
1

(β1 − β2)

β1 + (β2 − β1) (1− αβ2) + β1Y
∗
1 /Y

∗
2

αβ2

or

bσ = 1

α (β1 − β2)

"
β1 + (β2 − β1) (1− αβ2)

β2
+m

µ
β1
β2

¶ 1
1−α
#

which can be written as

bσ (α,m,β1,β2) = 1 + 1 +m
³
β1
β2

´ 1
1−α

α (β1 − β2)

as shown in the text. Function bσ (α,m,β1,β2) has the following properties:
• bσ (α,m,β1,β2) > 1
• bσ (0,m,β1,β2) = bσ (1,m,β1,β2) =∞
• bσ (α,m,β1,β1) =∞
• ∂bσ(α,m,β1,β1)

∂m > 0

Notice that in the representative-agent model, where β1 = β2, then θ3 < 0 always holds
regardless of sigma. Notice also that the larger the steady-state productivity gap, i.e. the larger
the difference between β1 and β2, very low values of σ would not be admissible.
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C.3 Solution for θ1

Using the definition of θ1

θ1 = s

µ
x− C∗1

σs∗
− x− C∗2

σs∗

¶
+ x

µ
1− α

σ

C∗2
k2
+ s∗ + f 02 −

1− α

σ

C∗1
k1
− s∗ − f 01

¶
= sx

·
−C

∗
1 + C

∗
2

σs∗K∗2
− 1− α

σ

µ
C∗1
sK1

− C∗2
sK∗2

¶
+
1

β2
− 1

β1

¸
From this equation, it follows that θ1 < 0 iff

1

β2
− 1

β1
<
C∗1 +C∗2
σs∗K∗2

+
1− α

σ

·
C∗1
sK1

− C∗2
sK∗2

¸

Denote κ ≡ K∗2
K∗1
= 1

m

³
β2
β1

´ 1
1−α
. Then the previous inequality becomes

σ < eσ ≡ β1β2
β1 − β2

1

s∗K∗2
[C∗1 + C

∗
2 + (1− α) (κC∗1 − C∗2)]

=
β1β2

β1 − β2

1

s∗K∗2
[Y ∗ + (1− α) (κY ∗ − (1 + κ)C∗2)]

=
β1

β1 − β2

1

α

·
(1 + κ(1− α))

µ
1 +

β2
β1

1

κ

¶
− (1− α) (1 + κ) (1− αβ2)

¸
This is the solution for eσ, as show in the text. Using the definition of κ this expression can be

written as: One can try to simplify this expression as follows

eσ = β1
β1 − β2

1

α

1

κ

·
(1 + κ(1− α))

µ
κ+

β2
β1

¶
− κ (1− α) (1 + κ) (1− αβ2)

¸
or

eσ =
β1

β1 − β2

1

α

1

m"
m2

µ
β1
β2

¶ α
1−α

+m

µ
(1− α)

β2
β1
+ α+ α (1− α)β2

¶
+

µ
β2
β1

¶ 1
1−α

(1− α)αβ2
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Figure 1: Steady State Distribution of Collateral



jcordoba
Figure 2: Response of Ouput and Collateral to an Unanticipated Shock
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Figure 3: Output Response and Type of Roots
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Figure 4: Output response as a function of m and the productivity ratio
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Figure 5: Output response for optimal choices of m and productivity differences
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Figure 6: Impulse response functions to a 1% productivity shock
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Figure 7: Output response under heterogenous preferences and technologies




