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Abstract

An IV approach, using as instruments nonlinear transformations of the lagged levels, is
explored to test for unit roots in panels with general dependency and heterogeneity across
cross-sectional units. We allow not only for the cross-sectional dependencies of innova-
tions, but also for the presence of cointegration across cross-sectional levels. Unbalanced
panels and panels with differing individual short-run dynamics and cross-sectionally re-
lated dynamics are also permitted. Panels with such cross-sectional dependencies and
heterogeneities appear to be quite commonly observed in practical applications. Yet, none
of the currently available tests can be used to test for unit roots in such general panels. We
also more carefully formulate the unit root hypotheses in panels. In particular, using order
statistics we make it possible to test for and against the presence of unit roots in some
of the individual units for a given panel. The individual IV t-ratios, which are the bases
of our tests, are asymptotically normally distributed and cross-sectionally independent.
Therefore, the critical values of the order statistics as well as the usual average statistic
can be easily obtained from simple elementary probability computations. We show via
a set of simulations that our tests work well, while other existing tests fail to perform
properly. As an illustration, we apply our tests to the panels of real exchange rates, and
find no evidence for the purchasing power parity hypothesis, which is in sharp contrast
with the previous studies.
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1. Introduction

Panel unit root tests have been one of the most active research areas for the past several
years. This is largely due to the availability of panel data with long time span, and the
growing use of cross-country and cross-region data over time to test for many important
economic inter-relationships, especially those involving convergencies/divergencies of var-
ious economic variables. The notable contributors in theoretical research on the subject
include Levin, Lin and Chu (2002), Im, Pesaran and Shin (2003), Maddala and Wu (1999),
Choi (2001a) and Chang (2002, 2004). There have been numerous related empirical re-
searches as well. Examples include MacDonald (1996), Oh (1996) and Papell (1997), just
to name a few. The papers by Banerjee (1999), Phillips and Moon (2000) and Baltagi and
Kao (2000) provide extensive surveys on the recent developments on the testing for unit
roots in panels. See also Choi (2001b) and Phillips and Sul (2001) for some related work
in this line of research.

In this paper, we consider an IV approach using as instruments nonlinear transforma-
tions of the lagged levels. The idea was explored earlier by Chang (2002) to develop the
tests that can be used for panels with cross-sectional dependencies of unknown form. Our
work extends the approach by Chang (2002) in several important directions. First, we
allow for the presence of cointegration across cross-sectional units. It appears that there
is a high potential for such possibilities in many panels of practical interests. Yet, none of
the existing tests, including those developed by Chang (2002), is not applicable for such
panels. Second, our tests rely on the models augmented by cross-sectional dynamics and
other covariates. As demonstrated by Hansen (1995) and Chang, Sickles and Song (2001),
the inclusion of covariates can dramatically increase the power of the tests. Third, we
formulate the panel unit root hypotheses more carefully. In particular, we consider the
null and alternative hypotheses that some, not all, of the cross-sectional units have unit
roots. Such hypotheses are often more relevant for practical applications.

The presence of cointegration is dealt with simply by using an orthogonal set of func-
tions as instrument generating functions. Chang (2002) considers the IV t-ratios based
on the instruments generated by a single function for all cross-sectional units, and shows
their asymptotic independence for panels with general cross-sectional dependency. How-
ever, as we demonstrate in the paper, the asymptotic independence of the IV t-ratios
may be violated in the presence of cointegration across cross-sectional units, which would
invalidate the tests by Chang (2002). It is shown in the paper that this difficulty can be
resolved if we use the instruments generated by a set of functions that are orthogonal to
each other. If a set of orthogonal instrument generating functions are used, the resulting
IV t-ratios become asymptotically independent in the presence of cointegration as well as
the cross-correlation of innovations.

One of the main motivations to use panels to test for unit roots is to increase the
power. An important possibility, however, has been overlooked here, i.e., the possibility
of using covariates. The idea of using covariates to test for a unit root was first suggested
by Hansen (1995), and its implementation using bootstrap was studied later by Chang,
Sickles and Song (2001). They made it clear that there is a huge potential gain in power
if covariates are appropriately chosen. Of course, the choice of proper covariates may
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be difficult in practical applications. In the panel context, however, some of potential
covariates to account for the inter-relatedness of cross-sectional dynamics naturally come
up front. For instance, we may include the lagged differences of other cross sections to
allow for interactions in the short-run dynamics and the linear combinations of the lagged
cross-sectional levels in the presence of cointegration.

Obviously, the power increase is not the only reason to test for unit roots in panels. We
are often interested in testing for unit roots collectively for cross-sectional units included
in a certain panel. In this case, it is necessary to formulate the hypotheses more carefully.
In particular, we may want to test for and against the existence of unit roots in not all, but
only a fraction of cross-sectional units. Such formulation is, however, more appropriate
to investigate important hypotheses such as the purchasing power parity and the growth
convergence theories, among many others. The hypotheses can be tested more effectively
using order statistics such as maximum and minimum of individual tests. As we show
in the paper, the order statistics constructed from individual nonlinear IV t-ratios have
limit distributions which are nuisance parameter free and given by simple functionals of
the standard normal distribution function. The critical values are thus easily derived from
those of the standard normal distribution.

As should have now become obvious, our model is truly general. It allows for the
cross-sectional dependency in both the long-run and the short-run. We permit not only
the cross-correlation of the innovations and/or cross-sectional dynamics in the short-run,
but also the comovements of the stochastic trends in the long-run. Our formulation of the
hypotheses is also sharper and makes it possible to test for and against the partial existence
of unit roots in the panels. Yet our limit theories are all Gaussian and extremely simple
to derive. All this flexibility and simplicity are due to the employment of the nonlinear
IV methodology, or more specifically, the asymptotic independence and normality of the
individual nonlinear IV t-ratios. All other existing approaches do not offer such generality,
assuming either cross-sectional independence that is unacceptable in most applications
or a specific form of cross-sectional correlation structure that may be of only limited
applicability.

We conduct a set of simulations to evaluate the finite sample performances of our tests.
It appears that our tests perform well and are preferred to other existing tests. In partic-
ular, our tests perform significantly better than other tests when there are cointegrating
relations in the panel. The other tests suffer from severe size distortions in such cases. The
performances of our order statistics in small samples are mixed: The minimum statistic
performs quite well even with moderate T , whereas the maximum statistic requires a large
T for the reliable performance. For the purpose of illustration, we apply our tests to the
analysis of the purchasing power parity (PPP) hypothesis. Our tests do not provide any
evidence in favor of the PPP hypothesis for real exchange rates, which is quite in contrast
to the results in the previous literature. See Chang (2002) and Wu and Wu (2001) for
some recent examples. All of the previous results were, however, obtained using the tests
that assume either cross-sectional independence or no cointegration.

The rest of the paper is organized as follows. Section 2 specifies the assumptions
and provides the background theory. The models and hypotheses are introduced, and
some preliminary theories are included. Section 3 defines the test statistics for individual
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cross-sectional units and for panels and develops their asymptotics. The results from
simulations and empirical applications are summarized in Sections 4 and 5, respectively,
and the concluding remarks follow in Section 6. The mathematical proofs are collected in
Appendix.

2. Assumptions and Background Theory

We consider a panel model generated by

yit = αiyi,t−1 + uit, i = 1, . . . , N ; t = 1, . . . , T i, (1)

where (uit) will be specified later. As usual, the index i denotes individual cross-sectional
units, such as individuals, households, industries or countries, and the index t denotes
time periods. The number of time series observations T i for each individual i may differ
across cross-sectional units. Hence, unbalanced panels are allowed in our model.

2.1 Unit Root Hypotheses

We are interested in testing unit root null hypotheses for the panel given in (1). More
precisely, we consider the following sets of hypotheses.

Hypotheses (A) H0 : αi = 1 for all i versus H1 : αi < 1 for all i.

Hypotheses (B) H0 : αi = 1 for all i versus H1 : αi < 1 for some i.

Hypotheses (C) H0 : αi = 1 for some i versus H1 : αi < 1 for all i.

Hypotheses (A) and (B) both include the same null hypothesis, which implies that the
unit root is present in all individual units. However, their null hypotheses compete with
different alternative hypotheses. It is tested in Hypotheses (A) against the hypothesis that
all individual units are stationary, while in Hypotheses (B) the alternative is that there
are some stationary individual units. On the contrary, the null hypothesis in Hypotheses
(C) holds as long as the unit root exists in at least one individual unit, and is tested
against the alternative hypothesis that all individual units are stationary. The alternative
hypotheses in both Hypotheses (B) and (C) are the negations of their null hypotheses.
This is not the case for Hypotheses (A).

Virtually all the existing literature on panel unit root tests effectively looks at Hypothe-
ses (A). Some recent works, including Im, Pesaran and Shin (2003) and Chang (2002),
allow for heterogeneous panels, and formulate the null and alternative hypotheses as in
Hypotheses (B). However, strictly speaking, their use of average t-ratios can only be justi-
fied for the test of Hypotheses (A). To properly test Hypotheses (B), the minimum, instead
of the average, of individual t-ratios might have been used. It is indeed not difficult to
see that the tests based on the minimum would dominate those relying on the averages in
terms of power for the test of Hypotheses (B). In our simulations, the minimum statistic

3



actually yields much higher power than the average statistic, especially when only a small
fraction of individual units are stationary.

Hypotheses (C) have never been considered in the literature, though they seem to be
more relevant in many interesting empirical applications such as tests for the purchasing
power parity and the growth convergence theories. Note that the rejection of H0 in favor
of H1 in Hypotheses (C) directly implies that all (yit)’s are stationary, and therefore,
purchasing power parities or growth convergences hold if we let (yit)’s be real exchange
rates or differences in growth rates, respectively. No test, however, is available to deal
with Hypotheses (C) appropriately. Here we propose to use the maximum of individual
t-ratios for the test of Hypotheses (C).

2.2 Short-run Dynamics

We now completely specify the data generating process for our model introduced in (1).
The initial values (y10, . . . , yN0)

′ of (y1t, . . . , yNt)
′ do not affect our subsequent asymptotic

analysis as long as they are stochastically bounded, and therefore we set them at zero
for expositional brevity. We let yt = (y1t, . . . , yNt)

′ and assume that there are N − M
cointegrating relationships in the unit root process (yt), which are represented by the
cointegrating vectors (cj), j = 1, . . . , N − M . The usual vector autoregression and error
correction representation allow us to specify the short-run dynamics of (yt) as

4yit =

N∑

j=1

Pi∑

k=1

aij4yj,t−k +

N−M∑

j=1

bijc
′
jyt−1 + εit (2)

for each cross-sectional unit, where (εit) are white noise, i = 1, . . . , N , and 4 is the
difference operator.

To ensure our representation in (2), we assume that

Assumption 2.1 Let (yt) permit a finite order VAR representation and has N − M
linearly independent cointegrating relationships. Moreover, if we let ut = 4yt, then we
may write ut = Π(L)εt, where εt = (ε1t, . . . , εNt)

′, L is the lag operator, and Π(z) =∑∞
k=0 Πkz

k with Π0 = I and
∑∞

k=0 k‖Πk‖ < ∞.

As is well known, we may deduce from the Granger representation theorem that (yt) can
be written as in (2), and that rank Π(1) = M .

It follows from the Beveridge-Nelson decomposition that

ut = Π(1)εt + (ũt−1 − ũt) ,

where
ũt = Π̃(L)εt

with Π̃(z) =
∑∞

k=0 Π̃kz
k and Π̃k =

∑∞
j=k+1 Πj. Consequently,

yt = Π(1)

t∑

k=1

εk + (ũ0 − ũt).
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Note that (Π̃k) is absolutely summable due to the 1-summability of (Πk) given in Assump-
tion 2.1, and therefore, (ũt) is well defined and stationary. Moreover, if M < N and if C is
an N × (N −M) matrix such that C ′Π(1) = 0, then each column (cj), j = 1, . . . , N −M ,
of C represents a cointegrating vector for (yt).

The data generating process for the innovations (εt) is assumed to satisfy the following
assumption.

Assumption 2.2 (εt) is an iid (0,Σ) sequence of random variables with E|εt|` < ∞ for
some ` > 4, and its distribution is absolutely continuous with respect to Lebesgue measure
and has characteristic function ϕ such that lims→∞ |s|rϕ(s) = 0, for some r > 0.

Assumption 2.2 lays out the technical conditions that are required to invoke the asymptotic
theories for the nonstationary nonlinear models developed by Park and Phillips (1999).

Our unit root tests at individual levels will be based on the regression

yit = αiyi,t−1 +

Pi∑

k=1

αi,k4yi,t−k +

Qi∑

k=1

β′
i,kwi,t−k + εit (3)

for i = 1, . . . , N , where we interpret (wit) as covariates added to the augmented Dickey-
Fuller (ADF) regression for the i-th cross-sectional unit. It is important to note that the
vector autoregression and error correction formulation of the cointegrated unit root panels
in (2) suggests that we use such covariates. We may obviously rewrite (1) and (2) as (3)
with several lagged differences of other cross sections and linear combinations of the lagged
levels of all cross sections as covariates. In the subsequent development of our theory, we
will assume that the data generating process is given by (2) under Assumptions 2.1 and
2.2. This, however, is just for the expositional convenience. We may easily accommodate
other covariates accounting for idiosyncratic characteristics of cross-sectional units, as long
as they satisfy the conditions laid out in Hansen (1995) or Chang, Sickles and Song (2001).

The unit root regression with covariates was first considered in Hansen (1995) and
studied subsequently by Chang, Sickles and Song (2001). It was referred to by them as
covariates augmented Dickey-Fuller (CADF) regression. Both Hansen (1995) and Chang,
Sickles and Song (2001) show that using covariates offers a great potential in power gain
for the test of a unit root. In many panels of interest, we naturally expect to have short-run
dynamics that are inter-related across different cross-sectional units, which would make
it necessary to include the dynamics of others to properly model own dynamics. It is
even necessary to take into consideration the long-run trends of other cross-sectional units
in the presence of cointegration, since then error correction mechanism comes into play
and the stochastic trends of other cross-sectional units would interfere with own short-run
dynamics.
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2.3 Basic Tools for Asymptotics

Here we introduce some basic theories that are needed to develop the asymptotics of our
statistics. Define a stochastic process UT for ut as

UT (r) = T−1/2

[Tr]∑

t=1

ut

on [0, 1], where [s] denotes the largest integer not exceeding s. The process UT (r) takes val-
ues in D[0, 1]N , where D[0, 1] is the space of cadlag functions on [0, 1]. Under Assumptions
2.1 and 2.2, an invariance principle holds for UT , viz.,

UT →d U

as T →∞, where U is an N -dimensional vector Brownian motion with covariance matrix
Ω given by

Ω = Π(1)ΣΠ(1)′.

Under Assumption 2.1, the covariance matrix Ω is in general singular with rank M .
Our asymptotic theory involves the local time of Brownian motion, which we will

introduce briefly below. The reader is referred to Park and Phillips (1999, 2001), Chang,
Park and Phillips (2001), and the references cited there for the concept of local time and
its use in the asymptotics for nonlinear models with integrated time series. The local time
Li of Ui, for i = 1, . . . , N , is defined by

Li(t, s) = lim
ε→0

1

2ε

∫ t

0
1{|Ui(r) − s| < ε} dr.

Roughly, the local time Li measures the time that the Brownian motion Ui spends in the
neighborhood of s, up to time t. It is well known that Li is continuous in both t and s.
For any local integrable function G on R, we have an important formula

∫ t

0
G(Ui(r)) dr =

∫ ∞

−∞

G(s)Li(t, s) ds, (4)

which is called the occupation times formula.

2.4 Instrument Generating Functions

We consider the IV estimation of the augmented autoregression (3). To deal with the
cross-sectional dependency, we use the instrument generated by a nonlinear function Fi

Fi(yi,t−1)

for the lagged level yi,t−1 of each cross-sectional unit i = 1, . . . , N . For the augmented
regressors x′

it = (4yi,t−1, . . . ,4yi,t−Pi
;w′

i,t−1, . . . , w
′
i,t−Qi

), we use the variables themselves
as instruments. Hence, for the entire regressors (yi,t−1, x

′
it)

′, we use the instruments given
by

(Fi(yi,t−1), x
′
it)

′,
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similarly as in Chang (2002).
The transformations (Fi) will be referred to as the instrument generating functions

(IGF). We assume that

Assumption 2.3 Let (Fi) be regularly integrable and satisfy (a)
∫∞

−∞
xFi(x)dx 6= 0 for

all i and (b)
∫∞

∞
Fi(x)Fj(x)dx = 0 for all i 6= j.

The class of regularly integrable transformations was first introduced in Park and Phillips
(1999), to which the reader is referred for details. They are just transformations on R
satisfying some mild technical regularity conditions.

Assumption 2.3 (a) needs to hold, since otherwise we would have instrument failure and
the resulting IV estimator becomes inconsistent. It is analogous to the non-orthogonality
(between the instruments and regressors) requirement for the validity of IV estimation
in standard stationary regressions. See Chang (2002) for more detailed discussions. As-
sumption 2.4 (b) is necessary to allow for the presence of cointegration. If cointegration
is present, the procedure in Chang (2002) relying on the same IGF for all cross-sectional
units becomes invalid. This will be explained in detail in the next section.

The Hermite functions of odd orders k = 2i−1, i = 1, . . . , N , satisfy all the conditions
in Assumption 2.3, and therefore, can be used as a proper set of IGF’s. The Hermite
function Gk of order k, k = 0, 1, 2, . . ., is defined as

Gk(x) = (2kk!
√

π)−1/2Hk(x)e−x2/2, (5)

where Hk is the Hermite polynomial of order k given by

Hk(x) = (−1)kex2 dk

dxk
e−x2

.

It is well known that the class of Hermite functions introduced above forms an orthonormal
basis for L2(R), i.e., the Hilbert space of square integrable functions on R. We thus have

∫ ∞

−∞

Gj(x)Gk(x)dx = δjk

for all j and k, where δjk is the Kronecker delta. Therefore, we may define the IGF’s (Fi)
by

Fi = G2i−1

for i = 1, . . . , N .

2.5 Normalization

The orthogonality of the IGF’s yields the orthogonality of the IV t-ratios only when (yit)
is asymptotically of the same scale across i = 1, . . . , N . Note that the orthogonality
between functions is not preserved under arbitrary rescaling of their arguments. This will
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be seen more clearly in the proof of Lemma 3.2. Roughly, we have for i = 1, . . . , N and
for r ∈ [0, 1]

yi[Tir] =
√

Ti

yi[Tir]√
Ti

≈d

√
TiUi(r),

where Ui is the limit Brownian motion introduced in Section 2.3. Therefore, (yit)’s are
asymptotically of the same scale if Ui’s have the same variance and Ti’s are identical for
all cross-sectional units i = 1, . . . , N .

The variance of Ui, i.e., the long-run variance of (yit) can be easily estimated consis-
tently. Therefore, we may assume without loss of generality that (yit)’s have the same
long-run variance for i = 1, . . . , N , since if necessary we may always normalize them using
their estimated long-run variances, so that they all have the unit long-run variance. Unless
stated otherwise, this convention will be made throughout the paper.

For the unbalanced panels, Ti’s are different across i = 1, . . . , N . In this case, we set
an arbitrary cross-sectional unit, say, the first unit, to be the scale numeraire, and let

y∗it =

√
T1√
Ti

yit. (6)

Note that
y∗i[Tir]

=
√

T1

yi[Tir]√
Ti

≈d

√
T1Ui(r).

for i = 1, . . . , N and for r ∈ [0, 1]. Therefore, given our convention that Ui’s all have
the same variance, (y∗

it)’s are asymptotically of the same scale for i = 1, . . . , N even in
unbalanced panels. For expositional brevity, we assume in the subsequent presentation of
our theories that the scale adjustment is already done for all (yit)’s, and continue to use
(yit) in the place of (y∗

it) for i = 1, . . . , N . This should cause no confusion.

3. Test Statistics and Their Asymptotics

In this section, we explicitly define test statistics and establish their asymptotic theories.
We first look at IV t-ratios for individual cross-sectional units, and derive their asymp-
totics. We then discuss how one may combine the individual IV t-ratios in formulating
tests for the panel unit root hypotheses, specified earlier as Hypotheses (A) – (C), and
subsequently develop the asymptotics for the resulting statistics.

3.1 Individual IV t-ratios and Their Asymptotics

We first define individual IV t-ratios explicitly. Let

yi =




yi,1
...

yi,Ti


 , y`i =




yi,0
...

yi,Ti−1


 , Xi =




x′
i,1
...

x′
i,Ti


 , εi =




εi,1
...

εi,Ti


 ,
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where x′
it = (4yi,t−1, . . . ,4yi,t−Pi

;w′
i,t−1, . . . , w

′
i,t−Qi

).2 Then the covariates augmented
autoregression (3) can be written in matrix form as

yi = y`iαi + Xiγi + εi = Yiδi + εi, (7)

where γi = (αi,1, . . . , αi,Pi
;β′

i,1, . . . , β
′
i,Qi

)′, Yi = (y`i, Xi), and δi = (αi, γ
′
i)
′. For the

regression (7), we consider the estimator δ̂i of δi given by

δ̂i =

(
α̂i

γ̂i

)
= (M ′

iYi)
−1M ′

iyi =

(
Fi(y`i)

′y`i Fi(y`i)
′Xi

X ′
iy`i X ′

iXi

)−1(
Fi(y`i)

′yi

X ′
iyi

)
, (8)

where Mi = (Fi(y`i), Xi) with Fi(y`i) = (Fi(yi,0), . . . , Fi(yi,Ti−1))
′. The estimator δ̂i is thus

defined to be the IV estimator constructed from the instruments Mi.
The IV estimator α̂i for the AR coefficient αi corresponds to the first element of δ̂i

given in (8). Under the null, we have

α̂i − 1 = B−1
Ti

ATi
, (9)

where

ATi
= Fi(y`i)

′εi − Fi(y`i)
′Xi(X

′
iXi)

−1X ′
iεi

=

Ti∑

t=1

Fi(yi,t−1)εit −
Ti∑

t=1

Fi(yi,t−1)x
′
it

(
Ti∑

t=1

xitx
′
it

)−1 Ti∑

t=1

xitεit,

BTi
= Fi(y`i)

′y`i − Fi(y`i)
′Xi(X

′
iXi)

−1X ′
iy`i

=

Ti∑

t=1

Fi(yi,t−1)yi,t−1 −
Ti∑

t=1

Fi(yi,t−1)x
′
it

(
Ti∑

t=1

xitx
′
it

)−1 Ti∑

t=1

xityi,t−1,

and the variance of ATi
is given by

σ2
i ECTi

under Assumption 2.2, where

CTi
= Fi(y`i)

′Fi(y`i) − Fi(y`i)
′Xi(X

′
iXi)

−1X ′
iFi(y`i)

=

Ti∑

t=1

Fi(yi,t−1)
2 −

Ti∑

t=1

Fi(yi,t−1)x
′
it

(
Ti∑

t=1

xitx
′
it

)−1 Ti∑

t=1

xitFi(yi,t−1).

For testing the unit root hypothesis αi = 1 for each i = 1, . . . , N , we construct the
t-ratio statistic from the nonlinear IV estimator α̂i defined in (9). More specifically, we
construct such an IV t-ratio for testing for a unit root in (1) or (3) as

τi =
α̂i − 1

s(α̂i)
, (10)

2The regressor xit includes the lagged differenced terms 4yi,t−1, . . . ,4yi,t−Pi
of yit. By convention, we

assume that yit is observed for t = −Pi, . . . , Ti and set the range of time index to be t = 1, . . . , Ti. This
convention will be made throughout the paper.
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where s(α̂i) is the standard error of the IV estimator α̂i given by

s(α̂i)
2 = σ̂2

i B
−2
Ti

CTi
. (11)

The σ̂2
i is the usual variance estimator given by T −1

i

∑Ti

t=1 ε̂2
it, where ε̂it is the fitted residual

from the augmented regression (3), viz.,

ε̂it = yit − α̂iyi,t−1 −
Pi∑

k=1

α̂i,k4yi,t−k −
Qi∑

k=1

β̂′
i,kwi,t−k = yit − α̂iyi,t−1 − x′

itγ̂i.

It is natural in our context to use the IV estimate (α̂i, γ̂
′
i)
′ given in (8) to get the fitted

residual ε̂it. However, we may obviously use any other estimator of (αi, γ
′
i)
′ as long as it

yields a consistent estimate for the residual error variance.
The limit null distribution of the IV t-ratio τi for testing αi = 1 defined in (10) is

derived easily from the asymptotics for nonlinear transformations of integrated processes
established in Park and Phillips (1999, 2001) and Chang, Park and Phillips (2001) and is
given in

Lemma 3.1 Under Assumptions 2.1-2.3, we have

τi →d N(0, 1)

as Ti → ∞ for all i = 1, . . . , N .

The normality of the limiting null distribution of the IV t-ratio τi is a direct conse-
quence of using the instrument Fi(yi,t−1), a regularly integrable transformation of the
lagged level yi,t−1 which is an integrated process under the unit root null hypothesis. Our
limit theory here is thus fundamentally different from the usual unit root asymptotics.
This is due to the local time asymptotics and mixed normality of the sample moment∑Ti

t=1 Fi(yi,t−1)εit and the asymptotic orthogonalities between the instrument Fi(yi,t−1)
and the augmented variables (4yi,t−1, . . . ,4yi,t−Pi

;w′
i,t−1, . . . , w

′
i,t−Qi

) which are all sta-
tionary. The nonlinearity of the instrument is therefore essential for our Gaussian limit
theory. Moreover, the limit standard normal distributions are independent across cross-
sectional units i = 1, . . . , N , as we show in the next section.

Our unit root test based on the IV t-ratio statistic is consistent. Under the alternative
of stationarity, the IV t-ratio τi given in (10) indeed diverges at the

√
Ti-rate. This can be

shown using the same argument as the one in Chang (2002, p.270), to which the interested
reader is referred. Consequently, the IV t-ratio τi diverges at the same rate as the usual
OLS-based t-type unit root tests such as the augmented Dickey-Fuller test, under the
alternative of stationarity.

3.2 Test Statistics for Panels and Their Asymptotics

For the tests of Hypotheses (A) – (C), we let τi be the IV t-ratio for the i-th cross-sectional
unit, and define

S =
1√
N

N∑

i=1

τi,

10



Smin = min
1≤i≤N

τi,

Smax = max
1≤i≤N

τi.

The average statistic S is proposed for the test of Hypotheses (A), and comparable to other
existing tests. The minimum statistic Smin is more appropriate for the test of Hypotheses
(B). To test for Hypotheses (B), the average statistic S can also be used, but the test based
on Smin would be preferable as discussed earlier. The maximum statistic Smax can be used
to test Hypotheses (C). Obviously, the average statistic S and the minimum statistic Smin

cannot be used to test for Hypotheses (C), since they would have incorrect sizes.
Let M be 0 ≤ M ≤ N and define

Tmin = min
1≤i≤N

Ti, Tmax = max
1≤i≤N

Ti.

We assume

Assumption 3.1 Let αi = 1 for 1 ≤ i ≤ M , and set M = 0 if αi < 1 for all 1 ≤ i ≤ N .

Assumption 3.2 Assume

Tmin → ∞, Tmax/T
2
min → 0,

which will simply be signified by T → ∞ in our subsequent asymptotics.

Assumption 3.1 implies that there are M cross-sectional units having unit roots.3 As-
sumption 3.2 gives the premier for our asymptotics. Our asymptotics are based on T -
asymptotics and require that the time spans for all cross-sectional units be large for our
asymptotics to work. However, we allow for unbalanced panels and they only need to
be balanced asymptotically. Our conditions here are fairly weak, and we may therefore
expect them to hold widely. The conditions in Assumption 3.2 are stronger than those in
Assumption 4.1 of Chang (2002), which require Tmin → ∞ and Tmax(log Tmax)

4/T 3
min → 0.

This is because we allow for the presence of cointegration. Even though it can be ef-
fectively dealt with by using a set of orthogonal IGF’s, we need slightly more stringent
assumption on the balancedness of the underlying panels.

We have

Lemma 3.2 Under Assumptions 2.1–2.3 and 3.1–3.2, the results in Lemma 3.1 hold
jointly for all i = 1, . . . ,M and independently across i = 1, . . . ,M .

The asymptotic independence of τi’s is crucial for the subsequent development of our
theory. Note that here we allow for the presence of cointegration as well as unknown
form of cross-sectional dependencies in the innovations. We now explain the reason why

3We defined earlier M to be the number of independent unit roots, net of the number of cointegration
relationships, and should not be confused with the usage here. The presence of cointegration no longer
affects our asymptotics, due to the orthogonality of the set of IGF’s.
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we may expect their asymptotic independence even under such general cross-sectional
dependencies. Assume for simplicity that the panels are balanced, i.e., Ti = T for all i.
As shown in Chang, Park and Phillips (2001), we have

1
4
√

T

T∑

t=1

Fi(yi,t−1)εit ≈d
4
√

T

∫ 1

0
Fi(

√
TUi)dVi,

1
4
√

T

T∑

t=1

Fj(yj,t−1)εjt ≈d
4
√

T

∫ 1

0
Fj(

√
TUj)dVj ,

which become independent if and only if their quadratic covariation

σij

√
T

∫ 1

0
Fi(

√
TUi(r))Fj(

√
TUj(r))dr →a.s. 0 (12)

as T → ∞, where σij denotes the covariance between Vi and Vj representing the limit
Brownian motions of (εit) and (εjt), respectively.

It is indeed well known that

∫ 1

0
Fi(

√
TUi(r))Fj(

√
TUj(r))dr = Op(log T/T ) a.s. (13)

for any Brownian motions Ui and Uj so long as they are not degenerate, and this implies
that the condition (12) holds even when σij 6= 0. Chang (2002) uses this result to develop
the unit root tests for panels with cross-sectionally correlated innovations. However, (13)
does not hold in the presence of cointegration between (yit) and (yjt). In this case, their
limiting Brownian motions Ui and Uj become degenerate. If the cointegrating relationship
is given by the unit coefficient, for instance, then we would have Ui = Uj, and therefore,

√
T

∫ 1

0
Fi(

√
TUi(r))Fj(

√
TUj(r))dr =

√
T

∫ 1

0
(FiFj)(

√
TUi(r))dr

=
√

T

∫ ∞

−∞

(FiFj)(
√

Ts)Li(1, s)ds

=

∫ ∞

−∞

(FiFj)(s)Li(1, s/
√

T )ds

=

(∫ ∞

−∞

(FiFj)(s)ds

)
Li(1, 0) + oa.s.(1)

by the occupation times formula (4), change of variables and the continuity of L(1, ·).
The asymptotic independence of τi and τj generally breaks down, and holds only when
Fi and Fj are orthogonal. This is the reason why the method by Chang (2002) becomes
invalid in the presence of cointegration. We use an orthogonal set of IGF’s to preserve the
asymptotic independence here.

The asymptotic theories for the statistics S, Smin and Smax may be easily derived
from Lemma 3.2. We now let Φ be the distribution function for the standard normal
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distribution, and let λ be the size of the tests. For a given size λ, we define cM
max(λ) and

cmin(λ) by
Φ(cM

max(λ))M = λ, (1 − Φ(cmin(λ)))N = 1 − λ.

These provide the critical values of the statistics Smin and Smax for the tests of Hypotheses
(B) and (C). The critical values c(λ) of the average test S for Hypotheses (A) are defined
as usual from Φ(c(λ)) = λ. The following table shows the tests and critical values that
should be used to test each of Hypotheses (A) – (C).

Hypotheses Test Statistics Critical Values

Hypotheses (A) S c(λ)
Hypotheses (B) Smin cmin(λ)
Hypotheses (C) Smax cM

max(λ)

The critical values cM
max(λ) and cmin(λ) for sizes λ = 1%, 5% and 10% are tabulated in

Table 1 for some cases of M,N up to 100.
The following lemma summarizes the asymptotic behaviors of S, Smin and Smax.

Theorem 3.3 Let Assumptions 2.1–2.3 and 3.1–3.2 hold. If M = N ,

lim
T→∞

P{S ≤ c(λ)} = λ,

lim
T→∞

P{Smin ≤ cmin(λ)} = λ.

If 1 ≤ M ≤ N , then

lim
T→∞

P{Smax ≤ cM
max(λ)} = λ, lim

T→∞
P{Smax ≤ c1

max(λ) = c(λ)} ≤ λ.

On the other hand, S, Smax →p −∞ if M = 0, and Smin →p −∞ if M < N .

Theorem 3.3 implies that all our tests have the prescribed asymptotic sizes. The tests
using statistics S and Smin with critical values c(λ) and cmin(λ), respectively, have the exact
size λ asymptotically under the null hypotheses in Hypotheses (A) and (B). However, the
null hypothesis in Hypotheses (C) is composite, and the rejection probabilities of the test
relying on Smax with critical values c(λ) may not be exactly λ even asymptotically. The
size λ in this case is the maximum rejection probabilities that may result in under the null
hypothesis. Theorem 3.3 also shows that all our tests are consistent for Hypotheses (A) –
(C).
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3.3 Models with Deterministic Components

The models with deterministic components can be analyzed similarly using properly de-
meaned or detrended data. As argued and demonstrated in Chang (2002), a proper
demeaning or detrending scheme required here must be able to remove the nonzero mean
and time trend successfully, while preserving the predictability of the instruments and ul-
timately the Gaussian limit theory for the nonlinear IV unit root tests. We now introduce
our demeaning and detrending schemes. The methods are basically similar to those given
in Chang (2002), but with additional attention paid to the covariates.

If the time series (zit) with a nonzero mean is given by

zit = µi + yit, (14)

where the stochastic component (yit) is generated as in (1), then we may test for the
presence of a unit root in (yit) from the covariates augmented regression (3) defined with
the demeaned series yµ

it, yµ
i,t−1, 4yµ

i,t−k and wµ
i,t−k of zit, zi,t−1, 4zi,t−k and wi,t−k, viz.,

yµ
it = αiy

µ
i,t−1 +

Pi∑

k=1

αi,k 4 yµ
i,t−k +

Qi∑

k=1

β′
i,kw

µ
i,t−k + eit. (15)

As in Chang (2002), the demeaned series yµ
it and yµ

i,t−1 are constructed by subtracting the

mean of the partial sample up to time (t−1), i.e., (t−1)−1
∑t−1

k=1 zik, which is the least squares
estimator of µi in (14). The (t−1)-adaptive demeaning is used to maintain the martingale
property and thus the Gaussian limit theory of our nonlinear IV t-ratios. The terms
4yµ

i,t−k are simply the differences of the original data, i.e., 4zi,t−k, for k = 1, 2, . . . , Pi,

and the (eit) are regression errors. We now define the demeaned covariate series wµ
i,t−k.

In order to demean the covariates wi,t−k properly, we first need to know what types of
covariates are used. For the given panel, there are three natural groups of candidates for
the covariates: (i) the lagged differences 4yj,t−k for the I(1) yjt’s not cointegrated with yit,
(ii) the lagged cointegration errors, say (yi,t−1−φiyj,t−1) for the I(1) yjt’s cointegrated with
yit,

4 and (iii) the level values yjt for the stationary yjt’s. Then, the following demeaned
covariates may be used for each type of covariates, respectively, viz.,

4yj,t−k : 4zj,t−k, for k = 1, 2, . . . , Qi, (16)

(yi,t−1 − φiyj,t−1) :

(
zi,t−1 −

1

Ti

Ti∑

k=1

zik

)
− φi


zj,t−1 −

1

Tj

Tj∑

k=1

zjk


 , (17)

yjt : zjt −
1

Tj

Tj∑

k=1

zjk. (18)

The term T−1
j

∑Tj

k=1 zjk appearing in (17) and (18) is the grand sample mean of zjt, and
it is used to remove the nonzero mean of zj,t−1 and zjt.

4Here, we assume that the true cointegrating relations are known. In practice, however, the cointegrat-
ing vectors have to be estimated.
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We may then construct the nonlinear IV t-ratio statistic τ µ
i for the process (zit) in

(14) with a nonzero mean based on the nonlinear IV estimator for αi computed from the
covariates augmented regression (15), just as in (10).

Similarly as in the models with nonzero means, we may also test for unit roots in the
models with deterministic time trends using the nonlinear IV unit root test constructed
from the properly detrended data. More explicitly, for the time series with a linear time
trend

zit = µi + δit + yit (19)

where (yit) is generated as in (1), we may test for a unit root in (yit) from the regression
(3) defined with the properly detrended series yτ

it, yτ
i,t−1, 4yτ

i,t−k and wτ
i,t−k of the given

data zit, zi,t−1, 4zi,t−k and wi,t−k, viz.,

yτ
it = αiy

τ
i,t−1 +

Pi∑

k=1

αi,k4yτ
i,t−k +

Qi∑

k=1

β′
i,kw

τ
i,t−k + eit. (20)

The detrended data yτ
it and yτ

i,t−1 are constructed following the adaptive detrending scheme
introduced in Chang (2002) which uses the least squares estimators of the drift and trend
coefficients, µi and δi, from the model (19) using again the observations up to time (t−1)
only. The adaptive detrending preserves the predictability of our instrument F (y τ

i,t−1).
The lagged differences are also detrended just as in Chang (2002), viz., 4yτ

i,t−k = 4zi,t−k−
ziTi

/Ti, where the grand sample mean of 4zit, i.e., T−1
i

∑Ti

k=1 4zik, is used to eliminate
the nonzero mean of 4zi,t−k, for k = 1, . . . , Pi. The detrended covariates wτ

i,t−k for the
model (19) with linear trend are constructed accordingly for each type of the covariates
mentioned above (16) as

4yj,t−k : 4zj,t−k − 1

Tj
zjTj

, for k = 1, 2, . . . , Qi, (21)

(yi,t−1 − φiyj,t−1) : (zi,t−1 − µ̂Ti

i − δ̂Ti

i (t − 1)) − φi(zj,t−1 − µ̂
Tj

j − δ̂
Tj

j (t − 1)) (22)

yjt : zjt − µ̂
Tj

j − δ̂
Tj

j t. (23)

The parameters µ̂Ts
s and δ̂Ts

s for s = i, j (6= i), in (22) and (23) are estimated using the
full sample from the model (19), and in (21) the grand sample mean zjTi

/Ti of 4zjt is
used to eliminate the nonzero mean of 4zj,t−k, for k = 1, . . . , Qi.

The nonlinear IV t-ratio τ τ
i for testing unit roots in the model (19) with linear time

trend is then defined as in (10) using the nonlinear IV estimator for αi computed from
the regression (20) based on the adaptively detrended data.

With the adaptive demeaning or adaptive detrending, the predictability of our nonlin-
ear instrument Fi(y

µ
i,t−1) or Fi(y

τ
i,t−1) is retained, and consequently our previous results

continue to apply, including the normal distribution theory for the IV t-ratio statistic. We
may now derive the limit theories of the statistics τ µ

i and τ τ
i for the models with nonzero

means and deterministic trends in the similar manner as we did to establish the limit
theory given in Lemma 3.1.
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Corollary 3.4 The results in Lemmas 3.1 and 3.2 hold also for both τ µ
i and τ τ

i .

It follows that the standard normal limit theory of the covariates augmented nonlinear IV
t-ratio statistics continues to hold for the models with deterministic components.

4. Simulations

In this section, we conduct a set of simulations to investigate the finite sample performances
of the newly proposed panel unit root tests for testing the three hypotheses formulated in
Section 2. For the simulations, we consider the model (14) with a nonzero mean and the
stochastic component (yit) specified as in (1) with the innovations (uit) generated by the
following three DGP’s:

DGP1 : uit = βiui,t−1 + ηit,

DGP2 : uit = βiui,t−1 + νiξt + ηit,

DGP3 : uit = βiui,t−1 + νiξt + 4ηit,

for i = 1, . . . , N ; t = 1, . . . , T, where ξt is the scalar common stochastic trend and
ηt = (η1t, . . . , ηNt)

′ an N -dimensional innovation vector with cross-sectional dependence.
Note that DGP1 is the same model analyzed in Chang (2002), DGP2 is a version of
the widely used dynamic factor model, and DGP3 is new and introduced here to allow
for cointegration across cross-sectional units. By exploring these distinct forms of cross-
correlations, we aim to see how our tests perform relative to the existing tests in each
situation.

DGP1 generates cross-sectional correlations from dependent innovations (ηit) with the
covariance matrix, say V, which is unrestricted except for being symmetric and nonsingu-
lar. The innovations in DGP2 and DGP3 also have the same error covariance V . However,
DGP2 and DGP3 have another level of cross-correlations coming from the presence of the
common stochastic trend (ξt). Using this common factor, DGP2 and DGP3 can generate
stronger cross-sectional dependencies compared to those generated by DGP1. In DGP2,
the generated series (yit) contain both nonstationary common factors and nonstationary
individual errors under the unit root null hypothesis, hence there is no cointegrating rela-
tionship among cross sections. In DGP3, however, cross-sectional cointegration is present,
and they are generated by the nonstationary common stochastic trend coupled with sta-
tionary individual errors. Thus, there exists a cointegrating relationship between any pair
of (yit) and (yjt), with (N − 1) linearly independent cointegrating relations among N
individual units.

The parameters in our DGP’s are generated as follows. The AR coefficient βi is drawn
randomly from Uniform[0.2, 0.4]. The parameter νi, so called factor loadings, that controls
the relative importance of common versus idiosyncratic shocks is also drawn randomly
from Uniform[0.5, 3]. The processes (ξt) and (ηt) are independent and drawn from iid
N(0, 1) and iid N(0, V ), respectively. The parameters of the (N×N) covariance matrix V
of the innovations (ηt) are also drawn randomly. To ensure that V is a symmetric positive
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definite matrix and to avoid the near-singularity problem, we generate V following the
steps outlined in Chang (2002). The steps are presented here for convenience:

(1) Generate an (N×N) matrix M from Uniform[0,1].
(2) Construct from M an orthogonal matrix H = M(M ′M)−1/2.
(3) Generate a set of N eigenvalues, λ1, . . . , λN . Let λ1 =r > 0 and λN = 1 and draw
λ2, . . . , λN−1 from Uniform[r,1].
(4) Form a diagonal matrix Λ with (λ1, . . . , λN ) on the diagonal.
(5) Construct the covariance matrix V using the spectral representation V = HΛH ′.

Constructed as such, the covariance matrix V will be symmetric and nonsingular with
eigenvalues ranging from r to 1. The ratio r of the minimum eigenvalue to the maximum
provides a measure for the degree of correlations and heterogeneity in the error covariance
matrix V . The covariance matrix V becomes singular as r tends to zero and becomes
spherical as r approaches 1. For the simulations, we set r =0.1 as in Chang (2002), and
use the correlation matrix obtained from the covariance matrix V in the usual manner.

The panels with the cross-sectional dimensions N = 10, 20, 50 and the time series
dimensions T = 100, 200 are considered for the 5% nominal test size. We set the AR
coefficient αi in (1) at αi = 1 for the cross sections that have unit root, and generate
αi randomly from Uniform[0.8,1] for the stationary cross sections. Since we are using
randomly drawn parameter values, we simulate 10 times and report the average of the
finite sample performances of the tests. Each simulation run is carried out with 3,000
iterations. We assume that there exist nonzero means in the data, and thus we use the
adaptively demeaned series as in (16)-(18) for our nonlinear IV tests.

In our simulations, we consider the following tests:

Nonlinear IV Unit Root Tests

SC , SC
min, S

C
max ave, min and max tests with single IGF and no covariate

SF , SF
min, S

F
max ave, min and max tests with single IGF and covariate

SH , SH
min ave and min tests with orthogonal IGF’s and no covariate

SA, SA
min ave and min tests with orthogonal IGF’s and covariate

Other Existing Tests

IPS test by Im, Pesaran and Shin
MP test by Moon and Perron

The test SC , based on a single integrable IGF, is developed in Chang (2002) for Hypotheses
(A). It is considered here for the comparison with other IV tests. The tests SC

min and SC
max

are, respectively, the minimum and maximum counterparts of the average test SC for
Hypotheses (B) and (C) relying on a single integrable IGF. The tests SF , SF

min and SF
max are

the ones with covariate, each corresponding to SC , SC
min and SC

max. We may compare these
two sets of the tests to analyze the effect of including a covariate. The tests SC , SC

min, S
C
max
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and SF , SF
min, S

F
max are valid only for DGP1 and DGP2. The presence of cross-sectional

cointegration in DGP3 invalidates these tests. Considered subsequently are the tests
SH and SA, which are the average tests based on the orthogonal IGF’s, respectively
without and with covariate. The tests SH

min and SA
min are their minimum counterparts.

These tests are applicable for all DGP’s. They are, however, intended to effectively deal
with the presence of cross-sectional cointegration in DGP3. The maximum tests with
the orthogonal IGF’s are not examined. The cross-sectional cointegration presumes the
presence of unit roots, and therefore, Hypotheses (C) are not particularly interesting in
this situation.

We also consider two other existing tests IPS and MP, by Im, Pesaran and Shin (2003)
and Moon and Perron (2001), respectively. The IPS test is based on the average of
the individual t-ratios computed from the usual sample ADF regressions with mean and
variance modifications. More explicitly, the IPS test is defined as

IPS =

√
N(t̄N − N−1

∑N
i=1 E(ti))√

N−1
∑N

i=1 var(ti)

where ti is the t-statistic for testing αi = 1 for the i-th sample ADF regression, and
t̄N = N−1

∑N
i=1 ti. The values of the expectation and variance, E(ti) and var(ti), for each

individual ti depend on Ti and the lag order Pi, and are computed via simulations from
independent normal samples. See Table 3 in Im, Pesaran, and Shin (2003). The IPS test
assumes cross-sectional independence and hence it is not valid under our DGP’s.

The MP test models the cross-sectional dependence using an approximate dynamic
linear factor model. They model the error process 4yit = uit as uit = δ′iξt + εit, where
(εit) are cross-sectionally independent idiosyncratic shocks, δi factor loadings for the i-th
unit, and ξt an unknown number of unobservable dynamic factors that are common to all
individual units. Then, it follows under the null of αi = 1 for each i = 1, . . . , N ,

yit = yi,t−1 + uit = yi0 + δ′i

t∑

k=1

ξk +

t∑

k=1

εik.

Under this setup, first the data is demeaned, and the cross-correlations generated by the
nonstationary common factors

∑t
k=1 ξk are removed by projecting the panel data to the

space orthogonal to the factor loadings δi. Then, they calculate the t-statistic to test for
unit roots existing in such ‘de-factored’ panel data, say ỹ, based on the modified pooled
OLS estimator α̃pool of α obtained from the pooled regression

ỹ = αỹ−1 + ε̃, (24)

where ỹ = (ỹ′1, . . . , ỹ
′
N )′ and ε̃ = (ε̃′1, . . . , ε̃

′
N )′.5 More explicitly, the MP test is defined as

MP =

√
NT (α̃pool − 1)√

3φ̂4
ε/ω̂

4
ε

,

5Note that in (24) the regression errors are now cross-sectionally independent since the de-factored
data, ỹ, used in the estimation, are free of the common factors that generate the correlations across cross
sections.
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where ω̂2
ε = 1

N

∑N
i=1 ω̂2

ε,i, φ̂4
ε = 1

N

∑N
i=1 ω̂4

ε,i and ω̂2
ε,i are the long-run variance of (εit).

6

Here, we note that the MP test may be used to test for unit roots in the models generated
by DGP1 or DGP2 only when ηit’s are independent across i. It is invalid under DGP3
even with the cross-sectional independence of ηit’s.

As the covariate, we use the estimated common factor given by the average of the
fitted residuals v̂it from the regression of 4yit on 4yi,t−1.

7 The tests with the covariate
are thus expected to perform better for DGP2, compared to the tests constructed without
the covariate. If we set vit = νiξi + ηit under DGP2, we may indeed deduce that

1

N

N∑

i=1

vit = ν̄ξt +
1

N

N∑

i=1

ηit,

where ν̄ = N−1
∑N

i=1 νi. Therefore, our covariate more precisely estimates the common
factor as N gets large and the realized values of νi’s are concentrated around ν̄. For
the actual implementation of our tests with the covariate, we rank the estimated error
variances of vit, which amount to be ν2

i +σ2
i , and choose a sub-group of the cross-sectional

units among which the estimated variances vary least.8 This allows us to select the units
with most homogeneous factor loadings so long as the σ2

i are the same across i. For the
selection of the sub-group, we simply choose in our simulations the units corresponding to
the middle 40% of the error variances.9 The factor estimate obtained this manner appears
to work reasonably well across all T ’s and N ’s that we consider in the simulations.

For the construction of the nonlinear tests SC and SF with single IGF, we use the
same IGF suggested in Chang (2002). For the tests SH and SA with orthogonal IGF’s, we
use a set of the N -Hermite functions defined in (5). We normalize the data as suggested
in Section 2.5 by dividing yit’s, i = 1, . . . , N , by their estimated long-run variances. We
then scale the data by multiplying the scale constant c chosen by the following scheme:

c = K × T−1/2 (25)

for all i = 1, . . . , N .10 For the tests SC , SC
min, S

C
max, S

F , SF
min and SF

max with single IGF, we
set the constant at K =4. On the other hand, we use the constant K =3 and 2 respectively
for the tests SH and SA, and K =1.5 and 1 respectively for the tests SH

min and SA
min. Note

that we use the smaller values of K for the tests with orthogonal IGF’s, when the covariate
is augmented. This is because in this case we are doubly controlling the cross-correlations
by using the orthogonal IGF’s and by including the estimated factor as a covariate. The
estimated factor would pick up substantial amount of the cross-correlations, and thus the

6The maximum number of factors for the MP test is set at 8 as in Moon and Perron (2001).
7There exist other ways to estimate the common factor in this case, such as those suggested in Bai and

Ng (2002), Moon and Perron (2001) and Phillips and Sul (2001). We chose the current method, however,
because it is very simple to implement and provides reasonably good performances.

8The factor estimate based on a subset of the cross-sectional units appears to work generally better
than those obtained using the full sample.

9The 40% rule is chosen to provide the best overall size and power performances. The results are,
however, not very sensitive to the size of the sub-group.

10This scaling scheme is essentially the same as the one used in Chang (2002). Here we set c as given
only for small T . As T gets large, the choice of c becomes unimportant.
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IGF’s need not be as integrable as those used for the tests without the covariate. The
cross-correlations are controlled only by the orthogonal IGF’s for the tests without the
covariate.

The simulation results are reported in Tables 2–4. We first discuss the performances
of the nonlinear IV average tests along with IPS and MP, and subsequently present the
results for the nonlinear IV minimum and maximum tests. As expected the IPS and
MP tests fail in all DGP’s we consider here, as can be seen from the considerable size
distortions. Their size distortions are large especially in DGP3 with the strongest cross-
correlations. The distortions get larger as N increases for a given T and they do not
seem to be attenuated as T increases. The MP test seems to have better size property
as T gets large, although they are still not very satisfactory. Among the three DGP’s,
the IPS suffer least from the size distortions in DGP1, while the MP test performs best
in DGP2. Also as expected, the simple IV test SC performs well for DGP1, but it fails
in DGP2 and DGP3. The simple IV test SF augmented with the covariate works well in
DGP2 as well as in DGP1. The use of the covariate in SF seems to improve significantly
the performance of the test SC without covariate, as can be seen clearly from comparing
the sizes of SC and SF in DGP2. However, SF also fails in DGP3 with cross-sectional
cointegration with large size distortions. This is well expected. Therefore, all the existing
tests, including SF , have severe inferential problems in the presence of the cross-sectional
cointegration.

As expected, our new nonlinear IV tests, SH and SA, based on the orthogonal IGF’s
perform reasonably well in DGP3. The SH test has good sizes for all T ’s and N ’s consid-
ered. On the other hand, the covariate augmented test SA has good sizes for the modest
size N , but starts to under-reject for the larger N . In DGP1 and DGP2, both tests suffer
from downward size distortions, and the problem is worse for the larger N . Their size
problem, however, tends to improve as T gets large, and the sizes of SH and SA do seem
to become reasonably good for the modest size N and the larger T even in DGP1 and
DGP2. Note also that the use of orthogonal IGF’s is not necessary for DGP1 and DGP2.
As mentioned above, the size performance of the covariate augmented test SA may not
be as good as that of the test SH , indicating that the use of the covariate may deteriorate
the size property of our test. However, SA test performs noticeably better than SH in
terms of power, so there is a substantial gain in using the covariate.11 From our simula-
tion results, it seems that the covariate augmented simple IV test SF works best in terms
of both sizes and powers when there is no cross-sectional cointegration but exists severe
as well as mild cross-correlations. Hence one may use SF if there is no suspicion about
potential cross-sectional cointegration.

The results on the finite sample performances of the minimum tests are reported also
in Tables 2–4 along with those of their average counterparts we just discussed above.

11In the simulations, due to the computing time, we just used the estimated factor as the covariate,
which may not necessarily be the best choice. Though we do not report the details here, we have observed
that we may improve the performance of SA by selecting the best set of covariates from a pool of all
potential covariates described in Section 2.2. This can be done by choosing the ones that have the highest
correlations with the error process. For more discussions on this, see Hansen (1995) and Chang, Sickles,
and Song (2001). This ensures that the effective error has smallest variance, which will in turn lead to the
largest power gains from the inclusion of those covariates.
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The minimum tests are expected to perform better under the alternative hypothesis that
only some fractions of the panel are stationary. To specify such alternatives, we set I0,
the number of I(0) series in the panel, to be 10%, 20%, 50% and 100% of the given N .
Overall, all of the four minimum tests, SC

min, SF
min, SH

min and SA
min, work reasonably well

in all DGP’s with stable sizes and large discriminatory powers compared to their average
test counterparts. The SC

min test works very well for DGP1. The finite sample sizes of
SC

min are indeed very close to the nominal test size for all DGP’s and for all combinations
of N and T , even though the test is valid only for DGP1 and DGP2, and not for DGP3.
The SF

min test performs well for DGP1 and DGP2, but it under-rejects for DGP3. The
SH

min and SA
min tests tend to under-reject for large N for all DGP’s considered. Notice

that when only a fraction, not all, of the panel are stationary, the powers of the minimum
tests are significantly larger than their average counterparts. This is as expected, since the
minimum would obviously provide more discriminatory power than the average against
such alternatives where only some cross sections are stationary.

Finally, we discuss the performances of the maximum tests which are constructed for
Hypotheses (C) with the composite null hypothesis where only some fractions of the panel
are nonstationary. For the null hypotheses, we set I1, the number of I(1) series under
the panel, to be 10%, 20%, 50%, and 100% of given N , as in the formulations for the
alternatives of Hypotheses (B). The simulation results on the sizes and powers of the
maximum tests, SC

max and SF
max, are provided in Table 5. The test SC

max yields reasonable
sizes and powers for DGP1. In DGP1, SC

max has stable sizes that are quite close to the
nominal test size in most of the N and T combinations we consider here, except when
I1 is very small. The finite sample powers of SC

max are also quite good in DGP1. Not
surprisingly, the test SC

max does not perform well in DGP2 with strong cross-correlations
driven by the common factor. In DGP2, the covariate augmented test SF

max performs a
little better than SC

max. The overall performance of SF
max is, however, not satisfactory. The

test has stable sizes when I1 = N , but severely under-rejects in other cases. It also shows
very poor power performance in DGP2. In DGP1, it performs very well like the test SC

max

in terms of both sizes and powers. Our simulation results therefore seem to indicate that
the max tests SC

max and SF
max are reliable only for the panels with mild cross-correlations

such as those generated by DGP1. In this sense, the usefulness of the maximum tests
seems somewhat limited.

5. Empirical Illustrations

In this section, we illustrate the usefulness of our new panel unit root tests by applying
them to the long standing empirical problem of testing for the purchasing power parity
(PPP) hypothesis. Although considerable amount of intellectual efforts have been put
out to investigate this problem, it is widely agreed that the question of whether or not
the PPP holds has not been settled yet. We revisit this PPP problem with our new
tests to examine whether the PPP holds for the post-1973 period of floating exchange
rates. As noted by Papell (2000), the data covering only the recent float have some
advantages over the long horizon data. For instance, it does not mix observations from
different nominal exchange rate regimes and the data are available for more countries. The
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data we use are the quarterly and monthly end-of-period real exchange rates for twenty
industrialized countries,12 obtained from the International Monetary Fund’s International
Financial Statistics. For monthly real exchange rates, we consider seventeen out of twenty
countries since no monthly data is available for Australia, Ireland, and New Zealand. Our
data cover the entire recent float period, 1973-1998, and include 104 and 312 observations
for quarterly and monthly data, respectively. All exchanges rates are in natural logarithms
and constructed using U.S. dollar as numeraire currency and CPI’s as deflators.

Dealing with the presence of cross-sectional dependency has been one of the main
econometric issues in the panel unit root testing. In the previous studies, it is commonly
assumed away by imposing cross-sectional independence,13 which can be quite unrealistic
in many economic applications including the studies on the exchanges rates. Due to the
strong links across economies, the real exchange rates usually exhibit high correlations
across cross sections. Indeed this is seen clearly from the estimated correlation matrix of
the first differences of the quarterly real exchange rates presented in Table 6. They are
highly correlated especially among European countries. Pairwise correlations are partic-
ularly strong (over 0.9) among Austria, Belgium, Denmark, France, Germany, and the
Netherlands. The pairwise correlations among the other countries are also significant
and most of them are over 0.6. These numbers suggest that the overall cross-correlations
among the real exchange rates are quite substantial and therefore should not be ignored.14

Moreover, such high correlations among the exchange rates from European countries in-
dicate that there may exist some cointegrating relations among them. Note that our tests
allow for dependent and possibly cointegrated panels.

We carry out panel unit root testing for the full panels and also for the smaller panels
which exclude the exchange rates from Australia, Canada, Greece, Japan, and Portugal.
The smaller panels are considered to see if the observation made by Papell (2001) also holds
in our study. Papell (2001) observes that the exchange rates from the five aforementioned
countries follow different behavioral patterns, and that removal of these countries from
the panel enables one to reject the unit root null hypothesis. The results are provided in
Tables 7 and 8 for the quarterly and monthly data, respectively. In each table, the first
line reports the results obtained from using the full panel, while the second line provides
the results from using the smaller panel. The order of the lagged differences is selected
for each cross section by the BIC criterion with the maximum lag order set at 12.15 For
both quarterly and monthly data, our tests, SH and SA, do not reject the unit root null
hypothesis. This is the case regardless of whether we exclude those five countries from the
full panel or not. That the tests SH and SA, constructed with and without the covariate,
produced the same results in all cases indicates that the use of the covariate does not affect
the results. We note in particular that all of the minimum tests, SC

min and SF
min, SH

min and

12The countries considered include Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden,
Switzerland, and the United Kingdom.

13O’Connell (1998) controls for cross-sectional dependence by using the orthogonalized data which are
obtained by the GLS transformation based on the estimated covariance matrix of the data.

14Similar observations were made for monthly real exchange rates in Moon and Perron (2001).
15The BIC selected 1 for the lag order for most of the cross sections. The results are not very sensitive

to the lag order used.
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SA
min, do not reject the null hypothesis for all cases considered. Recall from the simulation

results reported in the previous section that all of the minimum tests show stable sizes for
the sample sizes of our data, and have more discriminatory power over any average tests
especially when only a fraction of the panel are stationary. Therefore, the results from
the minimum tests strongly indicate that there is no stationary series in the panels of the
real exchange rates.

In sharp contrast, the SC , SF , and IPS tests provide strong evidence against the
unit root null hypothesis. When the full panels are used, the SC test rejects the null for
both quarterly and monthly data, and the SF and IPS tests for quarterly data. If we
exclude the five aforementioned countries from the panel, these results get strengthened
and the SF and IPS tests now reject the null also for the monthly data. The test results
of SC , SF and IPS, however, may be spurious due to the likely existence of cointegrating
relations among the cross sections in our data. These tests do not allow for cross-sectional
cointegration and thus suffer from serious upward size distortions, as we saw from our
simulation experiments with cointegrated panels. On the other hand, the MP test does
not reject the null hypothesis in most of the cases considered. It rejects only for the
quarterly data with the smaller panel.16 However, these results may also be misleading,
again due to the presence of cointegration, which the test is not designed to deal with.
We also saw from our simulations that the MP test may have either upward or downward
size distortions depending upon the time series and cross-sectional dimensions.

That our new average tests, SH and SA, and all the minimum tests, SC
min, SF

min, SH
min

and SA
min, do not provide any evidence in favor of the PPP hypothesis is in sharp contrast

with most of the results in the previous literature. See Chang (2002) and Wu and Wu
(2001) for some recent examples. All of the previous results were, however, obtained
using the tests that assume cross-sectional independence and/or no cointegration. As our
simulation experiments demonstrated, such tests suffer greatly from size distortions when
there are strong cross-correlations induced by common stochastic trends and therefore are
not suitable for cointegrated panels. On the other hand, our tests are designed to handle
the cointegration among cross sections as well as cross-correlated regression errors, and
hence our results against the PPP hypothesis seem reliable and appealing.

6. Conclusions

This paper extends the existing methodologies for panel unit root tests in three impor-
tant directions. First, we allow for dependencies across individual cross sections at both
short-run and long-run levels. We allow for inter-relatedness of cross-sectional short-run
dynamics and the presence of long-run relationships in cross-sectional levels. Many panels
of practical interest seem to have such complicated cross-sectional dependencies. Second,
our theory permits the use of covariates to increase the power. Covariates may natu-
rally include the terms to account for cross-sectional dependencies as well as the ones to
control idiosyncrasies of individual cross-sectional units. If properly chosen, the inclusion

16These results are consistent with those of Moon and Perron (2001), which are obtained using the
period-average real exchange rates for the period 1974-1998.
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of covariates would substantially improve the power of the test, as demonstrated earlier
by several authors. Third, we re-examine the formulation of the unit root hypothesis in
panels, and propose to analyze the null and alternative hypotheses that only a fraction
of cross-sectional units have unit roots. Such formulations are more appropriate for some
of the most commonly investigated panel models such as purchasing power parity and
growth convergence.

The tests developed in the paper are valid for very general panels. They allow not
only for unknown forms of cross-sectional dependencies at several different levels, but
also for various kinds of heterogeneities such as unbalancedness, differing dynamics and
other idiosyncratic characteristics for individual units. These indeed appear to be the
common characteristics of many panels used in empirical studies. Nevertheless, none of
the currently available tests are applicable for such general panels. In addition to their
applicability, our tests are easy to implement. The relevant statistical theories are quite
straightforward and all Gaussian, and the critical values are given by either the standard
normal or its simple functionals.

Appendix: Mathematical Proofs

Proof of Lemma 3.1 The asymptotics of the following sample moments involving
integrable transformations of a unit root process follow directly from Park and Phillips
(1999, 2001) as

T
−1/4
i

Ti∑

t=1

Fi(yi,t−1)εit →d MN

(
0, σ2

i Li(1, 0)

∫ ∞

−∞

Fi(s)
2ds

)
,

T
−1/2
i

Ti∑

t=1

Fi(yi,t−1)
2 →d Li(1, 0)

∫ ∞

−∞

Fi(s)
2ds.

Note that our asymptotic results here are different, up to a scalar factor, from Chang
(2002) that represents the asymptotics in terms of the local time of the standard Brownian
motion. Since 4yi,t−k, k = 1, . . . , Pi, and wi,t−j , j = 1, . . . , Qi, are stationary, we also
have

T
−3/4
i

Ti∑

t=1

Fi(yi,t−1)4yi,t−k →p 0, for all k = 1, . . . , Pi,

T
−3/4
i

Ti∑

t=1

Fi(yi,t−1)wi,t−j →p 0, for all j = 1, . . . , Qi,

due to the asymptotic orthogonality between stationary variables and integrable transfor-
mations of integrated processes established in Lemma 5 (e) of Chang, Park and Phillips
(2001).
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Using (9) and (11), we may write τi defined in (10) as

τi =
B−1

Ti
ATi

(σ̂2
i B

−2
Ti

CTi
)1/2

=
ATi

σ̂iC
1/2
Ti

=

T
−1/4
i

Ti∑

t=1

Fi(yi,t−1)εit

σ̂i

(
T
−1/2
i

Ti∑

t=1

Fi(yi,t−1)
2

)1/2
+ op(1).

Now the stated result follows immediately. �

Proof of Lemma 3.2 The asymptotic independence of τ1, . . . , τM follows if we show
that τi and τj are asymptotically orthogonal for all i, j = 1, . . . ,M . The proof goes
exactly the same as that in Chang (2002), except for the pairs τi and τj for which the
corresponding cross-sectional units (yit) and (yjt) are cointegrated. Note that Assumption
4.1 in Chang (2002) holds under our Assumption 3.2. Therefore, we assume (yit) and (yjt)
are cointegrated

To establish the asymptotic orthogonality of τi and τj , it suffices to show that

4

√
TiTj

∫ 1

0
Fi(
√

TiUiTi
(r))Fj(

√
TjUjTj

(r))dr →p 0. (26)

See Chang (2002) for details. As shown in Chang, Park and Phillips (2001), we have

T1

log T1

∫ 1

0
Fi(
√

T1UiTi
(r))Fj(

√
T1UjTj

(r))dr

=
T1

log T1

∫ 1

0
Fi(
√

T1Ui(r))Fj(
√

T1Uj(r))dr + op(1).

However, due to our convention in (6) made on scale adjustment, we may assume that

∫ 1

0
Fi(
√

TiUiTi
(r))Fj(

√
TjUjTj

(r))dr

=

∫ 1

0
Fi(
√

T1UiTi
(r))Fj(

√
T1UjTj

(r))dr

and that
Ui = Uj.

Moreover, we have ∫ 1

0
(FiFj)(

√
T1Ui(r))dr = Op(T

−3/4
1 ),

since Fi and Fj are assumed to be orthogonal and
∫∞

−∞
(FiFj)(s)ds = 0. This can be

deduced from

T
−1/4
1

∫ T1

0
(FiFj)(Ui(r))dr = Op(1),
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which is shown in, e.g., Revuz and Yor (1994, Proposition 2.8, p.528). Notice that

T
−1/4
1

∫ T1

0
(FiFj)(Ui(r))dr =d T

3/4
1

∫ 1

0
(FiFj)(

√
T1Ui(r))dr,

which follows immediately from the change-of-variable formula and the fact that Ui(T1r) =d√
T1Ui(r) for every r ≥ 0.

We may assume without loss of generality that the numeraire unit has the largest
number of observations, i.e., T1 ≥ Ti for all i. Then we have

4
√

TiTj

∫ 1

0
Fi(
√

TiUiTi
(r))Fj(

√
TjUjTj

(r))dr

= 4

√
TiTj
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√
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(r))dr

= 4

√
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0
(FiFj)(
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i T
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j log T1

T1

)

= Op

(
T

1/4
j /T

1/2
i

)

= Op

(
T 1/4

max/T
1/2
min

)

since T1 is set at Tmax. Now (26) follows immediately given Assumption 3.2. �

Proof of Theorem 3.3 We first consider the case M = N . The statistic S has standard
normal limiting distribution and, therefore, the stated result follows immediately. For the
statistic Smin, we note that

lim
T→∞

P {Smin ≤ x} = lim
T→∞

P

{
min

1≤i≤N
τi ≤ x

}

= 1 −
N∏

i=1

lim
Ti→∞

P{τi > x}

= 1 − (1 − Φ(x))N

since τi’s are asymptotically independent normals.
For the case 1 ≤ M ≤ N , we have

lim
T→∞

P {Smax ≤ x} = lim
T→∞

P

{
max

1≤i≤N
τi ≤ x

}

=

N∏

i=1

lim
Ti→∞

P{τi ≤ x}

= Φ(x)M .

Note that for i = 1, . . . ,M,
lim

Ti→∞
P{τi ≤ x} = Φ(x)

26



and for i = M + 1, . . . , N,
lim

Ti→∞
P{τi ≤ x} = 1

since τi →p −∞ as Ti → ∞ in this case. Therefore,

lim
T→∞

P
{
Smax ≤ cM

max(λ)
}

= Φ(cM
max(λ))M = λ

and
lim

T→∞
P {Smax ≤ c(λ)} = Φ(c(λ))M = λΦ(c(λ))M−1 ≤ λ

as was to be shown. The consistency of the tests then follows immediately from the result
in Lemma 3.1. �

Proof of Corollary 3.4 The proof of this corollary is essentially the same as that
of Corollary 5.1 in Chang (2002). What is new is how to handle the covariates with
deterministic components. Assume for simplicity that the panels are balanced, i.e., Ti = T
for all i. Note that

4yj,t−k = 4zj,t−k = 4yj,t−k, for k = 1, 2, . . . , Qi,

(yi,t−1 − φiyj,t−1) =

(
zi,t−1 −

1

T

T∑

k=1

zik

)
− φi

(
zj,t−1 −

1

T

T∑

k=1

zjk

)

=

(
yi,t−1 −

1

T

T∑

k=1

yik

)
− φi

(
yj,t−1 −

1

T

T∑

k=1

yjk

)

= (yi,t−1 − φiyj,t−1) −
1

T

T∑

k=1

(yik − φiyjk), (27)

yjt = zjt −
1

T

T∑

k=1

zjk = yjt −
1

T

T∑

k=1

yjk. (28)

Define the cointegration errors as εit = yit − φiyjt, and let

viT =
1

T

T∑

k=1

εik or
1

T

T∑

k=1

yjk, (29)

depending upon whether yjt is cointegrated with yit as in (27) or it is stationary as in
(28), respectively. Then, it is sufficient to show that

RiT =
1

4
√

T

T∑

t=1

Fi(y
µ
i,t−1)viT

is negligible in the limit and dominated by the leading term

1
4
√

T
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Fi(y
µ
i,t−1)εit,
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so that the regression equation (15) is the legitimate equation for the test of unit roots in
(yit). This follows immediately from

RiT =
1

4
√

T

(√
TviT

)( 1√
T

T∑

t=1

Fi(y
µ
i,t−1)

)
= Op(T

−1/4), (30)

by Lemma 5 (a) in Chang, Park, and Phillips (2001).
For the detrended series, first consider the term 1

T zjT = 1
T

∑T
k=1 4zjk in (21). We

have yit = yi,t−1 +uit under the unit root null, and this implies 4zit = δi +4yit = δi +uit.
Then, we have

4yj,t−k = 4zj,t−k −
1

T
zjTj

= uj,t−k −
1

T

T∑

k=1

ujk.

By letting viT = 1
T

∑T
k=1 ujk, the second term can be handled in the same manner as in

(30). For yτ
i,t−1 in (22), notice that it can be written as follows:

yτ
i,t−1 = zi,t−1 − µ̂T

i − δ̂T
i (t − 1)

= yi,t−1 −
1

T

T∑

k=1

yik +
6
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(
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2

)
yik

]
,

where µ̂T
i and δ̂T

i are the LS estimators for the parameters µi and δi in (19) using the full
sample, viz.,

µ̂T
i +

T + 1

2
δ̂T
i = µi +

T + 1

2
δi +

1

T

T∑

k=1

yik,

δ̂T
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(
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(
k − T + 1

2

)2
)−1 T∑

k=1

(
k − T + 1

2

)
yik.

Now, along with yτ
j,t−1 defined in the same way, the first term in (31) forms the lagged

cointegration errors, (yi,t−1−φiyj,t−1), and is used as covariates. The remaining terms can
be shown to be negligible in the limit as in (30) with slight rearrangement of the terms.
For the second term, we may use the relation εit = yi,t − φiyj,t to generate viT as in (29).
The third term can be rewritten as

viT =
6

T − 1

T∑

k=1

(
k

T

)
εik − 3(T + 1)

T (T − 1)

T∑

k=1

εik.
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For the fourth term, we can show that
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where
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12T
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6
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by Lemma 5 (g) in Chang, Park, and Phillips (2001). The case of the stationary covariate
yτ

jt can be handled in the similar manner as above, and thus it is omitted. �
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Table 1: Critical Values for Smax and Smin

Smax Smin

M 1% 5% 10% N 1% 5% 10%

2 -1.282 -0.760 -0.478 2 -2.575 -1.955 -1.632
5 -0.258 0.124 0.334 5 -2.877 -2.319 -2.036
10 0.334 0.647 0.822 10 -3.089 -2.568 -2.309
13 0.529 0.821 0.985 13 -3.166 -2.657 -2.406
15 0.630 0.911 1.070 15 -3.207 -2.705 -2.457
17 0.715 0.988 1.142 17 -3.243 -2.746 -2.502
20 0.822 1.084 1.233 20 -3.289 -2.799 -2.559
25 0.961 1.211 1.353 25 -3.351 -2.870 -2.635
30 1.070 1.310 1.447 30 -3.402 -2.928 -2.696
40 1.233 1.460 1.590 40 -3.479 -3.016 -2.791
50 1.353 1.570 1.695 50 -3.539 -3.083 -2.862
60 1.447 1.658 1.779 60 -3.587 -3.137 -2.919
70 1.525 1.729 1.847 70 -3.627 -3.182 -2.967
80 1.590 1.790 1.905 80 -3.661 -3.220 -3.008
90 1.646 1.842 1.956 90 -3.691 -3.254 -3.043
100 1.695 1.888 2.000 100 -3.718 -3.283 -3.075
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Table 2

Sizes and Size-Adjusted Powers for DGP1: Hypotheses (A) and (B)

N T I0 SC SC
min SF SF

min SH SH
min SA SA

min IPS MP

10 100 0 0.071 0.064 0.062 0.063 0.024 0.052 0.043 0.073 0.080 0.104
1 0.085 0.102 0.085 0.101 0.110 0.131 0.110 0.113 0.073 0.049
2 0.181 0.245 0.175 0.242 0.261 0.329 0.266 0.285 0.141 0.047
5 0.671 0.524 0.627 0.476 0.501 0.613 0.679 0.531 0.497 0.053
10 0.997 0.724 0.994 0.653 0.609 0.733 0.851 0.682 0.961 0.182

200 0 0.071 0.062 0.062 0.059 0.032 0.052 0.051 0.068 0.072 0.072
1 0.158 0.472 0.161 0.462 0.255 0.550 0.229 0.514 0.151 0.051
2 0.334 0.652 0.323 0.639 0.498 0.751 0.482 0.703 0.284 0.047
5 0.937 0.951 0.919 0.930 0.896 0.977 0.959 0.954 0.872 0.050
10 1.000 0.994 1.000 0.989 0.969 0.996 0.998 0.993 1.000 0.119

20 100 0 0.059 0.067 0.055 0.065 0.012 0.034 0.029 0.060 0.075 0.146
2 0.160 0.197 0.159 0.198 0.254 0.347 0.263 0.263 0.127 0.047
5 0.472 0.378 0.455 0.377 0.424 0.586 0.595 0.485 0.347 0.048
10 0.939 0.587 0.925 0.562 0.531 0.724 0.806 0.656 0.806 0.059
20 1.000 0.807 1.000 0.773 0.661 0.789 0.912 0.795 1.000 0.337

200 0 0.056 0.065 0.052 0.064 0.020 0.033 0.042 0.059 0.061 0.082
2 0.230 0.526 0.230 0.525 0.361 0.689 0.344 0.618 0.193 0.050
5 0.767 0.821 0.754 0.812 0.760 0.914 0.866 0.874 0.657 0.051
10 0.999 0.984 0.999 0.979 0.909 0.990 0.991 0.991 0.994 0.065
20 1.000 1.000 1.000 1.000 0.966 0.999 1.000 1.000 1.000 0.579

50 100 0 0.055 0.071 0.053 0.071 0.005 0.016 0.014 0.033 0.080 0.379
5 0.228 0.204 0.227 0.201 0.230 0.491 0.343 0.373 0.174 0.035
10 0.578 0.339 0.570 0.330 0.291 0.647 0.528 0.564 0.405 0.028
25 0.999 0.634 0.999 0.615 0.431 0.738 0.725 0.780 0.981 0.027
50 1.000 0.855 1.000 0.833 0.639 0.741 0.865 0.820 1.000 0.231

200 0 0.052 0.070 0.051 0.069 0.007 0.015 0.021 0.033 0.064 0.165
5 0.449 0.841 0.443 0.827 0.640 0.985 0.722 0.958 0.375 0.048
10 0.906 0.963 0.902 0.957 0.803 0.998 0.959 0.996 0.815 0.044
25 1.000 1.000 1.000 1.000 0.924 1.000 0.999 1.000 1.000 0.050
50 1.000 1.000 1.000 1.000 0.978 1.000 1.000 1.000 1.000 0.622

Note: I0 denotes the number of I(0) series in the panel under the alternative hypothesis
of Hypotheses (B). The sizes are reported in the rows corresponding to I0 = 0, and the
size-adjusted powers in the rows with I0 > 0.
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Table 3

Sizes and Size-Adjusted Powers for DGP2: Hypotheses (A) and (B)

I0 SC SC
min SF SF

min SH SH
min SA SA

min IPS MP

10 100 0 0.216 0.058 0.037 0.057 0.038 0.048 0.030 0.058 0.229 0.088
1 0.066 0.099 0.069 0.290 0.103 0.131 0.149 0.342 0.056 0.047
2 0.103 0.238 0.190 0.764 0.230 0.329 0.474 0.823 0.076 0.054
5 0.307 0.434 0.591 0.884 0.427 0.510 0.802 0.920 0.200 0.101
10 0.810 0.565 0.910 0.716 0.506 0.580 0.718 0.752 0.587 0.260

200 0 0.210 0.055 0.038 0.051 0.046 0.046 0.038 0.055 0.217 0.062
1 0.102 0.478 0.213 0.781 0.225 0.563 0.444 0.820 0.084 0.052
2 0.179 0.658 0.492 0.942 0.445 0.754 0.804 0.958 0.138 0.063
5 0.606 0.915 0.795 0.997 0.813 0.954 0.950 0.999 0.496 0.099
10 0.973 0.973 0.980 0.985 0.891 0.979 0.977 0.992 0.927 0.142

20 100 0 0.288 0.056 0.046 0.059 0.024 0.030 0.023 0.044 0.315 0.110
2 0.082 0.189 0.189 0.726 0.218 0.326 0.461 0.830 0.066 0.062
5 0.161 0.347 0.414 0.911 0.361 0.516 0.779 0.958 0.112 0.095
10 0.374 0.467 0.737 0.961 0.433 0.587 0.861 0.980 0.239 0.148
20 0.859 0.614 0.978 0.855 0.542 0.623 0.706 0.870 0.649 0.384

200 0 0.292 0.055 0.046 0.055 0.033 0.031 0.030 0.043 0.303 0.069
2 0.098 0.520 0.276 0.884 0.311 0.676 0.649 0.916 0.084 0.069
5 0.264 0.769 0.623 0.981 0.676 0.872 0.958 0.992 0.204 0.109
10 0.683 0.943 0.963 1.000 0.807 0.966 0.998 1.000 0.559 0.166
20 0.998 0.987 0.999 0.996 0.878 0.978 0.967 0.998 0.987 0.471

50 100 0 0.374 0.056 0.052 0.062 0.020 0.014 0.009 0.023 0.407 0.183
5 0.080 0.189 0.169 0.871 0.190 0.427 0.630 0.959 0.064 0.080
10 0.122 0.290 0.392 0.936 0.231 0.537 0.772 0.982 0.084 0.115
25 0.358 0.473 0.857 0.986 0.324 0.580 0.798 0.993 0.223 0.200
50 0.844 0.607 0.995 0.930 0.481 0.588 0.584 0.896 0.619 0.421

200 0 0.378 0.052 0.053 0.060 0.019 0.014 0.017 0.023 0.401 0.102
5 0.116 0.776 0.488 0.999 0.516 0.959 0.971 1.000 0.093 0.107
10 0.216 0.880 0.677 1.000 0.653 0.976 0.997 1.000 0.163 0.141
25 0.711 0.978 0.995 1.000 0.776 0.988 0.999 1.000 0.583 0.221
50 0.998 0.995 1.000 1.000 0.890 0.989 0.986 1.000 0.985 0.456

Note: I0 denotes the number of I(0) series in the panel under the alternative hypothesis
of Hypotheses (B). The sizes are reported in the rows corresponding to I0 = 0, and the
size-adjusted powers in the rows with I0 > 0.
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Table 4

Sizes and Size-Adjusted Powers for DGP3: Hypotheses (A) and (B)

I0 SC SC
min SF SF

min SH SH
min SA SA

min IPS MP

10 100 0 0.330 0.048 0.180 0.020 0.063 0.038 0.054 0.021 0.329 0.250
1 0.052 0.138 0.051 0.400 0.074 0.192 0.121 0.456 0.047 0.027
2 0.063 0.300 0.110 0.901 0.169 0.417 0.446 0.927 0.053 0.016
5 0.115 0.501 0.374 0.951 0.354 0.592 0.758 0.969 0.084 0.012
10 0.418 0.642 0.684 0.885 0.417 0.656 0.644 0.914 0.286 0.124

200 0 0.326 0.044 0.180 0.017 0.073 0.038 0.061 0.018 0.320 0.043
1 0.066 0.507 0.145 0.890 0.135 0.606 0.404 0.911 0.065 0.192
2 0.085 0.709 0.362 0.987 0.336 0.800 0.812 0.996 0.079 0.227
5 0.241 0.949 0.660 1.000 0.737 0.979 0.933 1.000 0.217 0.270
10 0.818 0.984 0.873 0.998 0.825 0.989 0.962 0.999 0.728 0.349

20 100 0 0.375 0.046 0.263 0.021 0.053 0.033 0.039 0.021 0.383 0.529
2 0.058 0.257 0.093 0.903 0.162 0.411 0.456 0.950 0.053 0.017
5 0.078 0.444 0.213 0.984 0.311 0.601 0.783 0.995 0.064 0.010
10 0.124 0.524 0.397 0.991 0.366 0.633 0.837 0.996 0.087 0.008
20 0.449 0.643 0.662 0.947 0.443 0.652 0.623 0.935 0.296 0.061

200 0 0.377 0.044 0.279 0.020 0.057 0.024 0.042 0.018 0.378 0.263
2 0.063 0.553 0.155 0.914 0.220 0.717 0.633 0.946 0.058 0.013
5 0.106 0.793 0.367 0.997 0.590 0.883 0.956 0.999 0.092 0.007
10 0.255 0.969 0.752 1.000 0.716 0.980 0.997 1.000 0.213 0.005
20 0.897 0.992 0.951 1.000 0.785 0.987 0.932 1.000 0.808 0.171

50 100 0 0.422 0.047 0.367 0.023 0.051 0.016 0.018 0.012 0.438 0.739
5 0.054 0.238 0.064 0.944 0.150 0.505 0.648 0.981 0.053 0.012
10 0.068 0.394 0.102 0.976 0.188 0.632 0.784 0.996 0.055 0.008
25 0.115 0.581 0.388 0.995 0.245 0.661 0.766 0.996 0.081 0.006
50 0.382 0.683 0.604 0.964 0.350 0.667 0.488 0.938 0.252 0.026

200 0 0.428 0.046 0.415 0.021 0.048 0.015 0.026 0.013 0.437 0.607
5 0.066 0.786 0.150 1.000 0.396 0.965 0.981 1.000 0.065 0.005
10 0.085 0.868 0.232 1.000 0.532 0.983 0.997 1.000 0.079 0.003
25 0.241 0.977 0.778 1.000 0.651 0.992 0.998 1.000 0.215 0.001
50 0.870 0.993 0.990 1.000 0.772 0.992 0.968 1.000 0.781 0.022

Note: I0 denotes the number of I(0) series in the panel under the alternative hypothesis
of Hypotheses (B). The sizes are reported in the rows corresponding to I0 = 0, and the
size-adjusted powers in the rows with I0 > 0.
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Table 5. Sizes and Size-Adjusted Powers
for DGP1 and DGP2: Hypotheses (C)

DGP1 DGP2

Sizes Powers Sizes Powers

N T I1 SC
max SF

max SC
max SF

max SC
max SF

max SC
max SF

max

10 100 1 0.000 0.000 0.114 0.113 0.003 0.000 0.109 0.105
2 0.007 0.003 0.225 0.219 0.033 0.000 0.188 0.187
5 0.040 0.028 0.529 0.486 0.137 0.001 0.364 0.270
10 0.054 0.048 0.762 0.720 0.213 0.040 0.558 0.158

200 1 0.001 0.000 0.190 0.186 0.007 0.000 0.154 0.155
2 0.015 0.007 0.349 0.329 0.051 0.000 0.277 0.211
5 0.043 0.030 0.657 0.621 0.145 0.002 0.502 0.145
10 0.055 0.051 0.822 0.785 0.215 0.044 0.659 0.083

20 100 2 0.001 0.000 0.165 0.163 0.016 0.000 0.137 0.147
5 0.018 0.013 0.374 0.378 0.097 0.000 0.262 0.268
10 0.033 0.029 0.637 0.623 0.188 0.000 0.417 0.248
20 0.038 0.039 0.830 0.812 0.264 0.047 0.586 0.135

200 2 0.012 0.007 0.374 0.374 0.055 0.000 0.292 0.264
5 0.037 0.027 0.737 0.732 0.128 0.000 0.591 0.346
10 0.042 0.037 0.903 0.897 0.201 0.000 0.755 0.323
20 0.038 0.039 0.971 0.967 0.266 0.046 0.869 0.132

50 100 5 0.001 0.001 0.203 0.206 0.050 0.000 0.131 0.124
10 0.011 0.010 0.385 0.383 0.150 0.000 0.210 0.162
25 0.026 0.026 0.697 0.694 0.278 0.000 0.397 0.157
50 0.037 0.038 0.849 0.844 0.373 0.061 0.558 0.053

200 5 0.008 0.007 0.355 0.348 0.106 0.000 0.207 0.167
10 0.023 0.021 0.593 0.595 0.182 0.000 0.372 0.143
25 0.031 0.031 0.844 0.840 0.286 0.000 0.603 0.124
50 0.030 0.031 0.933 0.933 0.342 0.048 0.757 0.037

Note: I1 denotes the number of I(1) series in the panel under the null hypothesis of
Hypotheses (C). The size-adjusted rejection probabilities are reported as powers.
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Table 6. Correlation Matrix of First Differenced Quarterly Log Real Exchange Rates

Aust. Belg. Denm. Finl. Fran. Germ. Gree. Irel. Ital. Neth. Norw. Port. Spai. Swed. Swit. U.K. Aust. Cana. Japa.

Austria
Belgium .965
Denmark .955 .966
Finland .749 .750 .751
France .926 .927 .918 .723

Germany .982 .962 .955 .733 .925
Greece .674 .682 .715 .601 .718 .699
Ireland .845 .860 .864 .743 .863 .845 .727
Italy .733 .744 .749 .691 .803 .729 .658 .761

Netherl. .980 .970 .961 .752 .930 .980 .709 .863 .765
Norway .876 .854 .847 .777 .843 .871 .663 .802 .669 .852
Portugal .807 .807 .795 .676 .788 .809 .617 .717 .655 .802 .771
Spain .733 .725 .734 .687 .757 .708 .649 .726 .753 .744 .706 .681

Sweden .731 .733 .733 .788 .708 .723 .527 .662 .681 .726 .802 .721 .698
Switzer. .877 .859 .863 .684 .858 .875 .659 .768 .693 .871 .764 .711 .620 .659

U.K. .604 .626 .621 .714 .662 .619 .650 .768 .651 .640 .677 .593 .630 .671 .581
Australia .223 .205 .213 .244 .225 .199 .268 .218 .201 .207 .264 .155 .194 .193 .218 .224
Canada −.007 −.020 .026 .088 −.052 −.023 .028 −.014 −.037 −.033 .018 .063 −.069 .029 .023 .030 .360
Japan .605 .593 .608 .438 .574 .601 .517 .518 .490 .606 .508 .456 .440 .399 .633 .464 .278 .065

New Zeal. .440 .408 .417 .414 .407 .422 .464 .427 .359 .425 .450 .314 .318 .331 .390 .422 .632 .185 .422



Table 7. Test Results for Quarterly Real Exchange Rates

N T SC SC
min SF SF

min SH SH
min SA SA

min IPS MP

20 104 -3.792* -1.925 -3.054* -2.387 -0.185 -1.452 -1.411 -2.169 -2.095* -1.134
15 104 -4.057* -1.925 -2.200* -2.287 -0.806 -1.467 -0.935 -2.517 -2.794* -2.012*

Notes: 1. The results in the second line are obtained excluding Australia, Canada, Greece, Japan,
and Portugal.
2. * indicates significance at the 5% level.

Table 8. Test Results for Monthly Real Exchange Rates

N T SC SC
min SF SF

min SH SH
min SA SA

min IPS MP

17 312 -2.576* -1.277 -1.390 -1.642 -0.315 -1.100 -0.489 -1.651 -1.271 -0.328
13 312 -2.817* -1.277 -2.171* -1.737 0.407 -1.151 -1.094 -1.877 -1.720* -0.375

Notes: 1. The results in the second line are obtained excluding Canada, Greece, Japan, and Portugal.
2. * indicates significance at the 5% level.
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