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Abstract. We propose two axiomatic theories of cost sharing with
the common premise that individual demands are comparable, though perhaps
different, commodities, and that agents are responsible for their own demand.
Under partial responsibility the agents are not responsible for the asymmetries
of the cost function: two agents consuming the same amount of output always
pay the same price; this holds true under full responsibility only if the cost func-
tion is symmetric in all individual demands. If the cost function is additively
separable, each agent pays his/her stand alone cost under full responsibility;
this holds true under partial responsibility only if, in addition, the cost function
is symmetric.
By generalizing Moulin and Shenker�s (1999) Distributivity axiom to cost-

sharing methods for heterogeneous goods, we identify in each of our two the-
ories a different serial method. The subsidy-free serial method (Moulin, 1995)
is essentially the only distributive method meeting Ranking and Dummy. The
cross-subsidizing serial method (Sprumont, 1998) is the only distributive method
satisfying Separability and Strong Ranking. Finally, we propose an alternative
characterization of the latter method based on a strengthening of Distributivity.
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1. Two theories of cost sharing
An equitable allocation of joint costs is one where everyone pays the share that they
are responsible for. The challenging theoretical and empirical question is to correctly
assess individual responsibilities.
Individual demands inßuence total cost in two different ways: by their size and

by their nature. A simple example is mail distribution, where cost obviously depends
on volume but also on destination, rural delivery being more expensive than urban
delivery. The same is true of other transportation networks �from the internet to a
bus system and to water distribution� where the volume of traffic and the delivery
route both affect total cost.
The classical theory of fair pricing developed in the natural monopoly literature

(Baumol, Panzar and Willig (1982), Sharkey (1982)), rests on the principle of no
cross-subsidization. For instance, if serving a certain agent requires a speciÞc invest-
ment (such as running a cable) of no use to other users, the corresponding cost is
deemed separable and should be imputed in full to the agent in question. With more
complex cost structures, a formal translation of no cross-subsidization is not a sim-
ple matter, but the general principle is that an agent�s cost share increases with the
marginal cost of his own demand. Thus each agent is held responsible both for the
size and the nature of his demand, the latter being captured by the asymmetry of the
cost function with respect to individual demands. No cross-subsidization is at work
when international mail is more expensive than domestic mail, when power companies
charge less for off-peak electricity, when airlines apply a surcharge for excess baggage,
and so on.
Yet, cross-subsidization is a pervasive feature of pricing rules for many commodi-

ties or services. The same price is charged to deliver mail, or water, to a rural or
an urban domestic address; the universal service constraint for telephone implies,
among other things, that the connecting charge to a residential customer is the same
whether the house is pre-wired or not; special transportation services are offered to
handicapped persons at the same price as public transportation for non-handicapped
persons. In these familiar instances, cost shares reßect differences in demand size,
but not asymmetries of the cost function. The underlying ethical principle is that
individuals are responsible for their own demand, but not for cost asymmetries, be-
cause the latter are beyond their control. The farmer should not pay more for his
mail, because he cannot farm in town, the resident is not responsible for the location
of the water treatment facility, the handicapped person is unable to use the regular
bus but should not be penalized for it, and so on.
Thus, two views on responsibility in the formation of joint costs coexist: one

where users are responsible for asymmetries in the cost function, and one where they
are not. Within the familiar axiomatic model of cost sharing we develop accordingly
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two related theories. Both theories assume that each agent consumes an idiosyncratic
commodity (e.g., water delivered at her home), yet commodities are interpersonally
comparable. They are all measured in a common unit (e.g., cubic feet of water), so
that we can compare the demands of any two agents.
Both theories hold each agent responsible for the size of his/her own demand: a

higher demand calls for a higher cost share. The full responsibility theory also holds
agents responsible for asymmetries in the cost function: if it costs more to deliver
the same level of service to Jones than to Smith, Jones should pay more. The partial
responsibility theory takes the opposite view that Jones and Smith must get the same
bill for the same level consumption.
The vast literature on axiomatic cost sharing inspired by Shapley�s (1953) seminal

contribution (brießy reviewed in section 3) takes squarely the full responsibility view-
point. By contrast, partial responsibility is a fairly recent theme of the distributive
justice literature (again, see section 3). Its only previous application to cost shar-
ing appears to be the informal discussion in Fleurbaey and Trannoy (1998), which
inspired our work.

2. Overview of the results
We are given a multivariate cost function C(z1, ..., zn) and a demand proÞle x =
(x1, ..., xn), where xi is agent i�s demand of commodity i. The differences in nature
between the commodities are described by the asymmetries of the function C. If C
is symmetric in all variables, the goods are deemed �interchangeable� and the only
ethically relevant difference between individual demands is their size.
We maintain the cost-sharing interpretation throughout, yet the output-sharing

interpretation is equally meaningful. There xi is agent i0s input (e.g., hours worked),
C is the production function, and we must share total output (e.g., revenue) C(x).
Think of asymmetries in the production function generated by the division of labor
within the Þrm. If the tasks assigned to two workers require different skills, we expect
their compensation (share of output) to reßect this difference when the skills are not
Þrm-speciÞc (e.g., a professional degree). This is the full responsibility viewpoint.
On the other hand, in the spirit of partial responsibility, differences in Þrm-speciÞc
skills typically have no impact on compensation: workers with identical seniority and
professional degree get the same pay.
Back to the cost-sharing interpretation once and for all, we introduce the key

equity principles on which our two theories are built. Consider Þrst the case of an
additively separable cost function, C(z) =

P
i ci(zi). Here the size of i0s demand

does not affect the marginal cost of j0s demand, for all ij. Under full responsibility,
i must be charged his stand alone cost ci(xi). This is normatively compelling, and
creates the correct incentives: agent i0s optimal demand as she faces her stand alone
cost is a dominant strategy, and the resulting equilibrium is efficient. We call Strong



Responsibility and cross-subsidization in cost sharing 4

Separability the requirement that when costs are additively separable, each agent
pays his or her stand alone cost. A closely related property is the familiar Dummy
axiom. Consider a cost function C for which the marginal cost of one of the demands,
zi, is zero, irrespective of other demands: Dummy states that agent i should not be
charged anything. Under the Additivity axiom discussed below, Dummy is in fact
equivalent to Strong Separability.
The deÞning axiom of the partial responsibility approach is Strong Ranking, stat-

ing that for any cost function, symmetric or not, agent i should not pay less than j if
she demands no less than j. Strong Ranking is clearly incompatible with Strong Sep-
arability (and Dummy). Suppose costs are additively separable, C(z) =

P
i ci(zi),

and i0s stand alone cost exceeds j0s at every level, ci(t) > cj(t) for all t: if xi = xj
Strong Ranking sets equal cost shares for i and j whereby j subsidizes i.
On the other hand, both theories hold agents responsible for the size of their

own demand. Two properties common to both theories weaken Strong Ranking
and Strong Separability, respectively, by restricting their application to those cost
functions symmetric in all variables zi. Ranking requires then that agent i should
pay no less than j if she demands no less than j. If costs are not only symmetric
but also additively separable, C(z) =

P
i ci(zi), Separability insists that we charge his

stand alone cost to each agent. The former property is a compelling fairness principle,
the latter induces the �correct� incentives as explained above. Separability rules out
the simple proportional method often used in practice, and charging (xi/

P
j xj)C(x)

to agent i. The latter method satisÞes Strong Ranking, however.
Our two theories rely on identical invariance properties, namely the familiar Ad-

ditivity axiom and the less known Distributivity axiom (both discussed below), but
postulate two different pairs of equity properties.
These powerful invariance properties both state that the computation of cost

shares commutes with a certain operation on cost functions: addition in the former
axiom, and composition in the latter. Additivity is motivated by the observation
that production often can be decomposed in several largely independent processes
and in that case the axiom allows one to compute the cost shares separately in each
subprocess. Examples include the costs of research, production and marketing if
a new product; the costs of construction and maintenance of highways and other
communication networks, see Castano-Pardo and Garcia-Diaz (1995) and Lee (2002).
Distributivity is the same kind of invariance property when the production process can
be decomposed in several sequential processes. But if the addition of cost functions
is always well deÞned, the same is not true of their composition. Distributivity is
therefore only deÞned for one-output cost functions, taking the form C(z) = c(

P
i zi)

and interpreted as the case where individuals demand the �same� commodity. See
Section 8 for details.
From this handful of axioms two-cost sharing methods emerge forcefully. Both are
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extensions of Moulin and Shenker�s (1992) serial mechanism for one-output cost func-
tions; they coincide also when the cost function is symmetrical in all its variables. We
call these two methods the subsidy-free serial method and the cross-subsidizing serial
method. The former method is essentially the only additive and distributive method
satisfying Ranking and Dummy, the two equity requirements of the full responsibility
approach. Our results, stated in Theorem 1 and its Corollary, actually require two
additional properties: Demand Monotonicity (increasing my demand cannot lower
my cost share), in the spirit of demand responsibility, and Dummy Independence
(changing the demand of a dummy agent has not effect on cost shares), in the spirit
of cost responsibility.
The second method is the only additive and distributive method meeting Sepa-

rability and Strong Ranking, the two requirements of the partial responsibility ap-
proach: see Theorem 2.
Finally, we propose a strong version of Distributivity that generalizes the original

property to the composition of an arbitrary cost function with a one-output one. In
conjunction with Additivity, this property is so powerful that adding only Ranking
and Separability �two properties consistent with both approaches to responsibility�
suffices to pin down the cross-subsidizing serial method: see Theorem 3.

Section 3 relates our work to the literature, and Section 4 introduces our cost-
sharing model, where goods come in indivisible units. The equity axioms reßecting the
two views of responsibility are the subject of Section 5, whereas Section 6 illustrates
that, if we do not impose Distributivity, either view is compatible with a large number
of cost-sharing methods. The two serial methods, subsidy-free and cross-subsidizing,
are deÞned in Section 7. The Distributivity axiom is the subject of Section 8. Our
main results, an axiomatic characterization of the subsidy-free serial method and two
characterizations of the cross-subsidizing serial method, are presented respectively in
Sections 9 and 10. Section 11 brießy evokes possible extensions of our results, and
Section 12 contains the proofs.

3. Related literature
3.1. There is a vast body of axiomatic research on the full responsibility approach to
cost sharing. Most of it focuses on the case of perfectly divisible goods (to which we
refer as the continuous model), so that each demand xi is a nonnegative real number,
whereas in the discrete model considered here, xi is an integer. The difference is
mostly technical; the discrete model avoids the many topological difficulties of the
continuous model.
In the continuous model, Dummy and Additivity are generally assumed. In the

rich class characterized by these two axioms (Friedman (1998), Haimanko (2000)),
the three main methods of interest are: the Aumann-Shapley method (Aumann and
Shapley (1974), Billera and Heath (1982), Mirman and Tauman (1982), Samet and
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Tauman (1982), Young (1985)); the Shapley-Shubik method (Shapley (1953), Shu-
bik (1962), Sprumont (1998), Friedman and Moulin (1999)); and the serial method
(Moulin and Shenker (1994), and Friedman and Moulin (1999)). The latter is the
continuous version of the subsidy-free serial method.
In the discrete model, the class of methods characterized by the Dummy and

Additivity axioms is easier to describe (Wang (1999)), and the same three methods
play the central role: the Aumann-Shapley method (Moulin (1995), van den Nouwe-
land, Potters, Tijs, and Zarzuelo (1995)); the Shapley-Shubik method (Sprumont
(2000)); and the serial method introduced in Moulin (1995), which coincides with
our subsidy-free serial method.
For a detailed survey and further references, we refer the reader to Moulin (2002).
3.2. The partial responsibility approach to cost sharing is the subject of only one

non-technical paper by Fleurbaey and Trannoy (1998). However, the general idea
that a proper deÞnition of fairness depends on a correct assessment of the scope of
individual responsibility is an important new theme in the distributive justice litera-
ture. Following Fleurbaey (1994, 1995) and Roemer (1993, 1994, 1996), the literature
assumes that individuals are characterized by parameters for which they are respon-
sible, and others for which they are not. The challenge is to deÞne notions of fairness
that offset (resp. preserve) inequalities resulting from differences in parameters of the
latter (resp. former) type.
Most closely related to the current work are a number of surplus-sharing methods

restricted to the case of additively separable production functions: see for instance
Bossert (1995), Bossert and Fleurbaey (1996), Sprumont (1997), and Tungodden
(2000). By contrast with those contributions, our paper handles full-ßedged exter-
nalities: the marginal cost of serving a particular agent varies in arbitrary fashion
with the demand proÞle of the others.

3.3. Characterizations of several methods of the serial family are found in the
literature. Moulin and Shenker (1994) characterize the serial formula for one-output
cost functions with the aid of an axiom placing upper bounds on cost shares. Using
a similar axiom, Moulin (1995) and Friedman and Moulin (1999) characterize the
subsidy-free serial method in the discrete and continuous contexts respectively. We
submit that the Upper Bound axiom is intuitively reminiscent of the very serial
formula, and is met by no other familiar method. By contrast, none of the axioms
used in the three current theorems bears any prima facie relation to a serial-type
formula, and each axiom is satisÞed by several completely different methods.
The cross-subsidizing serial method is introduced in Sprumont (1998), along with

other nonadditive serial methods (see also Koster, Tijs, and Borm (1998)). They are
justiÞed by means of a natural �serial principle�. But that principle is too close to
the very deÞnition of the rules to deliver genuine axiomatizations.

3.4. Distributivity, a key axiom in all our results, is introduced in Moulin and
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Shenker (1999). In the continuous model restricted to one-output cost functions, they
show that the serial method is an extreme point of the class of additive and distrib-
utive methods, but fail to characterize it in that class by any elementary principle.
Extending the Distributivity axiom to methods deÞned for arbitrary cost functions
(and combining it with other simple axioms), the current paper obtains genuine char-
acterizations of the subsidy-free and cross-subsidizing serial methods.

4. The background: additive cost-sharing
Each agent i in a Þnite set N = {1, ..., n} demands an integer quantity xi ∈ N =
{0, 1, ...} of a personalized good. The cost of meeting the demand proÞle x ∈ NN

must be split among the members of N. A cost function is a mapping C : NN → R+

that is nondecreasing and satisÞes C(0) = 0; the set of such mappings is denoted C.
For any S ⊆ N and z ∈ RS

+, we let zS =
P

i∈S zi. When convenient, we write i or ij
instead of {i} or {i, j}.
Definition 1. A (cost-sharing) method ϕ assigns to each problem (C, x) ∈ C×NN a
vector of nonnegative cost shares ϕ(C, x) = y ∈ RN

+ such that yN = C(x).

A cost function C ∈ C is one-output if there exists a mapping Γ : N → R+ such
that

C(z) = Γ(zN) for all z ∈ NN . (1)

With a slight abuse of terminology, we call every nondecreasing mapping Γ : N → R+

such that Γ(0) = 0 a one-output cost function as well; the set of such functions
is denoted by G. The usual interpretation is that C is one-output when the goods
demanded by the various agents are perfect substitutes.

Definition 2. A (cost-sharing) mechanism ψ assigns to every one-output problem
(Γ, x) ∈ G×NN a vector of nonnegative cost shares ψ(Γ, x) = y ∈ RN

+ such that
yN = Γ(xN). We say that the mechanism ψ is induced by the method ϕ if, for all
(Γ, x) ∈ G×NN , ψ(Γ, x) = ϕ(C, x), where C is deÞned in (1). Conversely, we call ϕ
an extension of ψ.

Throughout the paper, we restrict our attention to additive cost-sharing methods.
A cost-sharing method ϕ is additive if ϕ(C1 + C2, .) = ϕ(C1, .) + ϕ(C2, .) for all
C1, C2 ∈ C. Likewise, a cost-sharing mechanism ψ is additive if ψ(Γ1 + Γ2, .) =
ψ(Γ1, .) + ψ(Γ2, .) for all Γ1,Γ2 ∈ G. The sets of additive cost-sharing methods and
mechanisms are respectively denoted by Φ and Ψ.
Additivity is a powerful mathematical axiom with no equity content. Its mo-

tivation is essentially pragmatic: an additive method is easy to compute. Under
Additivity, computing cost shares for each one of several parallel cost functions and
adding them up gives the same result as computing the cost shares in one shot, for
the aggregate cost function.
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5. The two views on responsibility and the corresponding axioms of
fairness

The common premise in both views is that each agent is responsible for the size of
her own demand. One approach holds agents responsible as well for their impact on
the cost function, the other does not.
Our Þrst two equity axioms follow naturally from the common premise. First, if

all goods have the same impact on the cost function, agents consuming more should
pay more.

Ranking. For all C ∈ C, x ∈ NN , and i, j ∈ N, {C is a symmetric function of all its
variables and xi ≤ xj}⇒ {ϕi(C, x) ≤ ϕj(C, x)}.
Clearly, Ranking implies Anonymity: agents with equal demands pay equal cost

shares if the cost function is symmetric. The symmetry proviso is essential. Under
a symmetric cost function, any difference in cost shares must originate in differences
in demands. Since agents are responsible for those, higher demands command higher
cost shares.
If the cost function is not only symmetric but also additively separable, the cost

of meeting an agent�s demand is independent of other demands, and demand respon-
sibility requires that agent to pay precisely that cost.

Separability. For all c ∈ G and x ∈ NN , {C(z) = P
i∈N c(zi) for all z ∈ NN} ⇒

{ϕi(C, x) = c(xi) for all i ∈ N}.
We turn to the two axioms driving a wedge between the two views of responsibility.

If agents are responsible for their individual impact on the cost function, �dummies�
should pay nothing. If S ⊆ N, we denote by eS the demand proÞle in NN deÞned by
eSi = 1 if i ∈ S and 0 otherwise. For any i ∈ N and C ∈ C, we deÞne i�s marginal
cost function ∂iC : NN → R+ by ∂iC(z) = C(z + e{i})− C(z).
Dummy. For all C ∈ C, x ∈ NN , and i ∈ N , {∂iC = 0}⇒ {ϕi(C, x) = 0}.
Originally formulated in the cooperative game model by Shapley (1953), the

Dummy axiom was later extended to the cost-sharing model with continuous de-
mands by Aumann and Shapley (1974), Billera and Heath (1982) and Mirman and
Tauman (1982), among others, and to the model with discrete demands by Moulin
(1995), Wang (1999), and Sprumont (2000).

Under Additivity, the Dummy axiom implies a stronger form of Separability ap-
plying to any additively separable cost function, symmetric or not.
Strong Separability. For all C ∈ C, x ∈ NN , {C(z) = P

i∈N ci(zi) for all z ∈
NN}⇒ {ϕi(C, x) = ci(xi) for all i ∈ N}.
The converse is true as well: an additive method satisÞes Strong Separability if

and only if it satisÞes Dummy (Moulin and Vohra (2002)).
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The alternative theory relies on a completely different equity axiom. If agents are
not responsible for their impact on the cost function, their cost shares should not
be sensitive to the asymmetries it displays. Agents who ask more should pay more,
regardless of the cost function.

Strong Ranking. For all C ∈ C, x ∈ NN , and i, j ∈ N, {xi ≤ xj} ⇒ {ϕi(C, x) ≤
ϕj(C, x)}.
This axiom implies Strong Anonymity: agents with equal demands pay equal cost
shares.

As explained in Section 2, Dummy and Strong Ranking are incompatible. We
submit that Dummy is the key axiom of the full responsibility theory, Strong Ranking
that of the partial responsibility theory. Ranking and Separability are meaningful
requirements in both theories.
Ranking is implied by Strong Ranking and is therefore redundant in the partial

responsibility approach. We explained above that Dummy and Additivity together
imply Separability: the latter axiom is therefore redundant in the full responsibility
approach. Summing up, our full responsibility theory of cost sharing is centered
around the combination of Dummy (or Strong Separability) and Ranking while our
partial responsibility theory is built on Strong Ranking and Separability. We show in
the next section that either combination of equity axioms allows for a wide variety of
methods.

6. A brief look at the two classes of methods
The class of additive methods satisfying Dummy is conveniently described using the
concept of path-generated method. In what follows, vector inequalities are denoted
≤, <,¿ and if x, x0 ∈ NN and x ≤ x0, [x, x0] is the interval {z ∈ NN : x ≤ z ≤ x0}.
Definition 3. A path to x ∈ NN is a mapping π : {0, 1, ..., xN} → [0, x] such that
π(0) = 0, π(xN) = x, and for all t ≥ 1 there is some i ∈ N such that π(t)−π(t−1) =
e{i}. Equivalently, any sequence of agents {i1, i2, ..., ixN

} where agent i appears exactly
xi times deÞnes a path π to x by letting π(t) − π(t − 1) = e{it} for each t ≥ 1. We
denote by Π(x) the set of paths to x.

Important examples are the so-called priority paths associated with the n! se-
quences in which all occurrences of any given agent are consecutive. For instance, the
priority path to x corresponding to the natural ordering of the agents is described by
the sequence {1, ..., 1, 2, ..., 2, ..., n, ..., n} in which each i appears xi times.
Definition 4. A cost-sharing method ϕ is path-generated if for every x ∈ NN there
is a path π to x such that, for every C ∈ C,

ϕ(C, x) = ϕπ(C, x) :=
xNP
t=1

[C(π(t))− C(π(t− 1))][π(t)− π(t− 1)].
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The simplest path-generated methods are the ordered contributions methods, gen-
erated by the priority paths. Each such method uses a single Þxed ordering of the
agents: for every demand proÞle x, cost shares are computed along the priority path
to x corresponding to the given ordering. For instance, the ordered contributions
method ϕ≤ corresponding to the natural ordering of the agents yields the cost shares
ϕ≤i (C, x) = C(

P
j≤i xje

{j})−C(Pj≤i−1 xje
{j}) for all i ∈ N and every problem (C, x).

It is clear that every path-generated method satisÞes Additivity and Dummy.
Conversely, Wang (1999) showed that every method ϕ ∈ Φ satisfying Dummy is a
convex combination of path-generated methods: for each x ∈ NN there is a probability
distribution µ(., x) on Π(x) such that

ϕ(C, x) =
X
π∈Π(x)

µ(π, x)ϕπ(C, x) for all C ∈ C. (2)

Note that no relation is imposed on the probability distributions used for different
demand proÞles. Thus the subset of Φ circumscribed by Dummy is quite large: it
is convex and its dimension is countably inÞnite. These properties remain true if we
add Ranking.
Two important examples are the Aumann-Shapley method ϕas, which uses for all

x the uniform distribution over all paths to x, and the Shapley-Shubik method ϕss,
which uses the uniform distribution putting weight only on the priority paths to x.

Turning now to the partial responsibility approach, we note that the class of
methods in Φ satisfying Strong Ranking is also very large. Basic examples include
the egalitarian method

ϕ(C, x) =
C(x)

n
· eN

and the proportional method

ϕ(C, x) =
C(x)

xN
· x,

but both methods clearly violate Separability.
A large family of methods meeting Strong Ranking and Separability are the equi-

incremental methods. We describe the construction of such a method for a demand
proÞle whose coordinates are distinct, say, x1 < x2 < ... < xn. The deÞnition is then
extended by symmetry to any proÞle. Choose a path π to the vector (1, 2, ..., n) :
in the associated sequence {i1, i2, ..., in(n+1)/2}, agent i appears i times. For t =
1, ..., n(n + 1)/2, deÞne z(t) by zi(t) = xπi(t) for all i ∈ N, with the convention that
x0 = 0, and let S(t) = {i ∈ N : πit(t) ≤ i}. Agent i�s cost share is given by

ϕi(C, x) =
P

t:i∈S(t)

1

#S(t)
[C(z(t))− C(z(t− 1))].
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Note that all coordinates of the sequence z(t) are in {0, x1, ..., xn} for all t, and
between z(t) and z(t + 1) exactly one coordinate zi increases from its current level
xj to xj+1; the corresponding incremental cost is equally shared among the agents
j + 1, ..., n.
As an illustration, consider the case n = 2 and Þx a demand proÞle x, x1 < x2.

There are three paths to (1, 2) corresponding to the sequences of agents {1, 2, 2}, {2, 1,
2}, and {2, 2, 1}. Let us compute the cost shares corresponding to the third path.
By deÞnition, π(1) = (0, 1),π(2) = (0, 2),π(3) = (1, 2) and z(1) = (0, x1), z(2) =
(0, x2), z(3) = (x1, x2). Next, S(1) = {1, 2}, S(2) = {2}, S(3) = {1, 2} and therefore

ϕ1(C, x) =
1

2
[C(x1, x2) + C(0, x1)− C(0, x2)]. (3)

The other two paths yield the familiar serial formula:

ϕ1(C, x) =
1

2
C(x1, x1).

Thus there are two equi-incremental methods in this case. For n = 3 and a given
demand proÞle x with x1 < x2 < x3, there are already 25 different methods. For
instance the sequence {3,2,3,2,1,3} yields the cost shares ϕ1(C, x) =

1
3
C(0, x1, x1)+

1
3
[C(x1, x2, x2)−C(0, x2, x2)] and ϕ2(C, x) = ϕ1(C, x)+ 1

2
[C(0, x2, x2)−C(0, x1, x1)].

Just like in the discussion of path-generated methods, the sequences used for
different demand proÞles need not be related in any particular way. Hence the set
of equi-incremental methods is very large too. Any converse combination of equi-
incremental methods, where the weights are independent of C, is an element of Φ
meeting Strong Ranking and Separability. This family of methods does not exhaust
the subset of Φ circumscribed by these two axioms.

7. Two serial cost-sharing methods
We deÞne in this section the �subsidy-free serial� method and the �cross-subsidizing
serial� method. We argue in Sections 9 and 10 that, in view of the Distributivity
property, these two methods play a central role in, respectively, the full and the
partial responsibility approaches. Both extend Moulin and Shenker�s (1992) serial
mechanism to a full-ßedged method (recall the distinction between methods and
mechanisms introduced in DeÞnitions 1 and 2 ). We recall the deÞnition of the serial
mechanism.

Definition 5. Let NN
∗ = {x ∈ NN : x1 ≤ ... ≤ xn}. For any x ∈ NN

∗ , deÞne x
1 =

x1e
N , x2 = x1e

{1}+x2eN\{1}, ..., xn−1 = x1e{1}+ ...+xn−1e{n−1,n}, xn = x. The serial
mechanism ψs assigns to every one-output problem (Γ, x) ∈ G× NN

∗ the vector of cost
shares ψs(Γ, x) = 1

n
Γ(x1N)e

N + 1
n−1 [Γ(x

2
N)−Γ(x1N)]eN\{1}+ ...+[Γ(xnN)−Γ(xn−1N )]e{n}.
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The cost shares for an arbitrary one-output problem (Γ, x) ∈ G× NN obtain by
applying the formula after reordering the coordinates of the demand proÞle x in
nondecreasing order.

Looking Þrst at the full responsibility approach, we deÞne a cost-sharing method
extending the serial mechanism and satisfying Dummy and Ranking. The intuition
for our method is simpler in the continuous model (Friedman and Moulin (1999)),
where we compute an agent�s cost share by integrating his marginal cost along the
�constrained egalitarian path� to the demand proÞle. That path is deÞned by the
property that the quantity of each good whose demand is not met increases at an equal
rate. In the discrete model, no path treats agents symmetrically, so the egalitarian
path can only be approximated. For the sake of fairness, we average the cost shares
computed along all the approximating paths.

Definition 6. A path π to x ∈ NN
∗ with associated sequence {i1, i2, ..., ixN

} is called
egalitarian if for all i, j ∈ N,

xi ≤ xj ⇒ |πi(t)− πj(t)| ≤ 1 for t = 1, ...,max{t0 : it0 = i}.
Let Πe(x) be the set of egalitarian paths. The subsidy-free serial method ϕfs assigns
to every problem (C, x) ∈ C× NN

∗ the arithmetic average of the vectors of cost shares
generated by all the egalitarian paths to x :

ϕfs(C, x) =
1

#Πe(x)

X
π∈Πe(x)

ϕπ(C, x).

Again, the cost shares for an arbitrary problem (C, x) ∈ C× NN obtain by applying
the formula after reordering the coordinates of the demand proÞle in nondecreasing
order. This method was introduced in Moulin (1995).

As an example, suppose n = 2 and x = (2, 3). There are four egalitarian paths, π1

to π4, corresponding respectively to the sequences {1, 2, 1, 2, 2}, {2, 1, 2, 1, 2}, {1, 2, 2,
1, 2}, and {2, 1, 1, 2, 2}. The subsidy-free serial method averages over all four with
weight 1/4. Notice, however, that the paths π3 and π4 are redundant: the subsidy-
free serial cost shares can be computed by averaging over π1 and π2 with weight 1/2.
The latter are examples of simple paths. In general, we call an egalitarian path π
to x simple if for all i, j such that xi ≤ xj, the sign of πi(t) − πj(t) is the same for
all t = 1, ...,max{t0 : it0 = i}. While there are (n!)x1 · ((n − 1)!)x2−x1 · ... · 2xn−1−xn−2

egalitarian paths to x, only n! of them are simple, and we need only average over
these to compute the subsidy-free serial cost shares.

Turning to the partial responsibility approach, a straightforward modiÞcation of
the formula in DeÞnition 5 extends the serial mechanism to a method meeting Strong
Ranking and Separability.
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Definition 7. The cross-subsidizing serial method ϕcs assigns to every problem
(C, x) ∈ C× NN

∗ the vector of cost shares ϕcs(C, x) = 1
n
C(x1)eN + 1

n−1 [C(x
2) −

C(x1)]eN\{1} +... + [C(xn)− C(xn−1)]e{n}. The cost shares for an arbitrary problem
obtain by applying the formula after reordering the coordinates of the demand proÞle
in nondecreasing order. This method was introduced in Sprumont (1998).

The cross-subsidizing serial is one of the equi-incremental methods described in
the previous section: when x1 < ... < xn, it is generated by the sequence of agents
{1, 2, 2, 3, 3, 3, ...}.
We let the reader check that both serial methods coincide not only for one-output

problems, but also whenever the cost function is symmetrical in all its variables.

8. Distributivity and Strong Distributivity
The subsidy-free and cross-subsidizing serial methods share a natural and powerful
property, known as Distributivity, that lends them a very central status in the full
and partial responsibility theories, respectively.
The axiom bears on the sequential decomposition of the production of a single

output. Suppose that an input is Þrst transformed into an intermediate good, next
used to produce the Þnal product or service. Meeting the Þnal demand proÞle x re-
quires z = Γ2(xN) units of the intermediate good, the production of which necessitates
y = Γ1(z) units of input.
Given a mechanism ψ, we can allocate costs step by step: the shares of intermedi-

ate good are ψ(Γ2, x); viewing those shares as demands for the intermediate good, the
input shares are ψ(Γ1,ψ(Γ2, x)). Alternatively, we could apply the mechanism directly
to the composed cost function: the cost shares are then ψ(Γ1 ◦ Γ2, x). Distributivity
requires that the two computations give the same result:

ψ(Γ1,ψ(Γ2, x)) = ψ(Γ1 ◦ Γ2, x). (4)

Like Additivity, Distributivity is an invariance axiom with no equity content. In the
continuous model, (4) is a well-deÞned requirement. Notice that it implies

{ψ(Γ1, x) = ψ(Γ2, x)}⇒ {ψ(Γ ◦ Γ1, x) = ψ(Γ ◦ Γ2, x)}

for any one-output cost function Γ. However, in the discrete model (4) is not well
deÞned because the coordinates of ψ(Γ2, x) need not be integers and because Γ1 ◦ Γ2
is not deÞned. For a proper deÞnition, we let G be the set of nondecreasing functions
Γ : R+ → R+ satisfying Γ(0) = 0. If Γ ∈ G, denote its restriction to N by Γ.

Definition 8. A cost-sharing mechanism ψ is distributive if it satisÞes the following
two properties:
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(A) for all Γ1 ∈ G , all Γ2 ∈ G and x ∈ NN such that ψ(Γ2, x) ∈ NN , ψ(Γ1,ψ(Γ2, x)) =
ψ(Γ1 ◦ Γ2, x);
(B) for all Γ ∈ G, all Γ1,Γ2 ∈ G, and all x ∈ NN , {ψ(Γ1, x) = ψ(Γ2, x)} ⇒ {ψ(Γ ◦
Γ1, x) = ψ(Γ ◦ Γ2, x)}.
A cost-sharing method ϕ is distributive if the cost-sharing mechanism it induces is
distributive.

The structure of the distributive mechanisms in Ψ is described in detail in Sub-
section 12.2. The class of such mechanisms is quite rich. The main examples are the
ordered contributions, egalitarian, proportional, and serial mechanisms.
The ordered contributions methods are distributive, but they fail Ranking. If we

restore Ranking by taking the uniform average over all orderings of the agents (thus
obtaining the Shapley-Shubik method: see Section 6), we lose Distributivity. For
a simple proof of this claim, suppose n = 2, x = (1, 2), and choose a one-output
cost function Γ2 such that Γ2(1) = 0, Γ2(2) = 1, Γ2(3) = 3. The Shapley-Shubik
mechanism yields ψss1 (Γ

2, x) = 1
2
[Γ2(1) + Γ2(3)− Γ2(2)] = 1 = x1. Therefore, for any

Γ
1
, ψss1 (Γ

1,ψ(Γ2, x)) = ψss1 (Γ
1, x) = 1

2
[Γ1(1) + Γ1(3) − Γ1(2)] while ψss1 (Γ1 ◦ Γ2, x) =

1
2
[Γ1(Γ2(1)) + Γ1(Γ2(3))− Γ1(Γ2(2))] = 1

2
[Γ1(0) + Γ1(3)− Γ1(1)].

Two central methods of the full responsibility approach are the Aumann-Shapley
(Section 6) and subsidy-free serial methods. As they extend respectively the propor-
tional and serial mechanisms, both are distributive.
In the partial responsibility approach, the cross-subsidizing serial method satisÞes

Distributivity as well (since it is another extension of the serial mechanism). It turns
out that no other equi-incremental method passes this test. For instance, the two-
agent method given by (3) if x1 < x2 and its symmetric counterpart if x1 ≥ x2 is
not distributive: indeed, it induces the Shapley-Shubik mechanism on the one-output
problems.

Distributivity only restricts the solution of one-output problems. Yet a similar
property is easily deÞned for general cost functions. Suppose that producing the Þnal
demand proÞle x requires z = C2(x) units of an intermediate good, the production
of which necessitates y = Γ1(z) units of input. Using a given cost-sharing method
ϕ with induced mechanism ψ, we could again allocate costs step by step or directly,
and Distributivity requires

ψ(Γ1,ϕ(C2, x)) = ϕ(Γ1 ◦ C2, x).

Again, this property is not well deÞned in our discrete model because ϕ(C2, x) may
have non-integer coordinates and, moreover, the composition on the right-hand side
is not deÞned. We adapt deÞnition 8 as follows.
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Definition 9. A cost-sharing method ϕ is strongly distributive if it satisÞes the
following two properties:

(A*) for all Γ ∈ G , all C ∈ C and x ∈ NN such that ϕ(C, x) ∈ NN , ψ(Γ,ϕ(C, x)) =
ψ(Γ ◦ C, x);
(B*) for all Γ ∈ G, all C1, C2 ∈ C, and all x ∈ NN , {ϕ(C1, x) = ϕ(C2, x)} ⇒
{ϕ(Γ ◦ C1, x) = ϕ(Γ ◦ C2, x)}.
Strong Distributivity is much more demanding than Distributivity. The set of

strongly distributive methods in Φ is rather small, as explained in Subsection 12.5.
Simple examples include the ordered contributions, egalitarian, and proportional
methods. More interestingly, the cross-subsidizing serial method, which satisÞes
Strong Ranking and Separability, is strongly distributive: see Theorem 3 in Section
10. Thus Strong Distributivity is compatible with the partial responsibility approach.
On the other hand, the axiom is incompatible with the full responsibility approach.

Notice Þrst that both the Aumann-Shapley and the subsidy-free serial methods fail
the Strong Distributivity test. To check this claim, let x = (1, 2), and C be a cost
function such that C(1, 0) = 1, C(0, 1) = C(0, 2) = 2, and C(1, 1) = C(1, 2) = 3. Av-
eraging marginal costs over the three paths to x, the Aumann-Shapley method yields
ϕas(C, x) = x. Therefore, for any Γ, ψas1 (Γ,ϕ

as(C, x)) = ψas1 (Γ, x) =
1
3
Γ(x1 + x2) =

1
3
Γ(3). On the other hand, ϕas1 (Γ◦C, x) = 1

3
Γ(C(1, 0)) + 1

3
[Γ(C(1, 1)) − Γ(C(0, 1))] +

1
3
[Γ(C(1, 2)) − Γ(C(0, 2))] = 1

3
Γ(1)+ 2

3
Γ(3)− 2

3
Γ(2). Similarly, the subsidy-free serial

method yields ψfs1 (Γ,ϕ
fs(C, x)) = 1

2
Γ(2) and ψfs1 (Γ ◦C, x) = 1

2
Γ(1) + 1

2
Γ(3)− 1

2
Γ(2).

In fact, no additive cost-sharing method satisfying Dummy and Ranking is strongly
distributive:

Proposition 1. A cost-sharing method ϕ ∈ Φ satisÞes Dummy and Strong Distrib-
utivity if and only if it is an ordered contributions method.

There exist nonadditive methods meeting Dummy, Ranking and Strong Distribu-
tivity: splitting the cost equally among all agents who are not dummies is an example.

9. A characterization of the subsidy-free serial method
To characterize the subsidy-free serial method within the set of additive methods
satisfying Dummy and Distributivity, we introduce two additional properties.

Dummy Independence. For all C ∈ C, x, x0 ∈ NN , and i ∈ N , {∂iC = 0 and
xj = x

0
j for all j ∈ N\{i}}⇒ {ϕ(C, x) = ϕ(C, x0)}.

Dummy Independence states that a change in a dummy agent�s demand has no
effect on cost shares. Very natural in the full responsibility approach to cost-sharing,
this axiom is a mild complement of the Dummy axiom: all the methods discussed
so far that satisfy Dummy also satisfy Dummy Independence. The latter axiom is
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implied by the former in the two-agent case, but for larger populations there is no
logical relation between them. Examples of methods that satisfy Dummy but violate
Dummy Independence include methods using different priority paths for different
demand proÞles. The egalitarian method (Section 6) is an example of a method
satisfying Dummy Independence and violating Dummy1.

Demand Monotonicity. For all C ∈ C, x, x0 ∈ NN , and i ∈ N , {xi ≤ x0i and
xj = x

0
j for all j ∈ N\{i}}⇒ {ϕi(C, x) ≤ ϕi(C, x0)}.

Demand Monotonicity is a natural ethical requirement in any cost-sharing the-
ory holding agents responsible for their demand; it is meaningful in both the full
and partial responsibility approaches. Alternatively, it may be defended on strategic
grounds: a demand monotonic method is not vulnerable to artiÞcial inßation of indi-
vidual demands. In conjunction with Additivity and Dummy, Demand Monotonicity
has a lot of bite: while the Shapley-Shubik and subsidy-free serial methods satisfy it,
the Aumann-Shapley method does not (see Moulin (1995)).

Before characterizing the subsidy-free serial method, we describe the entire class
of cost-sharing methods in Φ satisfying Distributivity, Dummy, Dummy Indepen-
dence, and Demand Monotonicity. It contains the ordered contribution methods, the
subsidy-free serial method, and a Þnite number of hybrid methods combining both
types of methods as follows.

Definition 10. Let 4 be a preordering (that is, a complete and transitive relation)
on N, and let {N1, N2, ..., NK}, be the ordered partition it generates (where k ≤ l if
and only if i 4 j for all i ∈Nk and all j ∈ Nl).WriteMk = ∪kl=1Nl for k = 1, ...,K. For
each cost-sharing problem (C, x), the 4 � ordered composition of subsidy-free serial
methods, ϕ4, computes the cost shares in two steps: it determines the incremental cost
of serving each group Nk if all members of all preceding groups have been served, then
splits that incremental cost between the members of Nk according to the subsidy-free
serial method. Formally, for each k = 1, ...,K, deÞne Ck : NNk → R+ by

Ck(z) = C(x(Mk−1), z, 0(N\Mk))− C(x(Mk−1), 0(N\Mk−1))

for all z ∈ NNk , where x(S) denotes the projection of x on S. The mapping Ck is a
valid cost function for the agent set Nk : it is nondecreasing and Ck(0) = 0. Assign
to each agent i ∈ Nk the cost share

ϕ4
i (C, x) = ϕ

fs
i (Ck, x(Nk)),

1Under responsibility for one�s demand, it is natural to require that an agent demanding nothing
pays nothing. Given this property (formally deÞned after the Corollary to Theorem 1 below),
Dummy Independence implies Dummy at once.
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where, with some abuse of notation, ϕfs denotes the subsidy-free serial method for
Nk.

If 4 is an ordering, every group Nk contains a single agent, and ϕ4 is the corre-
sponding ordered contributions method. At the other extreme, if 4 puts all agents
in one indifference class, ϕ4 is the subsidy-free serial method. There are as many
ordered compositions of serial methods as there are preorderings on the set of agents.
This is a large number. In the 3-agent case we have 13 such methods: the 6 ordered
contributions methods, 3 methods based on preorderings of the type i ≺ j ∼ k, 3
based on preorderings of the type i ∼ j ≺ k, and the subsidy-free serial method.
With 5 agents, there are 541 methods, and 47,293 with 7 agents: see Maassen and
Bezembinder (2002) for a general formula.

Theorem 1. A cost-sharing method ϕ ∈ Φ satisÞes Distributivity, Dummy, Dummy
Independence, and Demand Monotonicity if and only if it is an ordered composition
of subsidy-free serial methods: there exists a preordering 4 on N such that ϕ = ϕ4.

The subsidy-free serial method stands out in that class because it treats all agents
alike. In particular, we obtain the following characterization.

Corollary to Theorem 1. The only cost-sharing method in Φ satisfying Distrib-
utivity, Dummy, Dummy Independence, Demand Monotonicity, and Ranking is the
subsidy-free serial method ϕfs.

In the corollary, Ranking may be replaced with the property of Anonymity de-
Þned in Section 5, or even the following much weaker symmetry requirement on the
mechanism ψ associated with ϕ:

Weak Anonymity. For all Γ ∈ G, x ∈ NN , and i, j ∈ N, {xi = xj} ⇒ {ψi(Γ, x) =
ψj(Γ, x)}.
To conclude this section, we comment on the tightness of Theorem 1. Among the

four stated properties, the Shapley-Shubik method violates only Distributivity, the
egalitarian method violates only Dummy, and the Aumann-Shapley method violates
only Demand Monotonicity. For a nonadditive method meeting the four properties,
split the cost equally among the non-dummy agents. We do not know whether there
exists a method in Φ satisfying all properties but Dummy Independence.
In view of Footnote 1, we can replace Dummy in Theorem 1 and its corollary with

Zero Charge for Zero Demand. For all C ∈ C, x ∈ NN , and i ∈ N, {xi = 0} ⇒
{ϕi(C, x) = 0}.
The corresponding statement is then tight. The proportional method violates

Dummy Independence but meets Distributivity, Demand Monotonicity and Zero
Charge for Zero Demand.
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10. Two characterizations of the cross-subsidizing serial method
In the partial responsibility approach, we present two characterizations of the cross-
subsidizing serial method. Our Þrst result relies heavily on Strong Ranking.

Theorem 2. The only cost-sharing method in Φ satisfying Distributivity, Strong
Ranking, and Separability is the cross-subsidizing serial method ϕcs.

This is a tight result. The egalitarian and proportional methods (Section 6) sat-
isfy Distributivity and Strong Ranking, but violate Separability. The subsidy-free
serial method is distributive and separable but violates Strong Ranking. The equi-
incremental methods (Section 6) other than ϕcs meet Strong Ranking and Separabil-
ity, but not Distributivity. For a nonadditive method satisfying the three properties in
the theorem, use the serial mechanism for one-output problems and the proportional
method otherwise.

Our next theorem is formally similar to Theorem 2. Yet, from an ethical viewpoint,
it is much more neutral: instead of Strong Ranking, we only impose Ranking, which
is compatible with the full responsibility approach. As it turns out, the invariance
property of Strong Distributivity is so powerful that, in combination with Ranking
and Separability, it delivers a second characterization of the cross-subsidizing serial
method.

Theorem 3. The only cost-sharing method in Φ satisfying Strong Distributivity,
Ranking, and Separability is the cross-subsidizing serial method ϕcs.

This is again a tight statement. The egalitarian and proportional methods satisfy
Strong Distributivity and Ranking, but violate Separability. The ordered contribu-
tions methods are strongly distributive and separable, but violate Ranking. Ranking
and Separability allow for a wide variety of methods violating Strong Distributivity,
including the Shapley-Shubik, Aumann-Shapley, and subsidy-free serial methods. For
a nonadditive method satisfying the three axioms in the theorem.

11. Directions for future research
Our results leave open several natural questions. Does Theorem 1 survive if we omit
Dummy Independence? What subset of Φ is characterized by the combination of
Separability and Strong Ranking? By these two axioms and Demand Monotonicity?
An ordered contribution method meets Strong Distributivity and Separability, and
so do all ordered compositions of cross-subsidizing serial methods (deÞned by mim-
icking DeÞnition 10): does this exhaust the set of additive, separable and strongly
distributive methods?
All axioms and methods discussed here are easily translated to the continuous

model, where demand proÞles vary in RN
+ . Distributivity is now deÞned directly by

property (4). The deÞnit ion of the cross-subsidizing method is identical, that of the
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subsidy-free method is simpler, as it is generated by a single path (see the discussion
preceding DeÞnition 6). Whether or not our three theorems have a counterpart in the
continuous model is a question that we Þnd technically challenging. We suspect that
the answer will be easier in the case of the full responsibility approach, because the
structure of additive methods meeting Dummy is well understood (Friedman (1998),
Haimanko (2000)), and so is that of distributive mechanisms (Moulin and Shenker
(1999)).

12. Proofs
12.1. Independence of irrelevant costs. We state a well known result about
additive cost-sharing methods.

Lemma 0. If ϕ ∈ Φ, x ∈ NN , and C1, C2 ∈ C, then {C1(z) = C2(z) for all
z ∈ [0, x]}⇒ {ϕ(C1, x) = ϕ(C2, x)}.
A proof is in Moulin (1995); the argument establishing statement i) of Lemma 1

there does not use Dummy.

12.2. The structure of the separable distributive mechanisms in Ψ. This
subsection analyzes the main implications of Distributivity: more precisely, we de-
scribe the structure of a cost-sharing mechanism ψ ∈ Ψ satisfying Distributivity and
the following property:

ψ(id, x) = x for all x ∈ NN , (5)

where id : N → R+ is the identity function. This property is a weak version of the
Separability axiom of Section 4 obtained by restricting it to Γ = id. The mechanism
ψ is Þxed throughout the subsection.

We introduce some notations Þrst. DeÞne δt ∈ G by
δt(z) = 1 if z ≥ t and δt(z) = 0 otherwise. (6)

Next we write γθ(z) = min{θ, z} for all z, θ ∈ R+ , and use this notation also for
the restriction of this function to N, an element of G. Finally, for all Γ ∈ G, we write
γθ ◦ Γ = θ ∧ Γ ∈ G, namely the function (θ ∧ Γ)(z) = min{θ,Γ(z)}.
From now on, we Þx a demand proÞle x ∈ NN . Associated with x is a sequence

{y1, ..., yxN} of vectors in the simplex of RN deÞned by yt = ψ(δt, x) for t = 1, ..., xN .
Keeping only one vector from each interval of consecutive identical vectors in that
sequence, we obtain a sequence

K(x) = {y1∗, ..., yK∗ }. (7)

For instance, if xN = 5 and y1 = y2 6= y3 6= y4 = y5, we get K(x) = {y2, y3, y5}, in
which y2 and y5 may or may not be different.
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Lemma 1. The vectors in K(x) are linearly independent.

Proof. We show Þrst that all vectors in K(x) are distinct. By deÞnition, yk∗ 6= yk+1∗
for k = 1, ...,K − 1 . Fix k, k0 ∈ {1, ...,K}, k0 − k ≥ 2, and suppose that yk∗ = yk0∗ .
By deÞnition of K(x), there is a strictly increasing sequence t0, t1, ..., tK with t0 = 0
and tK = xN such that

yk∗ = y
t for tk−1 < t ≤ tk and k = 1, ...,K. (8)

DeÞne the cost functions Γ = δtk + δtk+1
and Γ0 = δtk+1

+ δtk0 . By additivity of ψ
and deÞnition of K(x), ψ(Γ, x) = yk∗ + y

k+1
∗ = yk+1∗ + yk

0
∗ = ψ(Γ

0, x). Combining that
equality and property (B) in DeÞnition 8, with γθ deÞned on R+, gives ψ(θ ∧Γ, x) =
ψ(θ ∧ Γ0, x) for all θ ∈ R+. For 0 < θ ≤ 1, we compute

ψ(θ ∧ Γ, x) = ψ(θδtk , x) = θy
k
∗ ,

ψ(θ ∧ Γ0, x) = ψ(θδtk+1
, x) = θyk+1∗ .

As yk∗ 6= yk+1∗ , we obtain a contradiction. Therefore our assumption yk∗ = y
k0
∗ cannot

be true.
If the vectors inK(x), all in the simplex of RN , are linearly dependent, there exist

two nonempty disjoint subsets K1,K2 of {1, ...,K} and strictly positive coefficients
λki

for all ki ∈ Ki, i = 1, 2, such thatP
k1∈K1

λk1y
k1∗ =

P
k2∈K2

λk2y
k2∗ .

Choosing Γi =
P

ki∈Ki
λki
δtki

for i = 1, 2, it follows that ψ(Γ1, x) = ψ(Γ2, x) and
thus, by property (B) in DeÞnition 8, ψ(θ ∧ Γ1, x) = ψ(θ ∧ Γ2, x) for all θ ∈ R+. On
the other hand, if k0i denotes the smallest element of Ki and 0 < θ ≤ λk0

i
, we have

θ ∧ Γi = θδt
k0

i

, hence ψ(θ ∧ Γi, x) = θyk
0
i∗ for i = 1, 2. Since all vectors in K(x) are

distinct and k01 6= k02, we obtain ψ(θ ∧ Γ1, x) 6= ψ(θ ∧ Γ2, x), a contradiction.
Denote by H(x) the positive cone generated by K(x), that is, H(x) = {z ∈ RN

+ :

∃λ1, ...,λK ∈ R+ such that z =
PK

k=1 λky
k
∗}. Note that the identity function coincides

with
PxN

t=1 δt up to xN . Therefore, by Lemma 0,

x = ψ(id, x) =
xNP
t=1

yt =
KP
k=1

(tk − tk−1)yk∗ , (9)

where t1, ..., tK are the indices deÞned in (8). This means that x ∈ H(x). Next, any
function Γ ∈ G coincides with PxN

t=1(Γ(t)− Γ(t− 1))δt up to xN . Therefore,

ψ(Γ, x) =
xNP
t=1

(Γ(t)− Γ(t− 1))yt =
KP
k=1

(Γ(tk)− Γ(tk−1))yk∗ ,
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meaning that ψ(Γ, x) ∈ H(x). Our next lemma generalizes these observations.
Lemma 2. Let z ∈ H(x) ∩ NN , with coordinates λ1, ...,λK ∈ R+, that is z =PK

k=1 λky
k
∗ . Then i) λ1, ...,λK ∈ N, ii) K(z) obtains from K(x) by deleting those

vectors yk∗ for which λk = 0, and iii) for all Γ ∈ G,

ψ(Γ, z) =
KP
k=1

(Γ(Λk)− Γ(Λk−1))yk∗ (10)

where Λk =
Pk

l=1 λl and Λ0 = 0.

Proof. Let z satisfy the assumptions of the lemma. DeÞne the cost function Γλ =PK
k=1 λkδtk and observe that ψ(Γ

λ, x) = z. For θ ∈ R+, consider the function θ∧Γλ =PK
k=1{(θ − Λk−1)+ ∧ λk}δtk , where a+ = max{a, 0}. We have

ψ(θ ∧ Γλ, x) =
KP
k=1

{(θ − Λk−1)+ ∧ λk}yk∗ . (11)

Because ψ(Γλ, x) = z ∈ NN , we can apply property (A) in DeÞnition 8, with γθ
deÞned on R+, and get ψ(θ ∧ Γλ, x) = ψ(γθ, z). Next we note that the function
θ → ψ(γθ, z) is affine between any two consecutive integers t, t + 1. This follows
from additivity of ψ by computing for t ≤ θ < θ0 ≤ t + 1, ψ(γθ0 , z) − ψ(γθ, z) =
ψ(γθ0 − γθ, z) = ψ((θ0 − θ)δt+1, z) = (θ0 − θ)ψ(δt+1, z). Therefore the sum in (11) is
affine in θ between any two integers. Since the vectors y1∗, ..., y

K
∗ are all different, it

follows that the coefficients λ1, ...,λK are all integers, proving statement i).
In view of ψ(θ ∧ Γλ, x) = ψ(γθ, z) , we may rewrite (11) in the following form:

ψ(γθ, z) =
KP
k=1

{γθ(Λk)− γθ(Λk−1)}yk∗ ,

which establishes (10) for Γ = γθ. A cost function Γ ∈ G which is constant after xN
is a linear combination of γθ functions, therefore formula (10) holds for every such
function. By Lemma 0, it holds for every Γ ∈ G, proving statement iii).
Applying the equation (10) to δt gives ψ(δt, z) = yk∗ if and only if Λk−1 < t ≤ Λk,

proving statement ii).

Our last lemma gives a complete description of K(x) in the two-agent case. Since
K(x) is obviously nonempty, Lemma 1 implies that it contains either one or two
vectors.

Lemma 3. The vectors in K(x) have rational coordinates. If K(x) = {y1∗, y2∗}, then
there exist a, b ∈ N with 0 ≤ a ≤ b− 1 and k, k0 with {k, k0} = {1, 2} such that

yk∗ = (
a

b
,
b− a
b
), yk

0
∗ = (

a+ 1

b
,
b− a− 1

b
).
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Proof. If K(x) = {y1∗}, recall that x ∈ H(x) : as y1∗ is in the simplex of R2
+, we have

x = (x1 + x2)y
1
∗. (12)

Since x has integer coordinates, y1∗ has rational coordinates.
If K(x) = {y1∗, y2∗}, recall from (9) that x = t1y

1
∗ + (t2 − t1)y2∗ and set yi∗ =

(αi, 1 − αi), 0 ≤ αi ≤ 1, i = 1, 2. For z1, z2 ∈ N, consider the following system in
λ1,λ2 :

λ1y
1
∗ + λ2y

2
∗ = (z1, z2).

This system is nonsingular by Lemma 1 and its solution is

λ1 =
(1− α2)z1 − α2z2

α1 − α2 , λ2 =
−(1− α1)z1 + α1z2

α1 − α2 . (13)

For any strictly positive µ ∈ N, if z1 = µx1 and z2 = µx2, we know from (9)
that λ1 = µt1 and λ2 = µ(t2 − t1), both strictly positive and (by Lemma 2) integers.
It follows that for µ large enough, if z1 = µx1 + 1 and z2 = µx2 (or z1 = µx1 and
z2 = µx2 +1), the values of λ1 and λ2 given by (13) are also strictly positive and, by
Lemma 2 again, integers. Writing that λ1 changes but remains integer when z2 = µx2
and z1 shifts from µx1 to µx1 + 1, and three other similar properties, we conclude
that the four numbers

1− α2
|α1 − α2| ,

α2
|α1 − α2| ,

1− α1
|α1 − α2| ,

α1
|α1 − α2|

must be nonnegative integers, possibly zero. Adding the Þrst two of these numbers,
1

|α1−α2| is also an integer: call it b. Next, since the fourth and second numbers are
integers, there exist a1, a2 ∈ N such that α1 = a1

b
and α2 = a2

b
. Now 1

|α1−α2| =
b

|a1−a2|
gives a1 − a2 = 1 and the formula in the lemma follows.

12.3. Proof of Theorem 1. Let ϕ ∈ Φ be a cost-sharing method satisfying the
four axioms in Theorem 1.

Step 1. By Wang�s (1999) lemma, ϕ is a convex combination of path-generated
methods: for each x ∈ NN there is a probability distribution µ(., x) on Π(x) satisfying
(2). The following formulation of Wang�s result will be useful. For each i ∈ N and
z ∈ [0, x − ei], denote by Πi(z, x) the set of paths π to x �passing through� z and
z+ei : there is some t ∈ {1, ..., xN} such that π(t−1) = z and π(t) = z+ei. DeÞning
mi(z, x) =

P
π∈Πi(z,x)

µ(π, x) (with the convention that a sum over the empty set is
zero), (2) and DeÞnition 4 yield

ϕi(C, x) =
P

z∈[0,x−ei]

mi(z;x)∂iC(z) (14)
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for all i ∈ N and (C, x) ∈ C × NN . Because it is constructed from probability dis-
tributions over paths, the weight system (m1, ...,mn) satisÞes the ßow conservation
constraints P

i∈N
mi(0, x) = 1

and P
i∈N :zi<xi

mi(z, x) =
P

i∈N :zi>0

mi(z − ei, x) for all z ∈]0, x[.

As already noted, a consequence of Wang�s lemma is that ϕ satisÞes Separability.
The mechanism ψ it induces therefore possesses all the properties derived in the
previous subsection. In Steps 2 to 5, we prove that ϕ is an ordered composition of
subsidy-free methods if n = 2. Step 6 extends the conclusion to an arbitrary number
of agents.

Step 2. We show that for all x ∈ N2, i ∈ {1, 2}, and t, s ∈ N,

{t ≤ xi}⇒ {ψ(δt, x) = ψ(δt, x+ sei)}. (15)

This follows from Step 1 and Demand Monotonicity. Fix x, i, t and s such that
t ≤ xi. We claim that

mi(z, x) = mi(z, x+ se
i) for every z ∈ [0, x− ei]. (16)

Suppose not. Because
P

z0∈[0,x−ei]:z0i=zi
mi(z

0, x) = 1 =
P

z0∈[0,x−ei]:z0i=zi
mi(z

0, x+ sei)
for every z ∈ [0, x− ei] (as follows from the ßow conservation constraints or directly
by applying (14) to the problems (C, x), (C, x + sei) where C(z0) = 1 if z0i ≥ zi and
0 otherwise), there exists some z ∈ [0, x − ei] such that mi(z, x) > mi(z, x + e

i).
Choosing a cost function C for which ∂iC is positive only at z, this last inequality
and (14) yield ϕi(C, x) > ϕi(C, x+se

i), violating Demand Monotonicity. This proves
(16). Because t ≤ xi, C = δt has ∂iC(z) = 0 for all z ∈ [0, x+ (s− 1)ei]Â[0, x− ei],
therefore (14) implies ψi(δt, x) = ψi(δt, x+ se

i), and (15) because n = 2.

Step 3. Let x ∈ N2 and assume that K(x) = {y1∗, y2∗}. We show that y2∗ = e1 or
e2.

Suppose y2∗ 6= e2. Recall from Lemma 3 that y1∗, y
2
∗ have rational coordinates and

choose positive integers t1, t2 such that

z := t1y
1
∗ + t2y

2
∗ ∈ N2 and t1 < z1.

This can be done (by choosing t2 large enough) because y2∗ 6= e2. By Lemma 2,
K(z) = {y1∗, y2∗} and

ψ(δt, z) = y1∗ for 1 ≤ t ≤ t1,
ψ(δt, z) = y2∗ for t1 < t ≤ t1 + t2 = z1 + z2.
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Next, (15) implies ψ(δt, z + se1) = ψ(δt, z) for t = 1, ..., z1 and any s ∈ N. Because
t1 < z1, ψ(δt, z + se

1) = y1∗ for 1 ≤ t ≤ t1 and ψ(δt, z + se1) = y2∗ for t1 + 1 ≤ t ≤ z1.
As ψ(δt, z + e1) takes only two values when t varies, it remains equal to y2∗ when
z1 ≤ t ≤ z1+ z2+ s. Thus z+ se1 = ψ(id, z+ se1) = t1y1∗ +(z1+ z2+ s− t1)y2∗. Since
this holds for all s ∈ N, we conclude that y2∗ = e1.

Step 4. We show that if n = 2, ψ is either the serial mechanism ψs (from DeÞni-
tion 5) or one of the two ordered contributions mechanisms ψ1(Γ, x) = (Γ(x1),Γ(x1+
x2)− Γ(x1)) or ψ2(Γ, x) = (Γ(x1 + x2)− Γ(x2),Γ(x2)).
Case 1. There exists x ∈ N2, xÀ 0, such that K(x) = {y1∗}.
Recall from (12) that x = (x1+ x2)y1∗, so that y

1
∗ 6= e1, e2. Let i ∈ {1, 2}. By (15),

ψ(δt, x + e
i) = ψ(δt, x) = y

1
∗ for 1 ≤ t ≤ xi, hence, y1∗ ∈ K(x + ei). But since x + ei

is not a multiple of x, K(x + ei) 6= {y1∗} (otherwise, applying (12) to x + ei brings
a contradiction). Hence, by Step 3, K(x + ei) = {y1∗, ek} for k = 1, 2, and because
x+ ei ∈ H(x+ ei), K(x+ ei) = {y1∗, ei}.
Applying Lemma 3 to K(x + e1) yields y1∗ = ( b−1

b
, 1
b
); applying it to K(x + e2)

gives y1∗ = (1
b
, b−1
b
) Thus y1∗ = (1

2
, 1
2
). Now, pick any z ∈ N2. If z1 ≤ z2, then z ∈

H(x + e2) and since z = 2z1(
1
2
, 1
2
) + (z2 − z1)e2, formula (10) in Lemma 2 gives

ψ(Γ, z) = 1
2
Γ(2z1)e

{1,2} + [Γ(z1 + z2)− Γ(2z1)]e{2}, precisely the cost shares ψs(Γ, z)
recommended by the serial mechanism of DeÞnition 5. A symmetric argument applies
if z2 ≤ z1.
Case 2. For all x ∈ N2 such that xÀ 0, K(x) = {y1∗, y2∗}.
Let x ∈ N2, x À 0. By Step 3, K(x) = {y1∗, e2} or K(x) = {y1∗, e1}. Consider

the Þrst possibility. By Lemma 3, y1∗ has rational coordinates. By statement ii)
in Lemma 2, for every integer λ1 such that λ1y1∗ = z ∈ N2 we have K(z) = {y1∗}.
Thus z À 0 is impossible and, since y1∗ 6= e2, we must have z2 = 0. This shows that
K(x) = {e1, e2}, and (10) now implies that ψ is the ordered contributions mechanism
ψ1. Similarly, ψ must be the ordered contributions mechanism ψ2 if K(x) = {y1∗, e1}.

Step 5. We show that if n = 2, ϕ is either the subsidy-free serial method
ϕfs (from DeÞnition 6) or one of the two ordered contributions methods ϕ1(C, x) =
(C(x1, 0), C(x)− C(x1, 0)) or ϕ2(C, x) = (C(x)− C(0, x2), C(0, x2)).
Consider the representation of ϕ given by (14). To avoid notational complications,

we extend each mapping mi(., x) to [0, x] by setting mi(z;x) = 0 whenever zi = xi.
We note that (16) and n = 2 imply

m(z, x) = m(z, x0) whenever x ≤ x0 and z ≤ x− (1, 1). (17)

Because of Step 4, ψ is either one of the ordered contributions mechanisms or the
serial mechanism.



Responsibility and cross-subsidization in cost sharing 25

Suppose ψ = ψs. For the subsidy-free serial method (and, say, x1 ≤ x2),mfs(z, x) =
(1
2
, 1
2
) if z1 = z2 < x1, m

fs(z, x) = (0, 1
2
) if z1 = z2 + 1 ≤ x1, m

fs(z, x) = (1
2
, 0) if

z2 = z1 + 1 ≤ x1, m
fs(z, x) = (0, 1) if z2 ≥ z1 = x1, and mfs(z, x) = 0 oth-

erwise. We show by induction on x1 + x2 that m(·, x) = mfs(·, x), which guar-
antees ϕ = ϕfs by (14). This is clear for x1 + x2 ≤ 2, where m(·, (1, 1)) is the
only case in need of a proof : we have m(0, (1, 1)) = ψ(δ1, (1, 1)) = (1

2
, 1
2
), and

the rest follows by ßow conservation. For the induction step, consider Þrst a de-
mand proÞle x with x1 = x2 = k. Then the induction hypothesis and (17) imply
m(z, x) = mfs(z, x) for z ≤ x − (1, 2) and z ≤ x − (2, 1). Combining this with
ψ(δ2k, x) = m(x− e1, x)+m(x− e2, x) = (12 , 12) and the ßow conservation constraints
gives the desired conclusion. Next for a demand proÞle x such that x1 > x2 we have
by (17) and the induction hypothesis m(z, x) = mfs(z, x) for z ≤ (x2− 1, x2− 1) and
ψ(δ2x2, x) = m((x2− 1, x2), x)+m((x2, x2− 1), x) = (12 , 12). These two properties and
ßow conservation imply m((x2 − 1, x2), x) = (12 , 0) and the desired conclusion.
Next suppose ψ = ψ1, the ordered contributions mechanism where agent 1 comes

Þrst. Then for all t = 1, ..., x1, ψ(δt, x) =
P

z::z1+z2=t−1m(z, x) = (1, 0). By repeated
application of ßow conservation, we get

t = 1 ⇒ m(0, x) = (1, 0) ⇒ m((0, z2), x) = 0 if z2 > 0,

t = 2 ⇒ m((1, 0), x) = (1, 0) ⇒ m((1, z2), x) = 0 if z2 > 0,

and by induction m((z1, 0), x) = (1, 0) for z1 = 1, ..., x1 − 1. Therefore m(·, x) is the
ßow of the ordered contributions method ϕ1 and the proof of Step 5 is complete.

Step 6. We proceed by induction on n, the size of N. In this step we denote by
ϕ(S) a cost-sharing method for the set of agents S, see DeÞnition 1. Step 5 establishes
Theorem 1 when n = 2. We Þx N, n ≥ 3, and a method ϕ(N) satisfying the four
axioms in Theorem 1. We assume Theorem 1 holds for any method ϕ(S), |S| ≤ n−1.
We identify the space C(S) of cost functions on NS with the subset of C(N)

containing the functions independent of xi, for all i ∈ N\S. Dummy Independence
allows us to deÞne the projection of ϕ(N) on S, namely the method ϕ(S)(C, x(S)) =
ϕ(N)(C, x), for all C ∈ C(S) and all x ∈ NN . One checks easily that ϕ(S) meets the
four axioms in Theorem 1. Therefore ϕ(S) = ϕ4S for some preordering 4S on S.
Fix a representation of ϕ(N) as a family of probability distributions µ(·, x) on

Π(N, x), one for each x ∈ NN , as in (2), and write Π∗(N,x) the support of such a
distribution. We denote by π(S) ∈ Π(S, x(S)) the projection on [0, x(S)] of a path
π ∈ Π(N,x).Observe that the projection of µ(·, x) onΠ(S, x(S)) is a representation of
ϕ(S)(·, x) via (2). In particular, its support Π∗(S, x(S)) is the projection of Π∗(N, x)
on S.

We show Þrst that all preorderings 4S, S ⊂ N, are compatible, and deÞne 4N

on N as follows: i 4N j ⇔ i 4S j for some S. Notice that for S ⊂ T ⊂ N , 4S
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is the restriction of 4T to S, so 4N is well deÞned and complete. Transitivity is
clear if n ≥ 4, because 4{i,j,k} is transitive for any distinct i, j, k. If n = 3 we check
transitivity by distinguishing 4 cases.
Case 1. 1 ≺{1,2} 2 and 2 4{2,3} 3. The only path in Π(N, x) projecting on {1, 2}

to the (1 ≺ 2)-priority path, and on {2, 3} to the (2 ≺ 3)-priority path, is the
(1 ≺ 2 ≺ 3)-priority path. Thus 1 ≺N 2 ≺N 3.
Case 2. 1 ≺{1,2} 2 and 2 v{2,3} 3. For any x ≥ (2, 2, 2), a path in Π(N, x)

projecting on {1, 2} to the (1 ≺ 2)-priority path, and on {2, 3} to an egalitarian
path (DeÞnition 6), cannot project on {1, 3} to the (3 ≺ 1)-priority path or to an
egalitarian path. Thus ϕ({1, 3}) is the (1 ≺ 3)-priority method and 4N is transitive.
Case 3. 1 v{1,2} 2 and 2 ≺{2,3} 3. This case is similar to case 2.
Case 4. 1 v{1,2} 2 and 2 v{2,3} 3. A path in Π(N, x) projecting to egalitarian paths

on {1, 2} and on {2, 3} cannot project to a priority path on {1, 3} (provided x is large
enough), therefore ϕ({1, 3}) is the subsidy-free serial method and 1 vN 2 vN 3.

Having established that 4N is a preordering, suppose that it has at least two
indifference classes. We can partitionN = N1∪N2, such thatN1 ≺ N2. Take any path
π ∈ Π∗(N, x). Comparing the representation of ϕ(N) given by (2) and DeÞnition 10,
we note that in the sequence associated with π (DeÞnition 3), all occurrences of agents
in N1 precede those of agents in N2, or equivalently, π is the ordered composition of
π(N1) with π(N2). It follows that ϕ(N) is the ordered composition of ϕ(N1) with
ϕ(N2) (we omit the straightforward details). Hence, ϕ(N) = ϕ4N .
We are left with the case where 4 is full indifference, and ϕ(S) is the subsidy-free

serial method for all S ⊂ N. Fix a demand proÞle x = (x1, ..., xn) in NN
∗ . Any path

π ∈ Π∗(N,x) projects to an egalitarian path on N\{i} for all i, therefore π itself is
egalitarian. Such a path goes through x1 (DeÞnition 5) and is parallel to π(N\{1})
afterwards:

for all t ≥ nx1, π(t, x) = (x1,π(N\{1})(t− (n− 1)x1, x(N\{1})).

This implies that the probability distribution µ(·, [x1, x]) induced by µ(·, x) on Πe([x1,
x]) (the set of egalitarian paths from x1 to x), gives the same ßow m(·, x) (deÞned
in Step 1) between x1 and x as the subsidy-free serial method (because ϕ(N\{1})
is subsidy-free serial). It remains to be shown that µ(·, [0, x1]) gives the same ßow
between 0 and x1 as the uniform distribution on Πe(x1). To this end we must check
Þrst that the mechanism ψ induced by ϕ is serial.
Because the ßow m(·, x) is the subsidy-free serial ßow between x1 and x, we have

ψ(δt, x) = ψ
s(δt, x) for all t ≥ nx1+1. If all coordinates of x are distinct, ψ(δt, x) takes

the successive values 1
n−1e

NÂ{1}, ..., e{n} as t goes from nx1 + 1 to xN . By Lemma 1 ,
ψ(δt, x) takes at most n distinct values, therefore it must be constant for t = 1, ..., nx1.
Next ψ(id, x) = x implies ψ(δt, x) = 1

n
eN for these t, and ψ(·, x) is indeed serial. If
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not all coordinates of x are distinct, we choose x∗ with distinct coordinates and such
that x ∈ H(x∗) : property iii) in Lemma 2 implies at once that ψ(·, x) is serial as
well.
Observe now that any path in Πe(x1) goes through eN , 2eN , ..., x1 = x1eN . Identi-

fying the n! paths in Π([teN , (t+ 1)eN ]) with the n! orderings of N , µ(·, x) induces a
distribution such that
i) for all i ∈ N , the induced probability on the (n − 1)! orderings of N\{i} is

uniform, and
ii) for all i, j ∈ N, the probability of i being ranked jth is 1/n.

The former property holds because ϕ(N\{i}) is subsidy-free serial, the latter because
ψ is serial. We leave it to the reader to check that properties i) and ii) imply a
uniform probability on all n! orderings of N , which in turn establishes that ϕ(·, x) is
subsidy-free serial, and concludes the proof of Theorem 1.

12.4. Proof of Theorem 2. We leave it to the reader to check that ϕcs satisÞes
Distributivity, Strong Ranking and Separability. Next, we Þx a method ϕ ∈ Φ
satisfying these three axioms and prove that ϕ = ϕcs.

Step 1. Notation and preliminary observations.
Let D = {D ∈ C : D(z) ∈ {0, 1} for all z ∈ NN}. As this will cause no confusion,

we identify D ∈ D with D−1(1), an upper-comprehensive subset of NN\{0}. We
denote by ∂D the lower frontier of D, that is, ∂D = {z ∈ D : for all z0 ∈ NN ,
z0 < z ⇒ z0 /∈ D}. Note that the mapping D → ∂D is one-to-one. For all i ∈ N
and t ∈ N\{0}, deÞne the function δit ∈ D by δit(z) = 1 if and only if zi ≥ t (or,
equivalently, by ∂δit = {tei}). Finally, for all x ∈ NN\{0}, deÞne D(x) = {D ∈
D : D(x) = 1} (equivalently, D ∈ D(x) if and only if ∂D∩]0, x] 6= ∅).
For any z ∈ NN , let N(z) = {i ∈ N : zi > 0}. If x ∈ NN\{0} and D ∈ D(x),

deÞneDx = ∨z∈∂D∩]0,x](∧i∈N(z)δizi
), where ∨ and ∧ denote the supremum and inÞmum

operations on functions (or equivalently, the union and intersection operations on
sets). We will use the following fact:

∀x ∈ NN\{0},∀D ∈ D(x),D = Dx on [0, x]. (18)

The straightforward proof of this fact is omitted.

Step 2. Recalling the notation introduced in DeÞnition 5, we deÞne, for any
x ∈ NN

∗ and k = 1, ..., n, the set D(k, x) = {D ∈ D(x) : ∂D ∩ [0, x] ⊆ [0, xk]},
and we write ak = 1

n−k+1e
{k,...,n}. We denote by Σ the unit simplex of RN and let

Σ∗ = {a ∈ Σ : a1 ≤ ... ≤ an}. We claim that

∀x ∈ NN
∗ , ∀k = 1, ..., n, ∀D ∈ D(k, x), ϕ(D,x) ∈ co{a1, ..., ak}. (19)
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To prove (19), Þx x ∈ NN
∗ and k ∈ {1, ..., n}. We use the convention x0 = 0. The

argument is divided in three substeps.

1) For any integers t, l such that xl−1 < t ≤ xl, if any, Separability, Strong
Ranking, and the nonnegativity of the cost shares imply, respectively

ϕ(
P
i∈N

δit, x) = (n− l + 1)al,

ϕ(δit, x) ∈ Σ∗ for i = l, ..., n,
ϕ(δit, x) = 0 for i = 1, ..., l − 1.

As al is an extreme point of Σ∗, we conclude that ϕ(δit, x) = a
l for i = l, ..., n.

2) The setM(k, x) = {D ∈ D : ϕ(D,x) ∈ co{a1, ..., ak}} is closed under ∨ and ∧.
To check this, note that the additivity of ϕ implies that the mappingD→ ϕ(D, x)

is modular: for all D,D0 ∈ D, ϕ(D,x) + ϕ(D0, x) = ϕ(D ∧ D0, x) + ϕ(D ∨ D0, x).
Strong Ranking implies that each of the four terms in this equality belongs to Σ∗. As
co{a1, ..., ak} is a face of Σ∗, the claim follows.

3) To complete the proof of (19), Þx D ∈ D(k, x). For any z ∈ ∂D ∩ [0, x] and
i ∈ N(z), we have 1 ≤ zi ≤ xki by deÞnition of D(k, x). By substep 1,

i ≤ k − 1 ⇒ zi ≤ xi ⇒ ϕ(δizi
, x) ∈ {a1, ..., ai},

i ≥ k ⇒ zi ≤ xk ⇒ ϕ(δizi
, x) ∈ {a1, ..., ak}.

Therefore δizi
∈ M(k, x). By substep 2, this implies Dx ∈ M(k, x) and, by (18) and

Lemma 0, D ∈M(k, x).
Step 3. We prove that ψ is the serial mechanism ψs (DeÞnition 5). Since ϕ

satisÞes Distributivity and Separability, the induced mechanism ψ satisÞes all the
properties derived in Subsection 12.1. We Þx x ∈ NN

∗ such that 0 < x1 < ... < xn
and proceed in two substeps.

1) Consider the set K(x) in (7). We claim that

K(x) = {a1, ..., an}. (20)

For any positive integer t, the function δt in (6) belongs to D: it is identiÞed with
the set δt = {z ∈ NN : zN ≥ t}, with lower frontier ∂δt = {z ∈ NN : zN = t}. Let
K(x) = {y1∗, ..., yK∗ } be the sequence in Σ∗ deÞned in (7). We prove by induction on
k = 1, ..., n the following property

P (k) : yl∗ = a
l for 1 ≤ l ≤ k and ym∗ ∈ co{ak+1, ..., an} for k + 1 ≤ m ≤ n.

Note that P (n) is precisely the claim in (20).
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We begin by proving P (1). Because x1 > 0, notice that δ1 ∈ D(1, x). By Step 2,
y1∗ = ϕ(δ1, x) = a

1. By (9),

x = λ1a
1 +

KP
k=2

λky
k
∗ for some λ1, ...,λK ∈ N\{0}. (21)

Set z =
PK

k=2 λky
k
∗ and observe that all coordinates of z are rational. We can choose

a positive integer µ large enough to ensure that z0 = µz ∈ NN
∗ . Suppose z

0
1 > 0.

Then δ1 ∈ D(1, z0) and by Step 2, ϕ(δ1, z0) = a1 = y1∗. But applying statement ii) in
Lemma 2 to z0 yieldsK(z0) = {y2∗, ..., yK∗ } and therefore ϕ(δ1, z0) = y2∗, a contradiction
since y1∗ 6= y2∗ by deÞnition of K(x). Therefore z

0
1 = z1 = 0, and z belongs to (the

intersection of NN
∗ with) the cone generated by {a2, ..., an}. That set is a face of NN

∗ ,
hence yk∗ ∈ co{a2, ..., an} for 2 ≤ k ≤ n. This proves P (1).
Next, we assume P (k) for 1 ≤ k ≤ n− 1, and prove P (k + 1). By (9),

x =
kP
l=1

λla
l +

KP
m=k+1

λmy
m
∗ . (22)

Because xk < xk+1, we must have k < K. Set w =
PK

m=k+1 λmy
m
∗ , observe that all

coordinates of w are rational, and Þnd an integer µ such that w0 = µw ∈ NN . By
P (k) and (22), we have

w01 = ... = w
0
k = 0 < w

0
k+1 < ... < w

0
n. (23)

In particular, w0 ∈ NN
∗ and δ1 ∈ D(k + 1, w0). By Step 2, ϕ(δ1, w0) ∈ co{a1, ..., ak+1}.

On the other hand, applying Lemma 2 to w0 yields K(w0) = {yk+1∗ , ..., yK∗ } and
ϕ(δ1, w

0) = yk+1∗ . Now Step 2 and P (k) give

yk+1∗ ∈ co{a1, ...ak+1} ∩ co{ak+1, ..., an} = {ak+1},
proving the Þrst part of property P (k + 1).
It remains to be shown that ym∗ ∈ co{ak+2, ..., an} for m = k + 2, ...,K. Because

ym∗ ∈ NN
∗ , it is enough to show (y

m
∗ )k+1 = 0. Write w

0 = µλk+1ak+1 + z, where z =PK
m=k+2 µλmy

m
∗ . Property (23) implies zk+1 < ... < zn. Thus z ∈ NN

∗ . Suppose zk+1 >
0. Then δ1 ∈ D(k + 1, z). By Step 2, ϕ(δ1, z) ∈ co{a1, ..., ak+1} = co{y1∗, ...yk+1∗ }. On
the other hand, Lemma 2 yields ϕ(δ1, z) = yk+2∗ , a contradiction since all elements of
{y1∗, ..., yK∗ } are distinct. Thus zk+1 = 0, and therefore (ym∗ )k+1 = 0, completing the
proof of property P (k + 1), and (20).

2) Pick now an arbitrary z ∈ NN
∗ . By (20), there exist nonnegative numbers

λ1, ...,λn such that z =
Pn

k=1 λka
k. Thus z ∈ H(x) and we may apply statement ii)

in Lemma 2. Check now that (10) says precisely that ψ(., z) = ψs(., z).



Responsibility and cross-subsidization in cost sharing 30

Step 4. We show that ϕ = ϕcs.
Let x ∈ NN

∗ \{0}. For k = 1, ..., n, write Xk = [0, xk]\[0, xk−1], with the convention
x0 = 0; thus {X1, ..., Xn} is a partition of ]0, x]. For z ∈ NN\{0}, deÞne Dz ∈ D by
Dz(w) = 1 if and only if w ≥ z, or equivalently, ∂Dz = {z}.
We will show that ϕ(Dz, x) = ϕcs(Dz, x) for all z ∈ NN\{0}. Recalling the formula

for ϕcs in DeÞnition 7, this amounts to proving that

for all k = 1, ..., n and all z ∈ Xk, ϕ(Dz, x) = ak. (24)

Clearly every C ∈ C coincides on [0, x] with some linear combination of the mappings
Dz, z ∈]0, x] (a proof of this simple fact is in Moulin (1995)). Therefore, once (24)
is established, the equality follows from Additivity and Lemma 0. We prove by
descending induction on t = xN , xN − 1, ..., 1 the following property

P (t) : for all k = 1, ..., n and z ∈ δt ∩Xk, ϕ(Dz, x) = ak.
Property P (1) is exactly (24), as δ1 contains ]0, x].
We begin by proving P (n). By Step 3, ϕ(δxN

, x) = ψ(δxN
, x) = an. Since δxN

and
Dx coincide on [0, x], it follows from Lemma 0 that ϕ(Dx, x) = an, as desired.
Next, we Þx t, 1 ≤ t < xN−1, assume property P (t+1), and prove P (t).Write the

restriction of δt to [0, x] as a linear combination of the mappings Dz :

δt =
P

z∈δt∩[0,x]
αzDz on [0, x]. (25)

Observe that αz ∈ Z for all z ∈ δt ∩ [0, x], and that αz = 1 if z ∈ ∂δt, i.e., if zN = t.
There is a unique integer k, 1 ≤ k ≤ n, such that (xk−1)N < t ≤ (xk)N (even if some
of the successive vectors xk coincide). Because δt ∩Xl = ∅ for l = 1, ..., k − 1, (25)
can be rewritten as follows:

δt =
nP

m=k

P
z∈δt∩Xm

αzDz on [0, x]. (26)

Apply (26) successively to xk, ..., xn, taking into account that Dz(xm) = 1 if and only
if z ∈ ∪mi=kXi. We obtainP

z∈δt∩Xk

αz = 1 and
P

z∈δt∩Xm

αz = 0 for m = k + 1, ..., n. (27)

Partition δt ∩ Xm into Bm = ∂δt ∩ Xm and Am = (δt ∩ Xm)\Bm: thus, zN = t
and αz = 1 if z ∈ Bm whereas zN ≥ t + 1 if z ∈ Am. Property P (t + 1) implies
ϕ(Dz, x) = a

m for all z ∈ Am. To prove P (t), it is enough to show ϕ(Dz, x) = am for
all m = k + 1, ..., n and all z ∈ Bm.
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Applying ϕ(., x) to both sides of (26) and denoting ϕ(Dz, x) = yz, we get

ak = ϕ(δt, x) =
nP

m=k

(
P
z∈Bm

yz +
P
z∈Am

αza
m). (28)

Write βm = |Bm| and bm = 1
βm

P
z∈Bm

yz whenever Bm 6= ∅. Note that Bk 6= ∅, so
that bk is well deÞned. Moreover, yz ∈ Σ∗ by Strong Ranking, hence bm belongs to
Σ∗ whenever it is deÞned. Taking (27) into account and using the convention that
bm = 0 if βm = 0, rewrite (28) as

βk(b
k − ak) +

nP
m=k+1

βm(b
m − am) = 0. (29)

We prove next that bk = ak. This is obvious if βm = 0 for m = k + 1, ..., n, so we
assume β =

Pn
k+1 βm > 0. DeÞne b

∗ = 1
β

Pn
k+1 βmb

m and rewrite (29) as

b∗ =
1

β

nP
m=k+1

βma
m +

βk
β
(bk − ak). (30)

If z ∈ Bk, then D ∈ D(k, x) and therefore, by Step 2, yz ∈ co{a1, ..., ak}, hence,
bk ∈ co{a1, ..., ak}. On the other hand, b∗ ∈ Σ∗ because bm ∈ Σ∗ whenever βm > 0.
Because a1, ..., an are linearly independent, b∗ is uniquely written as a nonnegative
linear combination of a1, ..., an. If bk − ak 6= 0, this vector is a linear combination
of a1, ..., ak with at least one negative coefficient, and (30) brings a contradiction.
Therefore bk = ak.
As ak is an extreme point of Σ∗, this equality implies that yz = ak for all z ∈ Bk.

In order to show that this equality holds for all z ∈ Bm and all m = k + 1, ..., n, we
use (30) repeatedly. If m0 is the smallest integer m0 ≥ k + 1 such that βm0

> 0, we
write β0 =

Pn
m0+1

βm > 0, and rewrite (30) as

1

β0
nP

m=m0+1

βmb
m =

1

β

nP
m=m0+1

βma
m +

βm0

β0
(bm0 − am0).

Observe that bm0 ∈ co{a1, ..., am0} because Dz ∈ D(m0, x) whenever z ∈ Bm0. Mim-
icking the argument in the previous paragraph, we conclude that bm0 = am0, and
yz = a

m0 for all z ∈ Bm0. An obvious induction argument completes the proof.

12.5. The structure of the strongly distributive methods in Φ. In prepa-
ration for the proofs of Proposition 1 and Theorem 3, this subsection describes the
structure of the methods in Φ satisfying Strong Distributivity. Let ϕ be such a
method, and Þx a demand proÞle x ∈ NN . For any D ∈ D(x) (recall the notation in
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Step 1 of the proof of Theorem 2), we write ϕ(D,x) = yD, an element of Σ. Recall
from Step 2 of that proof that the mapping D→ yD is modular.

Step 1. The chain lemma.
A chain in D(x) is a decreasing sequence of distinct sets D1 ⊃ D2 ⊃ ... ⊃ DL. As-

sociated with such a chain is a sequence {y1, ..., yK} in Σ obtained from the sequence
{yD1 , ..., yDL

} by keeping only one from each interval of consecutive identical vectors.
Lemma 4. Given two chains {Dl

1}, {Dl
2} in D(x) (of possibly different lengths) with

associated sequences {y11, ..., yK1
1 }, {y12, ..., yK2

2 }, and given two sequences of positive
real numbers {λ11, ...,λK1

1 }, {λ12, ...,λK2
2 },

{
K1P
k=1

λk1y
k
1 =

K2P
k0=1

λk
0
2 y

k0
2 }⇒ {K1 = K2 = Kand ∀k = 1, ..., K,λk1 = λk2and yk1 = yk2}.

(31)
Proof. For i = 1, 2, deÞne Ci =

PKi

k=1 λ
k
iD

lk
i , where D

lk
i is anyone of the consecutive

identical elements in the chain corresponding to yki (so that, in particular, yDlk
i

= yki ).

Rewrite the premise of (31) as ϕ(C1, x) = ϕ(C2, x). By property (B∗) in DeÞnition 9
applied to the mapping γθ deÞned on R+,

ϕ(θ ∧ C1, x) = ϕ(θ ∧ C2, x) whenever 0 ≤ θ ≤ C1(x) = C2(x).

Next we compute

θ ∧ Ci =
k∗iP
k=1

λkiD
ki + (θ −

k∗iP
k=1

λki )D
k∗i+1
i ,

where k∗i is such that
Pk∗i

k=1 λ
k
i ≤ θ ≤

Pk∗i+1
k=1 λ

k
i . Therefore,

k∗1P
k=1

λk1y
k
1 + (θ −

k∗1P
k=1

λk1) y
k∗1+1
1 =

k∗2P
k0=1

λk
0
2 y

k0
2 + (θ −

k∗2P
k0=1

λk
0
2 ) y

k∗2+1
2

for all θ and where k∗1, k
∗
2 depend upon θ. Taking θ ≤ λ1i for i = 1, 2 gives y11 = y12. If

λ11 6= λ12, say, λ11 < λ12, we choose θ such that λ11 ≤ θ ≤ λ12 and get λ11y11 +(θ−λ11)y21 =
θy12, contradicting y

1
1 6= y21. Thus λ11 = λ12. An obvious induction argument completes

the proof.

A consequence of Lemma 4 is that for any sequence {y1, ..., yK} associated with a
chain {Dl} in D(x), the vectors y1, ..., yK are linearly independent (and, in particular,
all distinct). Indeed if these vectors are linearly dependent, we have an equality of
the type

PK1

k=1 λ
k
1y
k
1 =

PK2

k0=1 λ
k0
2 y

k0
2 , where all λ

k
i are positive and vectors appearing

on the left-hand side are distinct from those on the right-hand side, in contradiction
to Lemma 4.
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Step 2. DeÞne Y = {y ∈ Σ : ∃D ∈ D(x) such that y = yD} and, for all y ∈ Y, let
∆(y) = {D ∈ D(x) : yD = y}. The sets ∆(y), y ∈ Y , form a partition of D(x). We
claim that for each y ∈ Y, ∆(y) is an interval : there exists (possibly equal) functions
D+(y), D−(y) ∈ ∆(y) such that

for all D ∈ D(x), {yD = y}⇔ {D−(y) ⊇ D ⊇ D+(y)}. (32)

For anyD1, D2 ∈ ∆(x), yD1∨D2+yD1∧D2 = 2y bymodularity of the mapD→ yD. If
yD1∨D2 6= yD1∧D2, the two chains {D1∨D2,D1∧D2} and {D} with the corresponding
sequences of positive real numbers {1, 1} and {2} contradict Lemma 4. Therefore
yD1∨D2 = yD1∧D2 = y, and ∆(y) is closed under ∨ and ∧. Thus ∆(y) has a largest
element, which we denote D−(y) and a smallest element, D+(y).
Let D ∈ D(x) be such that D−(y) ⊇ D ⊇ D+(y). If yD 6= y, the two chains

{D−(y),D} and {D,D+(y)} with corresponding sequences {1, 1} and {1, 1} contra-
dict Lemma 4. This proves (32).

Step 3. Recalling the deÞnition of Dz in Step 4 of the proof of Theorem 2, we
say that z ∈]0, x] is pivotal (for the method ϕ at x, which are kept Þxed) if and only
if yDz 6= yDz\{z}. We denote by P the set of pivotal vectors. Note that x ∈ P. We
claim that

for all D,D0 ∈ D(x), D ∩ P = D0 ∩ P if and only if yD = yD0 . (33)

To prove the �only if� part of this statement, Þx D,D0 ∈ D(x) such that D∩P =
D0 ∩ P. If D and D0 coincide on [0, x], yD = yD0 by Lemma 0. Assume from now
on that D,D0 do not coincide on [0, x], say, (D\D0)∩]0, x] 6= ∅. It is easily seen that
there exists z ∈ (D\D0)∩]0, x] such that z ∈ ∂D. Applying modularity to D\{z} and
Dz,

yD\{z} + yDz = yD + yDz\{z}.

Since z /∈ P, we have yDz = yDz\{z}, hence, yD\{z} = yD. If ((D\{z})\D0)∩]0, x] is
nonempty, repeat this argument to remove z0 ∈ ((D\{z})\D0)∩∂(D\{z}) and obtain
yD\{z,z0} = yD\{z} = yD. After Þnitely many steps we are left with a set D0 such that
D0∩]0, x] = (D ∩D0)∩]0, x] and yD0 = yD. If D0∩]0, x] = D0∩]0, x], Lemma 0 implies
yD0 = yD0, hence, yD = yD0 , as desired. Otherwise, a symmetric argument shows that
yD0 = yD0 , where D0and D0 coincide on [0, x], so that yD = yD0 holds in all cases.
To prove the �if� statement, we show that for all y ∈ Y, (D−(y)\D+(y))∩P = ∅.

Together with (32), this implies that D∩P = D0∩P for all D,D0 ∈ ∆(y), as desired.
Thus, pick z ∈ D−(y)\D+(y) and letD = D+(y)∨(Dz\{z}) andD0 = D+(y)∨Dz. By
(32), D,D0 ∈ ∆(y). Applying modularity to D,Dz, we get yD + yDz = yD0 + yDz\{z},
hence, yDz = yDz\{z}. This means z /∈ P, as desired.
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Step 4. Denote by S(P ) the set of nonempty upper-comprehensive subsets of
P, that is, S ∈ S(P ) if and only if ∅ 6= S ⊆ P and, for all z, z0 ∈ P, {z ∈ S and
z ≤ z0}⇒ z0 ∈ S. For any y ∈ Y, let σ(y) = D ∩ P, where D is any element of ∆(y).
The set σ(y) is well deÞned by Step 3, and it belongs to S(P ). We claim that σ is a
bijection from Y into S(P ).
Property (33) implies that σ is one-to-one. To see that it is onto, Þx S ∈ S(P )

and let DS be its upper-comprehensive envelope in NN : DS = S + NN . Note that
DS ∈ D(x) as P ⊆]0, x]. Because ∆(yDS

) contains DS, σ(yDS
) = DS ∩ P = S.

In what follows, we write yDS
= yS for simplicity, and σ−1(S) = yS is the inverse

mapping of σ.

12.6. Proof of Proposition 1. Let ϕ ∈ Φ satisfy Strong Distributivity and
Dummy.

Step 1. Let x ∈ NN , x À 0. We show that ϕ(., x) is an ordered contributions
method at x: with the notation of DeÞnition 10, there is an ordering 4 on N such
that, for all C ∈ C, ϕ(C, x) = ϕ4(C, x).
Let Y and P be the sets associated with ϕ and x as in Steps 2 and 3 of Subsection

12.5. Recalling the deÞnition of δit from Step 1 in Subsection 12.4, Dummy implies
that

ϕ(δit, x) = e
i for all i ∈ N and t = 1, ..., xi.

Set Si = σ(ei), namely, Si = δ
i
t ∩ P.

We claim that the sets Si, i ∈ N, form a chain. Pick two distinct agents in N,
say, 1 and 2. Because σ is one-to-one, S1 6= S2. By modularity, yS1∪S2 + yS1∩S2 =
yS1 + yS2 = e

1+ e2. Therefore yS1 and yS2 belong to the interval [e
1, e2]. If both are in

]e1, e2[, the vectors in {yS1∪S2, e
1, yS1∩S2} are not linearly independent and, by Lemma

4, the sequence {DS1∪S2 ,DS1, DS1∪S2}, where DS = S+NN (see Step 4 of Subsection
12.5), cannot be a chain. As S1, S2 are upper-comprehensive in P, it follows that
S1 ⊃ S2 or S1 ⊂ S2. Since the choice of 1 and 2 was arbitrary, the claim is proved.
Without loss of generality, assume S1 ⊃ ... ⊃ Sn. Suppose Y contains a vector

y different from ei for all i ∈ N, say, y = P
i∈M λie

i, where λi > 0 for all i ∈ M
and M = {i1, ..., im} is not a singleton. The two chains {DSi1

, ...,DSim
} and {Dσ(y)}

with corresponding sequences {λi1, ...,λim} and {1} contradict Lemma 4. This proves
Y = {e1, ..., en}.
As σ is a bijection, S(P ) ⊆ {S1, ..., Sn} and since the latter is a chain, any two

distinct vectors z, z0 ∈ P are ordered: z < z0 or z > z0. Thus P = {z1, ..., zn} for
some increasing sequence z1 < ... < zn = x. We claim that,

ϕ(C, x) =
nP
k=1

(C(zk)− C(zk−1)) ek for every C ∈ C, (34)



Responsibility and cross-subsidization in cost sharing 35

where z0 = 0. For C = D ∈ D(x), D ∩ P = {zk, ..., zn} = Sk for some k, and
yD = σ(Sk) = ek. This last equation is precisely (34) for D ∈ D(x), and these
functions form a basis of C. Hence the claim. To complete the proof, we determine
the vectors z1, ..., zn. Applying (34) to δit, we obtain z

i
i ≥ t > zi−1i for all i and

all t = 1, ..., xi (recall x À 0). As {zk} is an increasing sequence in ]0, x], this
implies zk =

Pn
l=k xle

l for k = 1, ..., n. This shows that ϕ(., x) = ϕ≤(., x), the ordered
contributions method at x based on the ordering ≤

Step 2. It is a simple matter to adapt the argument of Step 1 to the case where
the set M of positive coordinates of x ∈ NN is smaller than N. We apply Dummy
to δit only for i ∈ M , and show that Si = σ(ei), i ∈ M, form a chain, next that
Y = {ei, i ∈ M}. The conclusion is that ϕ(., x) is an ordered contributions method
for some ordering on M.

Step 3. We check that the orderings identiÞed at each x ∈ NN in Steps 1 and 2
are all equal. Let 4 be the ordering associated with x = eN , and assume without loss
of generality that 4 is equal to ≤, that is, 1 ≺ ... ≺ n.With the notations of Lemmas
1 and 2, we have K(eN) = {e1, e2, .., en}. Therefore H(eN) = NN and statement iii)
in Lemma 2 implies that ψ is the ordered contributions mechanism based on the
ordering ≤. Thus the ordering associated with ϕ(., x) in Step 2 cannot contradict ≤
and the proof of Proposition 1 is complete.

12.7. Proof of Theorem 3. We leave it to the reader to check that ϕcs satisÞes
Strong Distributivity. Next, we Þx a method ϕ ∈ Φ satisfying Strong Distributivity,
Ranking and Separability, and we prove that ϕ = ϕcs.
Fix x ∈ NN

∗ . In Steps 1 and 2, we prove that ϕ(., x) = ϕ
cs(., x) under the assump-

tion that 0 < x1 < ... < xn. Step 3 drops that assumption. Let Y and P be the sets
associated with ϕ and x as in Steps 2 and 3 of Subsection 12.5. For any two integers
k, 1 ≤ k ≤ n, and t, t ≥ 1, deÞne D(k, t) = {z ∈ NN : |{i ∈ N : zi ≥ t}| ≥ k}, the
set of vectors with at least k coordinates not smaller than t. Note that D(k, t) is a
symmetric element of D and that D(k, t) ∈ D(x)⇔ t ≤ xn−k+1. If the latter inequal-
ity holds, Separability implies that ϕ(D(k, t), x) ∈ Σ∗. Set S(k, t) = D(k, t)∩P ; note
that S(k, t) 6= ∅ ⇔ t ≤ xn−k+1, because P contains x.

Step 1. We prove by induction on k = 0, 1, ..., n−1, the property P (k) consisting
of the following three statements:
i) ∀z ∈ P,∀i ∈ N, zi ∈ [0, xn−k−1] ∪ {xn−k, xn−k+1, ..., xn},
ii) S(1, xn−k) = S(k + 1, xn−k),
iii) ySn−k

= an−k,
where, by convention, x0 = 0. The set in ii) will be denoted by Sn−k.
We start by proving P (0). For k = 0, statement ii) is vacuously true; write

S(1, xn) = Sn. Let ∆t =
Pn

i=1 δ
i
t; this is a symmetric element of C. Choose an



Responsibility and cross-subsidization in cost sharing 36

integer t, xn−1 < t ≤ xn. Notice that ∆t and D(1, t) coincide on [0, x]. Therefore, by
Separability and Lemma 0,

an = ϕ(∆t, x) = yS(1,t) for all t such that xn−1 < t ≤ xn.
As σ−1 is one-to-one, the set S(1, t) is independent of t, and equal to S(1, xn) = Sn.
If z ∈ P is such that xn−1 < zn < xn, then S(1, zn) % S(1, zn + 1). This establishes
statement i) for k = 0, and P (0).
Next, we Þx k, 1 ≤ k ≤ n − 1, assume P (0), ..., P (k − 1), and prove P (k). We

let the reader check that for any integer t, xn−k−1 < t ≤ xn−k, the functions ∆t andPk+1
l=1 D(l, t) coincide on [0, x]. Therefore, by Separability and Lemma 0,

(k + 1)an−k =
k+1P
l=1

yS(l,t).

By Ranking, yS(l,t) ∈ Σ∗ for l = 1, ..., k + 1. As an−k is an extreme point of Σ∗, this
gives yS(l,t) = an−k for all l and all t. Property P (k) follows as above; we omit the
details.

Step 2. We have proved P (0), ..., P (n − 1). Statement i) in P (n − 1) says that
for any z ∈ P and i ∈ N, zi ∈ {0, x1, ..., xn}. Notice that t ≤ t0 ⇒ S(1, t0) ⊆ S(1, t).
Therefore statements ii) and iii) say that we have a chain S1 ⊃⊃ Sn and that for all
k = 1, ..., n,

ySk
= ak and S(1, xk) = S(n− k + 1, xk) = Sk.

Consider z ∈ Sn : for all k = 1, ..., n, z ∈ Sk ⊆ D(n − k + 1, xk), that is, at least
n− k + 1 coordinates of z are not smaller than xk. Since z ≤ x, this implies z = xn
and therefore Sn = {xn}. Next, we claim that

Sk = {xk, ..., xn} for k = n, ..., 1.
The proof is by descending induction on k. Fix k ≤ n − 1, assume the induction
hypothesis Sk+1 = {xk+1, ..., xn}, and consider z ∈ Sk\Sk+1. We have z /∈ Sk+1,
implying z /∈ D(1, xk+1) and zi /∈]xk, xk+1[ for all i ∈ N , by property i) in P (n− 1).
Hence z ≤ xk. Now the properties z ∈ Sl ⊆ D(n − l + 1, xl) for l = 1, ..., k and
P (n− 1) imply, as above, z = xk, and the induction hypothesis completes the proof
of the claim.
Next consider z in P\S1. We have z /∈ D(1, x1), hence, property i) of P (n − 1)

implies z = 0, contradicting the deÞnition of P. Therefore, P = S1 = {x1, ..., xn}.
By Step 3 in 12.5 and property iii) in P (0), ..., P (n− 1), the vectors ϕ(D, x) are now
determined for all D ∈ D(x), namely, ϕ(D, x) = ak for the unique k ∈ {1, ..., n} such
that D ∩ P = {xk, ..., xn}. Thus ϕ(D,x) = ϕcs(D, x) for every D ∈ D(x) and, by
Additivity, ϕ(., x) = ϕcs(., x).
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Step 3. Let now x be an arbitrary element of NN
∗ . The proof that ϕ(., x) =

ϕcs(., x) is entirely similar to the one given under the assumption that all coordinates
of x differ. For brevity, we only illustrate the argument with the following example.
Suppose 0 < x1 = x2 < x3 < x4 = x5 = x6. From propositions P (2), P (3), and

P (5), we derive successively

S(1, x4) = S(3, x4) = S4 and yS4 = a
4,

S(1, x3) = S(4, x3) = S3 and yS3 = a
3,

S(1, x1) = S(6, x1) = S1 and yS1 = a
1.

These three sets form a chain S1 ⊃ S3 ⊃ S4 because t → S(1, t) is inclusion-
monotonic. Since D(3, x4) ∩ D(4, x3) ∩ D(6, x1) ∩ [0, x] = {x}, we conclude that
S4 = {x4}. Next consider z ∈ S3\S4. Since z /∈ D(1, x4) and zi /∈]x3, x4[ for all i, we
have z ≤ x3 and, since z ∈ D(4, x3) ∩ D(6, x1), z = x3. A similar argument shows
that S1\S3 = {x1}. Finally, any z ∈ P\S1 must be zero because z /∈ D(1, x1) and
zi ∈ {0, x1, x3, x4} for all i, so that P = S1 = {x1, x3, x4}. The Þnal argument is the
same as in Step 2.
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