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Abstract

The evidence on city size distribution is remarkable. In many countries
it obeys a Pareto distribution. Although several explanations have been
proposed for the regularity, none of them is completely convincing, and the
exact economic mechanism at work remains largely a puzzle. Current ex-
planations seem to be inconsistent with scale economies, a central element
in leading theories of cities.

This essay studies what conditions models of cities must satisfy in order
to be match the evidence. According to the results, cities must exhibit (i)
an expected growth rate that is independent of their size; and (ii) a growth
variance that is proportional to size®~!, where § is the Pareto exponent
found in the data. This characterization has important implications. First,
it means that the scale of a city can play a role for the evolution of cities
but only if it affects the variance of city growth, but not its mean. Second,
it shows that Zipf’s law — the case in which of 6 = 1 — must result from
Gibrat’s law. Third, this characterization rationalizes the diversity of Pareto
exponents in the data. Conditional on size, city growth must be more stable
in countries with lower ¢. Finally, the essay provides the first economic model
with increasing returns to scale that is able to generate Zipf’s distributions.
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1 Introduction

The evidence on city size distribution is remarkable. In many countries it obeys a
Pareto distribution!. For some countries, the regularity is even more remarkable.
The empirical Pareto distribution has an exponent close to one, a finding referred
to as Zipf’s law, after G. Zipf (1949). This subject has a long tradition in the
fields of urban economics and regional science, but it is little known in mainstream
€conomics.

Although several explanations have been proposed for the regularity, none of
them is completely convincing. The exact economic mechanism at work remains
largely a puzzle. Two recent books on the topic conclude that “at this point we
have no resolution to the explanation of the striking reqularity in city size dis-
tribution. We must acknowledge that it poses a real intellectual challenge to our
understanding of cities..”, (Fujita, Krugman and Venables, 1999, page 225), and
“It is therefore no surprise that we still lack such a model... Yet this turns out
to be a real embarrassment, because the rank-size rule  is one of the most robust
statistical relationships known so far in economics” (Fujita and Thisse, 2000, page
9).

This chapter provides a compelling solution to the puzzle. Our first result is
to show that under general conditions Zipf’s law must result from Gibrat’s law -
the condition that cities follow the same growth process regardless of their size.
This result relates to a similar but weaker finding in the literature that claims that
Zipf’s law could result from Gibrat’s law. The advantage of our formulation is that
it provides a necessary rather than a sufficient condition for city dynamics to be
consistent with the evidence of Zipf’s distributions.

Our more general result is a sharp characterization of city dynamics consistent
not only with Zipf’s distributions but, more importantly, with Pareto distributions.
In particular, to match the evidence, cities must exhibit (i) an expected growth
rate that is independent of their size; and (ii) a growth variance that is proportional
to size®™!, where § is the Pareto exponent in the data. Two additional pieces of
evidence allow us to pin down such a parsimonious process. The fact that cities
are growing over time and that the number of cities remains nearly constant.

This characterization has important implications. First, it means that the scale
of a city can play a role for the evolution of cities and yet not contradict the fact
that the city distribution is Pareto. However, it requires scale to only matter in a
limited way: city size may affect the variance of city growth, but not its mean. This
result also rationalizes the diversity of Pareto exponents in the data. According to
our findings, conditional on size, city growth must be more stable in some countries

!The claim usually excludes small cities.
2Rank-size rule is another name for Zipf’s law.



than in others. Finally, it shows the strong relationship between Zipf’s and Gibrat’s
laws already stated.

This rather statistical characterization of city dynamics must be regarded as a
constraint on the reduced form of economic models of cities, in particular models
with a Markov representation of the equilibrium path. This representation typically
arises along balanced growth paths of economies with idiosyncratic risk at the city
level and no aggregate uncertainty.

We use the characterization to analyze a particular but popular model of city
formation due to economies of localization. The need to choose a particular model
renders the results in this section less general than the previous ones, but still they
are interesting. We first ask under what conditions a deterministic version of the
model can display parallel city growth —the requirement that all cities in the system
grow at the same rate. We find a simple and clear characterization. Negative ex-
ternalities should not limit the size of cities, and the model must possess a balanced
growth path. In particular, our model requires either Cobb-Douglas preferences or
identical strength of the externalities in all industries and cities. We then introduce
randomness into this economy and provide the first example of an economic model
with increasing returns to scale able to generate Zipf’s distributions.

Finally, we relax some assumptions made along the way. Our previous analysis
on city dynamics assumes that the relevant state is the absolute size of a city as
measured by its population, an assumption consistent with most models of cities.
However, one can also hypothesize that the relevant state is the relative size of a
city with respect to the total population. This alternative formulation provides a
whole new class of growth processes consistent with the evidence. One important
feature of these processes is that cities with more stable growth must also be cities
with lower expected growth. The possible economics underlying this kind of process
is left for future research.

The chapter is divided into 6 sections. Section 2 presents relevant evidence for
the United States and other countries. Section 3 reviews related literature on the
topic. Section 4 is the main section of the paper. It sets up the statistical model
and obtains the sharpest results. Section 5 uses the statistical results to evaluate
the ability of economic models to fit the evidence. It finds that economic models
with scale economies require very special assumptions to fit the evidence. Section
6 develops an alternative (statistical) model of scale economies capable of fitting
the evidence, and Section 7 presents some final conclusions.



2 Evidence

We consider the following to be the main features of the distribution of population
across cities:

1. It is well described by a Pareto Distribution.
2. It moves toward the right over time (due to population growth).
3. The Pareto exponent remains stable over time.

4. Individual cities move across the distribution over time.

To illustrate these features, consider the following exercise. Select a country
with a large number of metropolitan areas — the equivalent of cities in our study
—, rank them according to their population starting with the largest one, and then
plot population against rank in log scale. Figure 1, 2 and 3 shows the results for
different periods for three dissimilar countries: United States, Colombia and India.
A remarkable pattern emerges. In all cases, the graph exhibits a linear shape, it
moves towards the right over time, and the slope remains quite stable as the graph
moves. There is no tautology. Although the relationship between size and rank
must be negative by construction, nothing in the exercise imposes linearity or a
stable slope.

These are not isolated cases. Rather, extensive evidence support an inverse log-
linear relationship between rank and size in many countries. The classical study on
this topic, by Rosen and Resnik (1980), provides supportive evidence using data
for 44 countries. More recent studies include Eaton and Eckstein (1997) for France
and Japan, Brakman et al. (1999) for Netherlands, and Roehner (1995) for several
countries.

The evidence in the graphs is well described by the following rank-size rule:
rank = X\-size”%. Thus, if § = 1, for example, this rule states that the largest city
in a country is twice the size of the second largest, three times the third largest,
etc.

An alternative probabilistic interpretation of the evidence regards it just as a
sample distribution of the random variable ‘city population’. In that case, the
inverse log-linear relationship between size and rank suggests that the random
variable is distributed Pareto. To see why, consider a vector of M random draws,
(21, ...,xp), from an arbitrary distribution, F'(z), ranked from the largest to the
smallest so that the index i is the rank of x;. In this way, i/M is the sample
countercummulative distribution of z, i.e. i/M =1 — F(z;). If F(z) is Pareto, i.e.
F(r) =1—A-2% and M is large, then i/M ~ A-x;° | or equivalently, rank



and size display a log-linear relationship with slope —¢. Using this interpretation,
the slopes in Figures 1, 2, and 3 have a very simple statistical interpretation: they
estimate the exponent of the underlying Pareto distribution.

The case of Zipf’s distributions has received considerable attention in the lit-
erature. The evidence, however, offers no particular support to the view that the
underlying distribution is Zipf for most countries. For example, the slope of the
graph is significantly below 1 for India and significantly above 1 for Colombia.
The results of Rosen and Resnick also help to illustrate this point. They estimate
Pareto exponents statistically different from 1, ranging from 0.81 (Morocco) to 1.97
(Australia), with an average of 1.14 (See Figure 4).

A final significant feature of the data is the mobility of cities across the distribu-
tion. In the United States, for example, there are well known cases of rising cities,
particularly in the south, like Atlanta, Dallas, Houston or Miami, accompanied by
the decay of historically important cities like Cleveland, St. Louis, Pittsburgh, or
Buffalo. Similar evidence can be found for other countries. In India for example,
Bombay overtook Calcutta as the largest city in the country during the eighties.

3 Related Literature

Several probabilistic and few economic models have been proposed to account for
the evidence. Among the most prominent probabilistic models are the ones by
Champernowne (1953), Simons (1955), Steindl (1965), and, more recently, Gabaix
(1999). The fundamental insight obtained by these authors is that Gibrat’s law,
or proportional growth, can lead to Pareto distributions. More precisely, if a
stochastic variable follows a growth process that is independent of the position of
the variable, then its limit distribution can be Pareto, a result first established by
Chapernowne. Simons generalizes the result showing that proportional growth can
explain many different skew distributions, such as log-normal, Pareto and Yule. He
also derives a very simple formula linking the Pareto exponent with the underlying
growth process. It is equal to ﬁ, where 7 is, in our case, the probability that
new cities emerge. Gabaix (1999) establishes that Gibrat’s law can lead to Zipf’s
distributions if the number of cities is constant, but if new cities emerge then only
the upper tail of the distribution is Zipf.

In contrast to the success of this probabilistic approach, economic models have
failed to match the evidence. An evaluation of leading theories of cities carried
out by Krugman (1996) and Fujita et. al. (1999) concludes that none of them can
properly explain the data. Most city models are deterministic which cannot account
for the observed mobility of cities. In addition, these models usually predict that
cities attain an equilibrium size, as a result of the interplay between positive and



negative externalities. The models also predict that urban growth mainly occurs
through the increase in the number of cities. This prediction conflicts both with
the idea of proportional growth, as older cities must grow at a lower rate, and with
the observation that the number of cities stabilizes as the urban system matures
(See Eaton and Eckstein, 1997).

The fact that urban models as a rule do not display proportional growth is
usually not regarded as a shortcoming. This is because alternative growth processes
can also lead to Pareto distributions. We show, however, that models that cannot
reproduce Gibrat’s law for cities are, as a rule, flawed.

Some success in matching the evidence is obtained in two recent works by Eaton
and Eckstein (1997) and Black and Henderson (1999). They offer deterministic
urban models that display a steady state in which all cities grow at the same rate.
These works, however, require unappealing assumptions on the primitives of their
models. Eaton and Eckstein require a discount factor equal to zero, and Black and
Henderson need unusual functional forms for preferences and technologies. Instead,
we provide clear and simple conditions.

Another drawback in the current literature is that it cannot account for Pareto
exponents different from 1 when the number of cities remains constant. These
cases seem relevant in light of the evidence presented in Figure 4, and the fact that
new cities hardly arise in many of these countries. We also offer an explanation for
these cases.

4 A Reduced Form Model

We interpret the evidence of city-size distribution as describing an urban system
that is evolving along a balanced growth path characterized by Pareto distribu-
tions. It is important to point out that balanced growth in this context refers to
population growth rather than income growth, although they may be associated.
Our goal in this section is to characterize the dynamic systems, or more precisely,
the Markov processes, that can preserve such equilibrium path.

Consider an economy composed by a large but given number of cities at time
t, My, and a total urban population, /V;, that grows continuously over time at the
exogenous compound rate v, i.e., Ny = €. We distinguish between the absolute
and the relative size of a city. Let X; € §Rf be a vector of population sizes at time
t, and define Y; := X;e™" to be the vector of relative sizes.

Assumption 1: My = M and ~ > 0.

The assumption of a fixed number of cities is not essential; but it is consistent
with the evidence, particularly from France and Japan during the last century

6



(Eaton and Eckstein, 1997). The results below still hold as long as M; grows
slowly®. In contrast, the assumption of a growing urban population is crucial.
Together with the other assumptions of the model, this forces the scale of all cities
to grow (a.s.) over time, allowing us to test for ‘scale effects’.

The next is our fundamental assumption. It states that X; follows a particular
Markov process.

Assumption 2: Xy follows an i.i.d. diffusion process with stationary transition.
In particular, the expected growth rate of Xy, u(x), and the variance of the growth
rate, o*(z), depend only on the size of Xy but not on its identity, i.

We need to carefully motivate the different components of this assumption. As
was already mentioned, we do not spell out any particular economic model in this
section, but rather assume a reduced form for the law of motion of the population in
a city. Different economic models may give rise to this particular reduced form, and
the next section analyzes one of them. The advantage of studying reduced forms
is that they can provide more general conclusions than any particular economic
model.

The first statement in Assumption 2 is that X; follows a Markov process.
This is not a strong assumption. Individual state variables usually follow Markov
processes along balanced growth paths of general equilibrium models. To see this,
consider an economy where the state variable is the distribution of population
across cities. Let F'(x,t) be such distribution at time ¢, i.e., F'(x,t) is the fraction
of cities of size less or equal to x. Suppose in addition that cities face idiosyncratic
ii.d. shocks, &, € RM™. In this context, the law of motion of Xj is a function of
the individual and aggregate states of the economy,

Tipp1 = H(zu, e 61, F(X, 1)).

If the number of cities is sufficiently large, all idiosyncratic noise cancels out
so that there would be no aggregate uncertainty in this economy. The motion
of x; would not depend on the whole vector ¢; but only on its individual shock,
gi. In addition, along a balanced growth path F(X,¢) evolves deterministically
depending only on v and t¢. Thus, along that path z; ., follows a Markov process,

Tijtr1 = H(xita €it; t))

This exposition makes clear that city dynamics may depend not only on the
individual population size, but also on the whole distribution of the population.

3The results of Gabaix (1990, section II1.3) about new cities apply for our model.



However, along a balanced growth path the aggregate distribution becomes irrel-
evant, and the evolution of an individual state variable depends only on its own
current position.

The assumption also states that the process is a diffusion. This process requires,
among other things, continuity of the sample paths, a property that significantly
reduces the dimensionality of our problem, as we see below. Although this assump-
tion is made mainly for convenience, we do not think it is crucial. In addition, we
provide some indirect empirical evidence supporting it.

Assumption 2 also asserts that p(z) and o%(z) depend on X rather than Y. This
is a crucial assumption because it determines what is the relevant state variable
and how scale effects enter in our model. The dynamics of a city is determined
by its actual size. Alternatively, one may hypothesize that changes in size due to
aggregate population growth should not affect the relevant scale of a city so that
p and o? must depend on Y. We think, however, that current models of cities
strongly support the choice of X as the relevant state variable. In these models,
both positive and negative externalities of agglomeration depend on cities actual
size. Section 6.2 below studies the case where Y is the relevant state.

Finally, Assumption 2 states that the identity of a city plays no role on its
growth process. This is clearly required if one hope to find a general theory of
cities. The alternative is somewhat arbitrary. One would need to pose a theory for
each city and explain why and how cities move across the distribution.

Our problem at this point is to characterize the transition stationary Markov
processes consistent with the non-stationary or mowving Pareto distributions that
we observe in the data. It is precisely this interplay between the non-stationarity
of the distribution with the stationarity of the transition what allows to sharply
characterize the Markov process.

4.1 The Role of Continuity

To better understand the solution procedure and the assumptions behind it, sup-
pose momentarily that there is no population growth and that X;; follows a Markov
process with finite state space as described by the following Markov chain:

oo 7To1 702

10 711 712
II =

0 721 722



where ;; is the transition probability from state ¢ to state j. All we know
about the Markov chain is its associated invariant cumulative distribution, F'(x),
a Pareto distribution in our case. By invariant distribution we mean that the
following relationship holds: f = fII holds, where f is the density of F'. The goal
is to characterize Il given f, and some plausible assumptions about II. Clearly, we
cannot identify the chain only with information about f : the dimensionality of II
is the square of the dimensionality of p.

A way to reduce the number of unknowns is to assume that X follows a diffu-
sion process, such as Brownian motions or Ito processes*. Diffusions are Markov
processes that change continuously over time®. Intuitively, the random variable
can only move to states adjacent to the current position or remain in the same
state. In terms of the Markov chain, the assumption requires only strictly positive
probabilities around the main diagonal, and zeros elsewhere, as illustrated in the
following matrix:

1 — 6y 0o 0 0
¢ 1-01—9, 6 0

0 0 3 1 —05— ¢3

It is clear now that assuming continuity of the sample paths dramatically reduce
the dimensionality of the problem. The number of unknowns in IT is now (2D — 1),
where D? is the dimension of II, rather than D? — D. On the other hand, we have
D — 1 equations (obtained from the relation f = fII), so that at most we can
hope to solve 6(-) as function of ¢(-), or vice versa. Alternatively, one can use
the analytical probabilities to compute the conditional mean and variance of the
growth rate of the process, u(-) and o%(-), and solve the problem in terms of ()
and o*(-). All higher conditional moments are completely determined by the first
two moments.

Is city-size dynamics reasonably well described by a diffusion process? On
purely theoretical grounds, the assumption of continuity is problematic because
important economic models predict discontinuities in the size of cities, particularly
as new cities arise in the urban system. For example, in Henderson’s models
(Henderson 1974, 88) new cities require a positive mass of workers to move from old

Dixit and Pindick (1994) provide a variety of applications of those processes to economics.

°The discussion here is heuristic. More precise arguments are given in Cox and Miller, page
213, about the representation of a diffusion process as the limit of a random walk with variable
transition probabilities. Exact mathematical arguments require to take suitable limits in time
and space.



cities. This creates discontinuities in the size of existent and new cities. Similarly,
in Krugman-type of models new cities can emerge as result of discontinuous —
catastrophic— bifurcations (Fujita and Mori, 1997). These considerations suggest
that discontinuities are unimportant in mature urban systems, like the ones we
dealing with, where new cities play only a marginal role.

The assumption of continuity can be better justified on empirical grounds. One
can compute a transition matrix from the data and check if it looks diagonal like
the theoretical one. Figure 5 shows a transition matrix between 1980 and 1990
for U.S. cities computed by loannides and Dobkins (2000). The matrix certainly
has the required diagonal form which supports the idea that size changes slowly
over time, and major jumps are infrequent. Matrices from France and Japan also
exhibit similar shape (See Eaton and Eckstein (1997)).

4.2 Balanced Growth

The main analytical instrument that characterizes the probability distribution of
a diffusion process is the Forward Kolmogorov Equation — FKE— or Fokker-Planck
diffusion equation. Let p(zg,x;t) be the probability density function of x;, given
that at an earlier time ¢, we have x = zy. The FKE is law of motion of p(zg, z;t)°:

9 plaia,1) = 5o [P0 @plae; 2, 1)] — - fe(oplasa ) (1)

The FKE is usually employed to solve for the probability density given a par-
ticular diffusion process with drift p(x) and diffusion o(x). For our problem we
flip the procedure around. Following our interpretation of the evidence, we im-
pose the density of X to be a Pareto density and ask what the mean and variance
of the diffusion process must look like. This procedure allows us to characterize
all transition stationary diffusion processes consistent with non-stationary Pareto
distributions.

Let P(y) = 1 — y?y® and p(y) = éy’y~°~! be the cumulative distribution and
density function of a Pareto distribution (6 > 0, y; > 0), and let P(z,t) and p(x,t)
be the corresponding distribution and density functions of X;. Using the definition

6The FKE is almost an exact characterization of the conditional probability for diffusion
processes. It is not a complete characterization for cases where a positive probability mass can
be accumulated on a boundary, i.e., when boundaries are accessible. In our case, boundaries are
not accessible by assumption: we know that the probability distribution has no positive mass at
any point. Feller (1952) is the classic on the topic. Bharucha-Reid, (1960, pages 142-47) provides
a pedagogical introduction.
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of y, one can easily show that P(z,t) is also a Pareto distribution with a growing
minimum size, P(z,t) = 1 — xf,2% where x;; := y;e?". The corresponding density is

pla,t) = daga®. (2)

Thus, a stationary Pareto distribution for y, as suggested by the evidence,
implies a non-stationary or moving Pareto distribution for z. Along a balanced
growth path, equation (1) becomes’:

9 (e t) = 30 [0 (ol 0] — - [ap(alp(, 1) ®)

Substituting (2) into this equation we obtain the first restriction on pu(x) and

o(z).

4.2.1 Aggregate Equilibrium

The Markov process governing z; is really a closed-form solution of an underlying
economic model. An equilibrium condition in such model must be that the total
population across cities must be equal to the total urban population available. In
a discrete time version of our model, this condition would imply that

M M
(1 + g) int = Zmiﬁrl for all ¢

where g is the growth rate of population per period (g := ¢! — 1). The left hand
side can be considered as the total population (or labor) supply, and the right
hand side is the total demand of population ¢ + 1. One can rewrite this condition
as g wa Ty = wa zig(zy) where g(x;) is the expected growth rate of a city of
size x;;. Alternatively, it can be stated as:

int (9(xs) —g) =0 for all t.

"One can alternatively formulate the problem in terms of y as one with a non-stationary
transition but a stationary density, p(y). In that case, the FKE along a balanced growth path
would read:

10
2 9y?

All the results are identical under this formulation.

0= [y20? (ye" )p(y)] — 8% [zp(e)p(y)] -
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For M sufficiently large and by the law of large numbers, the previous condition
becomes

Eilz (g (z) —g)] =0 for all ¢,

or, returning to our continuous time model, it translates into the key equation

Eixz (u(x) — )] =0forall ¢ (4)

where E,[-] is the expected value associated to P(z,t), the Pareto measure.
This condition is intuitively clear. On weighted average, cities must grow at the
same rate as the urban population. There are two key considerations regarding this
equation. First, the expected value is taken with respect to the probability density
of z, p(x,t), a density that moves to the right over time; second, the previous
condition must hold for all ¢.

The importance of population growth can be better understand if we momen-
tarily assume v = 0. In that case, Ei[z (u(x) — )] = Elz (u(z) — )] so that the
condition (4) only provides a single constraint on p(x). But in order to completely
identify u(z) and (), we need a continuum of constraints. This is precisely what
equation (4) provides, if v > 0.

Finally, a subtle point about constraint (4) is that we require it to hold even
in the case of Ei[z] = 0o, a case that arises when § < 1. The following theorem is
the main result of the paper.

Theorem 1 Let x follows a diffusion process satisfying equations (3), (2) and (4).
Then, u(z) = v and 0?(z) = Az~ + Ba?® for all x, where A and B are positive
constants.

Proof. (See Appendiz) m

To gain some understanding about why the expected growth must be equal for
all possible sizes, consider the stylized case where lim, ., u(x) = p, i.e., all very
large cities grow at the same rate, p. Suppose also that there are only three types
of cities: small (S), medium (M) and large cities (L). The urban system initially
includes all the three types of cities, but small and medium cities eventually become
large as population grows. Thus, all cities eventually grow at the rate p, which
implies, by equation (4), that u = v. In words, large cities must grow at the same
rate as the urban population. But this implies that pu(x) = 7 for all z too. Why?
Because, from the previous discussion, p(L) =+, so that medium cities must grow
also on average at the rate v in order for (4) to hold when medium and large cities

12



co-exist. By backward induction, it also follows that ;(S) = 7 since (4) must also
hold when the three types of cities co-exist.

Theorem 1 provides also a functional form for the diffusion coefficient . If
B > 0, this coefficient eventually increases with size, a prediction that conflicts
with the economic intuition: one would expect growth in large cities to be more
stable as large cities are more diversified. On this basis, one may choose B = 0 as
the plausible option.

The result about the variance has a straightforward intuition, at least for the
case B = 0. Notice first that 6 measures how spread the Pareto distribution
is, or alternatively, the degree of inequality. For example, 6 = oo represents an
extremely even distribution as all cities have equal size. The opposite extreme,
where everyone lives only in one city, occurs when 6 = 0. One should expect that a
more unequal distribution of population would arise from a more unequal growth
process. For example, a process where small cities face higher risks than large cities,
but the same expected growth. This is exactly the result in Theorem 1. It says,
among other things, that the growth process associated to a Pareto distribution
with § < 1 requires that smaller cities face more unstable growth than larger cities.
The opposite occurs if § > 1.

4.3 IMPLICATIONS

Theorem (1) provides a very parsimonious characterization. One could have ex-
pected a richer class of Markov processes, even among the diffusion processes, to be
consistent with the evidence. However, the interplay between a growing population
and the requirement of a stationary growth process singles out a very parsimonious
Markov process.

The result regarding the expected growth rate is strong:. growth cannot depend
on size. This single finding casts serious doubts on most economic models of cities.
In particular, models where cities attain an optimal size as a result of the trade-off
between positive and negative spillovers. City growth rate in these models depends
on whether the city has reached its optimal size or not. In the extreme case, a city
stops growing once it attains that size.

The second component of the Theorem shows that the scale of a city can affect
the stability rather than the mean of its growth process. The result about the
variance, o2(z) = Az’ + Ba®, is certainly an important generalization with
respect to previous results. In particular, our characterization can account for the
view held by some authors who argue that larger cities must display more stable
growth just as a matter of diversification (Fujita et al. page 224). According
to Theorem 1, such belief can be true; but only if the exponent in the Pareto
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distribution is below 1. The evidence in Table 3 suggests that this is in fact the
case for many countries.

For countries where Zipf’s law holds, our result is quite surprising. Gibrat’s
law must hold there. Neither the mean nor the variance of growth can depend on
size. This result provides a strong case against the importance of scale effects for
the U.S., where the evidence supports Zipf’s law particularly well.

Theorem 1 also leaves a puzzle. If § > 1, as the evidence in Figure 3 suggests is
the case for some countries, then the variance of growth must eventually increase
with size, a counterintuitive result. This suggests a problem with our interpretation
of the data, with the data, or with our formulation of the problem. As for the data,
it could be that Pareto distributions with 6 > 1 are not really stable over time.
More careful analysis of the data may indicate that the distribution really converges
to a Pareto distribution with 6 < 1. This is an argument advanced by Brakman et
al. (1999) for the case of the Netherlands. In that case, our results only apply once
the distribution becomes stable. Another important problem with the data is the
definition of cities. According to Rosen and Resnik (1980), when a metropolitan
definition of cities is used, rather than a political definition, the estimated exponent
of the Pareto distribution decreases substantially.

Alternatively, one of our assumptions may not be granted. It seems that our
strongest assumption is to require stationarity of the Markov process. We relax
this requirement in Section 6 of the paper. As a result, what we obtain is a much
richer variety of growth processes consistent with the evidence where city size plays
a larger role. However, the basic conclusion still holds: if 6 > 1 then variance must
eventually increase with city size! (see Lemma 6). Section 6 also explores the case
of a decreasing rate of growth of urban population. Our results are robust to that
modification.

Thus, 6 > 1 turns out to be a puzzle for our model because it implies that larger
cities exhibit larger growth volatility. Unexplored alternatives include relaxing
the reasonable assumptions of cities following a diffusion process or the Markov

property.

5 Economic Models

In view of the strong results of the previous section, the natural next step is to de-
termine conditions under which agglomeration models exhibit proportional growth.
So far as we know, Gabaix (1999) has provided the only stochastic economic model
able to display proportional city growth. Gabaix, however, follows the unorthodox
approach of explaining agglomeration by preferences rather than technologies. The
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advantage of this approach is that constant returns technologies can be employed,
and proportional growth follows naturally from that technology.

Some deterministic models of cities with scale economies have also been pro-
posed to explain some features of the evidence about city-size distribution (Eaton
and Eckstein (1997), and Black and Henderson (1999)). Those models are able
to display parallel city growth, or cities growing at the same rate, which is just
the deterministic counterpart of proportional growth. To obtain the result, how-
ever, they require unappealing assumptions about the parameters of the model.
This leaves the impression that proportional growth is generally incompatible with
scale economies. For example, Eaton and Eckstein require a discount factor equal
to zero, and Black and Henderson need unusual functional forms for preferences
and technologies.

In this section we study general conditions required to produce parallel city
growth in deterministic models and proportional growth in stochastic models. For
that purpose, we study a standard agglomeration model which can sustain an urban
system in equilibrium. Cities emerge in this economy due to the presence of scale
economies, external to firms but internal to industries, as in Henderson (1988).
It turns out that the same conditions that guarantee the existence of a balanced
growth path in multisectorial endogenous growth models can also generate parallel
city growth. The reason is simple. If cities specialize in production, at least at
some extent, then city growth just mirrors sectorial growth.

In contrast to existent literature, negative externalities play no role in limiting
city size in our model. As noted by Eaton and Eckstein (1997), any upper bound
to city size is inconsistent with parallel growth. Once a city reaches that bound,
or an ‘optimal size’, its growth rate slows down or becomes zero. It could also
be the case that the factors limiting city growth (like transportation or pollutions
technologies) evolve over time allowing cities to grow, as in Black and Henderson
(1999). Parallel growth can arise in this case only if the city bounds grow at least as
fast as the urban population. In this case the bounds become irrelevant because,
as a general rule, they do not bind. In addition, such feature is hard to justify
because it requires unusual assumptions about the underlying parameters.

Once we derive conditions for parallel growth using a deterministic framework,
we proceed to make the model stochastic and provide the first example of a model
with scale economies able to account for Zipf’s law. Finally, we elaborate some
extensions of the model.

5.1 Basic Deterministic Model

Consider an economy where production and consumption must take place in loca-
tions defined by the set S := {1,...,S}. We call ‘city’ a location with a positive
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mass of population. Consumers in this economy have preferences over varieties in
theset I = {1,...,1}, where S > I. The state of the economy at time ¢ is completely
described by the distribution of population across locations and activities, Lg; (%),
s € S,i € 1. Goods are transported without cost and firms are competitive. As
before, the total population, N;, grows exogenously at the continuous compound
rate . To simplify notation, we drop time subscripts but all variables must be
considered as time dependent.

5.1.1 Production of Final Goods

Firms choose labor, [;,, to maximize profits:

rrllax qip;(Lis)lis — wislys, s € Siel

18

where ¢; is the price of good i (equal across locations due to arbitrage), wg; is
the wage rate at location s and activity ¢, L;s is the mass of workers at location
s producing good ¢, and ¢, : Ry — R is a differentiable function describing the
gains of agglomerating. We assume ¢;(L) > ¢,(0) for z > 0 and ¢}(L) > 0.
Agglomeration economies are those of location. Per-worker productivity at activity
7 and location s increases with the quantity of workers at the same activity and
location.

The degree of increasing returns in activity ¢ is measured by the elasticity of
the average productivity with respect to the agglomeration.

_ ©i(Lq)

;L)

The source of this effect can be either informational spillovers, search and
matching in local labor markets, or pecuniary externalities. The typical case in
the literature entails a constant elasticity, i.e., p,(L) = A;L“ (e.g., Black and
Henderson (1999), Henderson (1974, 88), Krugman (1991), Duranton (1998), Lu-
cas (2001)). Notice that we allow the degree of increasing returns to be different
across goods. For example, think about the potential externalities associated with
the production of entertainment services in Orlando or Hollywood versus the ones
associated with the production of cars in Detroit. There are not apparent reasons
to expect similar externalities in the production of all goods. Indeed, empirical
studies assessing «; find that it differ significantly across goods (Henderson 1988,
chapter 5).

a;(L;) : L;. (5)
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5.1.2 Preferences and demand

Agents in the economy seek to maximize their utility defined as

u(c) = (Z <e?c¢>f%l>" ,

el

where ¢; is consumption of good ¢ € I, n > 0 is the elasticity of substitution
between goods, and 6; > 0 is a preference parameter determining the taste for good
7. To compute the demand functions, we can use the fiction of a representative
agent because preferences are homothetic, and prices are equal across locations in
equilibrium, as we see below. Let W be the total income in the economy and ¢; be
the price of good i. Utility maximization subject to the proper budget constraint
gives rise to the following demand functions:

A"
¢ = Wort (9—) i€l (6)

4
1
where v is the price index of the consumption good defined as v := (3_,, 0"q; R

5.1.3 Dynamics

Models with increasing returns like this one usually possess multiple equilibrium
in a forward looking economy. To choose a particular equilibrium path we follow
the tradition of the field by assuming an ad-hoc but plausible adjustment pro-
cess: workers move toward activities and locations with currently higher wages®.
Specifically,

L'is
Lis

:’Y—FT(IU%S—’[U)

where w is the average wage in the economy defined as

8This strategy was initially employed by Krugman (1990), and extensively used in Fujita et.
al. (1999).
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5.1.4 Competitive Equilibrium

A competitive equilibrium is a set of trajectories of prices ¢;(t), quantities, z;(t),
wages wg;(t), and labor allocation, Lg(t), such that: (1) ws(t) = ¢i(t)p;(Lis)

(Profit maximization); (i) z;(t) = W (t)v(t)"! (qf(it))n (Utility maximization);

(ili) z;(t) = >, ¢;(Lis)Lis(t) (Goods market clearing); (iv) N = > .. L;s (Labor

market clearing); and (iv) %(t) =+ 7 (wg(t) —w(t)) fori e I and s € S.

A feature of the equilibrium path is that individual industries tend to concen-
trate in only one place. This result follows directly from the existence of increasing
returns at the industry level. Average productivity and wages are larger in larger
industrial concentrations. The location preferred by a particular industry is com-
pletely determine by the initial distribution of population. The location with larger
initial concentration of workers of one industry eventually attracts the whole indus-

try. More precisely, if L;s(0) > L;(0) for s,s" € S, then the adjustment dynamics

Lis (t) for all t > 0. We cannot, however, exclude the possibil-

imply that ﬁ—zz(t) > i

ity that an industry remains permanently spread out in different locations. This

happens when more than one location has the largest initial industry concentration.
As mentioned before, cities are locations with positive population. A particu-

lar city may host one or several industries. The total population in a particular

location is given by Ls = . Lis.
5.1.5 Balanced Growth

Along a balanced growth path wages are equal in all locations and activities. As a
result, Z = for all (i,s) € I x S, and by the definition of Lg, all cities grow at
the rate v. Thus, along balanced growth paths, cities also exhibit parallel growth.
We now proceed to find conditions for the existence of a balanced growth path in
this economy.

Let n’ be the number of cities producing good i along a balanced growth path
and let L’ be the total labor force in industry i. Therefore, L’/n’ is the size of the
industry in each city where the industry locates, and therefore the productivity of

industry 4 is ;(L*/n?).

N
From (6), % = (%% )", In addition, total production of good i in the country
Cj 0; qi

is z; = @;(L'/n"))L*. These two results together lead to

p;(L'/n")L! 0i q; ! .
cpj(LJ/nJ)LJ 9j 0 ori,) €
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In addition, along a balanced growth path wages are equal across locations, and

relative prices only reflect differences in relative productivities, % = j&jézﬂ)) Plug-
v J

ging this result into the previous equation, we obtain (adding up time subscripts)
the key equation

—1
I 0,\" (Li/n) \"
o (—) Lj/") for i, 7 € B. (7)
Ly 0; SOj(Lt/”])

At this point it is convenient to define the function ¥% : R — R, as:

U (2, z;) 1=

We are ready to establish our main result of this section:

Proposition 2 Balanced growth only exists in the following two cases: (i) n =1
(preferences are Cobb-Douglas); (ii) o, = a for all i (External effects are identical
for all goods). In particular, balanced growth exist if ©.() = 0 for alli € I. Balanced
growth paths display parallel city growth.

Proof. Along a balanced growth path, labor in all industries grow at the same
rate. Thus, the left hand side of Equation (7) remains constant as population grows,
for alli,j € 1. On the right hand side, the expression (¥ (z;, zj))n_1 must be con-
stant as x and y grow at the same rate, a result that transpires if n = 1 and/or if
@;(x) is independent of x. The result also transpires if W (tz;,tz;) = W9 (x,y),
i.e., W9 4s homogenous of degree zero, or, by FEuler Theorem, (0VY/0z;) z +
(09 /0z;) z; = 0. Using the definition of W9, this condition implies

0 — ﬁzz— 909901

5
Yi (¢;)" !

Pi {‘P; 90;’ }
= — |—Z; — —Zj .
Pi LPi P

Finally, using the definition of cu(-), this requires o;(-) = a;(+) for alli,j € I. m

Our highly tractable equilibrium show how hard it is to reconcile parallel growth
in cities with scale economies. It requires strong constraints on preferences or on
the strength of the external effects.
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If those constraints are not satisfied, then constant returns to scale become
the natural alternative to explain parallel growth. But if technologies are linear,
why do cities arise in the first place? A sensible possibility is that scale economies
eventually die out. This is the case, for example, if «;(L) = o/ L?, for p > 0 large.
Cities arise in this case because larger agglomerations display higher productiv-
ity, but scale economies disappear for L sufficiently large. This technology is, in
fact, supported by evidence. Henderson (1988, chapter 5) finds that “Localization
economies appear to have declining elasticities, or to peter out as scale increases
(page 97).” See also Segal (1976).

5.2 A Stochastic Model that Produces Zipf’s Law

We now introduce randomness into the model of the previous section so that the
relative size of cities changes along a balanced growth path. To simplify the ex-
position, we choose to introduce stochastic preferences into the model, but similar
results can be obtained with stochastic technologies. The rise and fall of cities in
this version of the model is driven by the stochastic changes in consumer tastes for
goods.

Suppose that there are exactly I cities, and each city specializes in the produc-
tion of exactly one good. In that case, L} is the size of city i. Suppose in addition

n = 1 so that equation (7) now states that % = g—;’_. Using labor market clearing,
it follows that

Li 0y i/ 1

N (S00)  (S00) /7

Finally suppose that the preference parameters, 6’s, are stochastic. They are
drawn from a finite-mean distribution, F. If I is sufficiently large, the denominator
of the last expression is constant by the law of large numbers. In that case, the
distribution of relative city-sizes is just F'. Thus, if F'is Pareto, so is the distribution
of city sizes.

But why would 6 be distributed Pareto? As we argued before, Pareto distribu-
tions can result from proportional growth processes. Thus, if the growth process
of 0 satisfies Gibrat’s law, then its steady state distribution may be Pareto. The
following lemma is an application of Proposition 1 in Gabaix (1999).

Lemma 3 Suppose 0;; follows the “reflected geometric brownian motion” process
d0;/0;x = 0dByy for 0y > Owin and dfy /0y = max {odBy, 0} for 0 < O where By
s a Brownian motion, and 0y, s the barrier of the process. Then, the distribution
of 04 converges to a Zipf’s distribution.
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Corollary 4 The distribution of city-sizes is Zipf.

5.3 Diversified Cities and Non-tradable goods

Cities are usually regarded as very diversified production entities but our model
in the previous section portraits cities as highly specialized. We now develop an
extension of the model where cities are highly diversified in the production of non-
tradables, although they still specialize in the production of tradables. All results
from the previous section hold. Relative city sizes are still completely determined
by the relative size of their tradable sectors.

Denote the goods in the previous section tradable goods, T'. They are produced
under scale economies and bear no transportation costs. In addition to tradables,
there are other types of goods in the economy, called non-tradables, that are costly
to transport and can be produced under the following constant returns to scale
technology.

yzzlz fOIiENT,

Preferences are similar as before but now they include non-tradables goods,

_n_
1

u<c>:( ) w;?ci)ﬂn—l)" >0,

i€TUNT

Demand functions are still given by (6) for i € TU NT.

We call tradables the goods that are produced under scale economies. Each
one of them is produced in a single location but consumed everywhere. Goods
produced under constant returns to scale are non-tradable. No location has a
particular advantage producing them and they bear transportation costs if traded.
To save in transportation costs, these goods are produced at the same place where
they are demanded. As a result, cities in this model specialize in producing one
tradable, but diversify in producing all non-tradables.

We now establish that the relative population of any two cities is completely
determined by the extent of its tradable sector. We first need to introduce some
new notation. Let LV* = >~ LN be the size of labor employed in the production
of non-tradables, and similarly for LY. The total population in a particular city
includes workers in both activities. Let LT be the size of workers producing good
i € NT at city s, and let LY" := Y. LN be the total size of worker producing
non-tradables at city s. Total population at city s is thus given as X := LY+ LT,
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Proof. Since preferences are homothetic, all demands are linear in income.
In addition, relative income between any two cities is just their relative popula-
tion since wages are equal across cities in a balanced growth path. Thus, relative
consumption of good h between cities i and j is

Lemma 5 % = along a balanced growth path.
J

Chi X
— =— forall h
chj X i

Lp;

From the supply side, we have cp; = Ly; for h € A. Therefore, [ = % for all h,

which implies,

L;l o ZheA Lp;

L}'q B ZheA th

X
X;

nce Xi — LEALE Ly _ L LP_x
Now, since X, = oo it follows that r =1 Thus, r =X, ]

Using this lemma one can safely ignore non-tradables when determining relative
city-sizes, but still can interpret cities as diversified production places.

5.4 A Model with Capital

We abstracted from capital, either physical or human, in the previous model. Ex-
ternalities, however, are usually associated with the amount of human capital in
the city. There is a simple way to introduce capital in our model that leaves our
results intact. Suppose the production function for tradable goods is given by

Yis = 0i(Kis, Lig)l& k) % for i € B, (8)

where K is aggregate capital employed in the production of good ¢ at location
s, and k; is individual capital. Suppose there is rental market for capital and
capital can be moved between locations without cost. Let r be the rental rate and
w the wage rate. Profits maximization requires the relative prices of capital and

labor to be equal to the relative productivities, i.e., & = % Ls or
) ’w l—ai kis
a; W
i = —— I,
l—o;r

In addition, K;; = %% L,,. Replacing these two expression into the produc-

g

tion function (8), one obtains:
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or
Yis = @(Lis,w,r)lis fori e B

which has the same functional form as the one in the previous section. The

inclusion of w and r into ¢; does not affect the previous results because they are
equal across cities.

5.4.1 Other Models in the Literature

To the extent of our knowledge, there are currently in the literature only two other
models capable of producing parallel growth, in addition to Gabaix’s model. The
first model is by Black and Henderson (1999). They device an economy where
cities arise due to location economies. Cities attain an optimal size due to the
existence of commuting costs that limit the gains from the positive externalities.
Furthermore, optimal city sizes grow due to human capital accumulation. Cities
specialize either in the production of intermediate goods or final goods. Paral-
lel growth occurs because the final goods production function is Cobb Douglas, a
property consistent with our results in the previous section. This suggests, how-
ever, that their result about parallel growth is not robust to the following natural
generalization. Several cities specializing in different intermediate inputs, one city
specializing in the production of final goods, and elasticity of substitution between
inputs different from 1.

There is, however, a more serious problem with their model. Except under
knife-edge parametrization, the growth rate of their economy either increases or
decrease through time, a counterfactual. Thus, the scale effect does not show up
in the growth rate of cities, but in the growth rate of the economy. This is a
natural consequence of introducing non-convex technologies into a growth model
(See Romer, 1986).

An alternative model was proposed by Eaton and Eckstein (1997). In their
model, city size depends on the amount of human capital accumulated cities. Cities
of different sizes co-exist because they differ in their productivity as places to
acquire capital. There are spillovers across cities in the accumulation of human
capital. They are able to generate proportional growth only under the condition
of zero discounting.
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6 Extensions

In this section we study two possible modifications to the basic model of section 4.
The first extension allows for a time dependent growth rate of urban population.
This extension is important because it allows for a decreasing growth rate of urban
population, a more realistic description of the urban process in many developed
countries. We show that only non-stationary diffusion processes can account for
such a fact, but under the results of Theorem 1 remain intact. The second exten-
sion allows the conditional moments of the Markov process to depend not on the
actual size of cities but in their relative size. This extension could be important
to reconcile scale economies with the evidence. The underlying economic forces
behind such a process is left unexplored.

6.1 Time Dependent Urban Growth

Suppose now that the urban population, NV; := N(t), grows continuously overtime
and define v, := N'(t)/N(t) >7 to be the instantaneous growth rate of urban
population at time t. Assume v> 0. The fact that v, changes through time
suggest that the diffusion process must be time dependent in order to equilibrate
the labor market at every t. It is natural to require the drift of the process to be
time dependent, p(z,t). On the other hand, changes in the deterministic growth of
urban population are unlikely to affect the volatility of growth. Thus, we retain our
assumption about the variance being only state dependent, i.e., 0%(z,t) = o*(z)
for all t.

The following is the corresponding FKE for this process in a “balanced growth”
path

O plant) = 5oy [120 (@l )] — (e, O 1), (9

where p(z,t) = 6 (yN;)° 27°1. In addition, we require a condition to assure
equilibrium in total population. The analogue to equation (4) is given by

Eix (u(z,t) —v,)] =0 for all . (10)
The following Proposition summarizes our general result:

Proposition 6 Let x follow a diffusion process satisfying equations (9) and (10),
and suppose the stationary distribution of y := x/N; is P(y) (the Pareto distribu-
tion). Then, p(x,t) = v, and o*(z) = Az®~! + Bx® for all x, where A and B are
positive constants.
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Proof. Let v = ~, in Appendix. All results follow. m

6.2 MODELS WITH RELATIVE SCALE ECONOMIES

In Section 4 we constrained the Markov process to be transition stationary. City
dynamics was only allowed to depend on the scale of the city, x, but not on time.
Stationarity together with population growth turned out to deliver very sharp
predictions about the Markov process.

An alternative way to introduce scale effects into the model would be to allow
the Markov process to depend not on the real size of a city, x, but on its relative
size, y. This is equivalent to allowing the transition of x to be not just state
dependent but also time dependent, i.e., non-stationary. On the other hand, the
process for y would be completely stationary, only state dependent. Although it
seems a sensible alternative in statistical terms, its economic microfoundations are
unclear. Most models of cities postulate positive and negative externalities that
derive directly from the actual city size rather than a relative size. For example,
in Henderson models, negative external effects of agglomeration such as congestion
and commuting costs are attributed to the real size of the population. That said,
we now study the implications of this alternative.

The relevant random variable in this section is y rather than z. After imposing
stationarity and the Pareto density, the Forward Kolmogorov Equation reads

330 1070 = 5 [t ] =0 (1)

and after integrating once and solving for u(y) ?, we obtain:

) = 5 o)+ (1= ) ) (12)

As in Section 4, the FKE provides a system of equations that can be solved for
u(y) in terms of o2(y). Now consider the mean condition, E [yu(y)] = 0. Applying
this condition to the previous equation, it becomes:

B {y%a%w] B [(5— 1)yo’(y)] (13)

9Since our interest is to find alternative forms in which scale economies are consistent with
the evidence, we assume p(y) # 0 when we integrate.
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The left hand side of the last expression can be re-expressed as:

50
Bl sertw)] = &f [ ot et
EL
= &y [v17‘502(v)}:+6(1—6) yf/ v 0% (v)dv
Yt

= &y [v17‘502(v)]oo + (1 — 6)/ SyPv " two?(v)dv

K

= &y [v' 00 (0)] "+ (1= 8) E [yo*(y)] -

Y

Finally, replacing this result into (13), we obtain &y} [v' 0 (U)}Zj =0 or,

yi 00 () = lim v'"%0?%(v), (14)

v—00

Equations (12) and (14) are the only constraints we have to identify the un-
derlying process. In contrast to Section 4, these two conditions are not enough to
completely pin down the Markov process. However, we can still derive some im-
portant qualitative results about the underlying process. The next lemma follows
from direct observation of equations (14) and (12):

Lemma 7 (i) If § = 1, then very large cities share the same the diffusion coeffi-
cient (variance) and their mean growth is zero; (it) If 6 < 1 then variance must
eventually decrease with size; (i) if 6 > 1 variance must eventually increase with
size.

These properties are analogous to the ones found in Section 4; but in the present
case we can only characterize the limit behavior of the diffusion coefficient, instead
of its whole shape. The next Proposition collects our main results of the section.

Proposition 8 Let 02(y) be a positive function satisfying (14) and let u(y) be a
function defined by (12). Then, any diffusion process with drift pu(y) and diffu-
sion o2(y) satisfying the Forward Kolmogorov Equation has a stationary Pareto
distribution with exponent 6.
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Proof. Replacing (12) into (11), we obtain

or

200 (D)) + 901 50"(0) + y2a2<y>g'<y>] _ {yQa—yoﬂ(y) . 6>yo—2<y>} o().

and after some simplification, one obtains

!/
1
9(y) y
The solution to this differential equation is g(y) = Ay~ i.e., the density of a
Pareto distribution with exponent 6. m
The following lemma characterizes a very general class of diffusion process that

possesses a stationary Pareto distribution.

Lemma 9 Let o*(y) = By~ +m(y), and define p(y) = § [ym'(y) + (1 = &)m(y)],
where m(y) satisfies m(y;) = 0, and lim,_ y'~°m(y) = 0. Then, the diffusion
with drift p(y) and variance o*(y) has a stationary Pareto distribution.

Proof. This process satisfies the conditions of the previous Proposition. m

Note that the process found in the previous section, with u(y) = 0 and o?(y) =
By'~®, satisfies the previous lemma. But in contrast with Section 4, there are many
other processes that can deliver the required result.

6.2.1 Zipf’s Law with Relative Scale Effects

Now consider the particular case of Zipf’s law. In that case 6 = 1, and (12) and
(14) read

o(y) = lim o*(v)

V—00

These two equations provide a very parsimonious and sharp characterization of

the diffusion processes associated to a stationary Pareto distribution with exponent
1.
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Proposition 10 (Zipf’s distribution) Suppose 6 = 1 in Proposition (8). Then,
w(y) § 0 if and only if o' (y) § 0. (Thus, if large cities exhibit more stable growth,
then they also must exhibit lower mean growth.)

Thus, the fact that cities are Zipf’s distributed give the following strong pre-
dictions about city growth: (i) growing cities must have more unstable growth;
(ii) more stable cities must be decaying cities. Hence, Zipf’s law translates into a
surprising interpretation of city growth. High growth is necessarily risky, and low
growth is stable.

6.2.2 Dynamics

Up to this point we have not discussed the issue of convergence of the probability
measures to its stationary distribution. In particular we would like to know whether
P(yo;y,t) converges to a Pareto distribution regardless of the initial distribution
and given that the coefficients of the process satisfy (12) and (14).

Convergence demands more structure within the problem. We now consider a
specific but well known diffusion process to study its dynamic properties. Suppose
city growth follows an univariate Ito Process. In particular, suppose y € R follows
the “reflected Ito process”:

dy [ max{u(y)dt + o(y)dz,0} if y <y,
v { p(y)dt + o(y)dz if y <y } (15)

where dz is the increment of a Wiener process, and u(y) and o(y) are the drift
and the diffusion coefficients respectively as defined before. One special case of the
previous process is the “reflected geometric Brownian motion with drift”, in which
p(y) = p and o(y) = 0.

It can be easily shown that the Forward Kolmogorov Equation corresponding
to this particular diffusion process is given by equation (11). Therefore, if pu(y)
and o(y) satisfies the assumptions of Proposition (8), the diffusion process has a
stationary Pareto distribution. We assume this is the case.

The process in (15) makes it explicit that the diffusion process considered up to
now requires two assumptions in order to possess a stationary Pareto distribution.
First, the process must be reflected at a strictly lower positive barrier, y;. This
guarantees that the support of the distribution is a strictly positive interval of the
type [y1,00). Second, the barrier must be constant in terms of the normalized size,
Y, which means a growing barrier for the actual size of cities, X.

For some results it is convenient to work with In(y) rather than with y. Define
v as v := In(y). Tt is a standard result in stochastic calculus that:
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o — | max{(u(y) = 30°(y)) dt + o(y)dz, 0} if v <
"= { (u(y) — 30%(y)) dt + o(y)dz if v, < v } (16)

where v := In(y;).

At this point, we would like to argue that the distribution of y finally decays to
this stationary distribution regardless of the initial distribution. However, for this
to hold, we need to impose additional structure on the problem. We require the
diffusion process to be strongly recurrent so that the probability mass cannot escape
to the boundaries. According to Risken (1988, pages 134-37), we need constraints
on the coefficients of the Ito process to avoid singularities or ; escaping to infinity.
A singularity arises if the diffusion coefficient tends to zero, or if a coefficient does
not approach a finite number (Feller, page 469). At this point, the representation
in equation (16) turns out to be more convenient'’. In terms of that equation, we
require (y) — 50%(y) and o*(y) to approach finite numbers for y large and o?(y)
to be bounded away from zero. These two conditions immediately imply that p(y)
must also approach a finite number. In economic terms, the convergence of p(y)
and o*(y) to finite values implies that Gibrat’s law must hold for large cities.

Given than u(y) and o(y) are linked by (12), the following lemma establishes
a necessary and sufficient condition for p(y) and o(y) to converge to finite values,
to avoid singularities, and y escaping to infinity:

Lemma 11 u(y) and o(y) satisfying (12) converge to finite values if and only if

) 0
lim Iya—yfo(y)l =K

Yy—oo

Proof. First we prove sufficiency. Clearly, lim,_, ]y(%aQ(y)] = K implies

0
lim —o?(y) =0
Jm 5, W)
so that o*(y) approaches a constant. These two facts imply than p(y) satisfying
(12) also approaches a constant. Next we prove necessity. Suppose p(y) and o(y)
converge to finite values. Then by (12), ya%a2(y) = 2u(y) + (6 — 1)o*(y), so that

Yy3:0°(y) also converge to a finite value. ®

0Tn terms of equation (15), the coefficients of the process are yu(y) and yo(y). Thus, for those
coefficient to converge to finite numbers we would require p(y) and o(y) to approach zero for y
large.

29



Define p := lim, ., p(y) and o := lim,_,« o(y). The previous lemma motivates
the following assumption on o?(y).

Assumption 1: lim, y(%aQ(y) =k < 6c*and o*(y) is bounded away from
zero for y > y;.

The additional condition that x < §0? is required for the following lemma.

Lemma 12 Suppose the process described by (15) has coefficients satisfying (12),
(14) and assumption 1. Then, y does not escape to infinity (is bounded a.s.).

Proof. Assumption 1 implies that o*(y) approaches a constant for large y.
Coupled with (12), it also implies that for large y, u(y) approaches the constant
2 [k + (1 = 6)0?]. Therefore, for large y, % ~ L[k + (1= 6)c?|dt + odz, i.e., for
large y, y follows a geometric Brownian motion. In terms of y,

1 1
Yr = Yo €xp {aZt + (5 [:‘i + (1 — 6)0—2] _ §g2> t}
= Yoexp4 o7, —1(602—&)t
0 1Ty
By Assumption 1, this process drifts toward zero. m

The following is the main result of this section.

Proposition 13 Suppose y follows a diffusion process that satisfies the conditions
of the previous lemma. Then P(yo,y,t) converges to a Pareto Distribution with
exponent 0.

Proof. See Risken, pages 134-137, and 98-99. m

In the standard problem, one has a particular growth process for cities, as the
one defined by (15), with some drift and diffusion coefficients, u(y) and o(y). The
question now is how ca we use the previous results to determine if the process has
a limit Pareto distribution, and if so, what the exponent in the distribution will
be? The following Proposition establishes the result.

Proposition 14 Consider an Ito process as defined by (15), and suppose o(y)
satisfies assumptions 1. Define 6(y) as

20 ya—yfo(y) —2u(y) (17)

Then, y converges (in distribution) to a Pareto distribution with coefficient g(y) if
and only if 6(y) is constant and larger than zero.
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Proof. First we prove sufficiency. Suppose g(y) is a constant larger than zero.
Then, (17) is just a restatement of (12). Therefore, Proposition 4 applies and the
required result follows. Now, we prove necessity, i.e., that a Pareto distribution
requires 6(y) constant and larger than zero. It follows from the fact that (12) is a
necessary condition for an Ito process to have a Pareto Distribution, and 12 can
be only equal to (17) if 6(y) is constant and larger than zero. m

7 A Corrigendum

Finally, we want to point out and correct an important inconsistency in the main
Proposition of Gabaix’s (1999) paper. Our correction keeps the essence of Propo-
sition 1 in Gabaix’s paper intact (Gibrat’s law produces Zipf’s law) but dispenses
with an ungranted assumption made by Gabaix.

According to page 749, city size follows a Geometric Brownian Motion (using
our notation):

dXit/Xz't = ’ydt + O'dBZ't.

where B;; is a Brownian motion. In addition, according to the definition in footnote

14, Sy = X)o(:vt is the normalized city size. One can use Ito’s lemma to easily

establish that

dSz't/Sit = O'dB,L‘t (18)

i.e., detrended city growth has no drift. This is a natural consequence of assuming
that the drift of X being independent of size and equal to v. However, Gabaix finds
instead that dS;;/ Sy = pdt+o0dB;;. What is particularly disturbing is that p < 0 is
needed for the proof of Proposition 1. Otherwise, the unconditional expected value
of S, S, would be oo, but Gabaix’s arguments depend on the condition S < oo,
(in particular he needs S = 1/N where N is the number of cities). The fact
that Gabaix needs 1 < 0 is natural and it is equivalent to the stability condition
imposed by Champernowne (1953) (see Simons (1955), page 438 for a derivation).

What if we drop the requirement of S < co? Consider for a moment the process
described by equation (18) and suppose, as Gabaix, that the process is reflected at
some lower size S,,;,. What is the limit distribution of S7 A easy way to proceed
is to consider the limit distribution of s := In S instead. Ito’s lemma establishes
that ds = — (02/2)dt + 0dB; for s > Spin = In Sy We can use Harrison’s
computation (Harrison, 1990, page 15), the ones used by Gabaix, to find that the
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tail distribution of s converges to the exponential function P(s > s') = e~ (8"~ 5min).,
Harrison’s results apply because the drift of ds is negative (—0?/2) even though
dS/S has no drift. Equipped with the tail distribution for s, it is straightforward to
show that the tail distribution of S is P(S > S") = 5"/ Spin, i.e., Zipf’s’ law. The
result holds true regardless of the specific value of S,,;,,. This is in sharp contrast
to Proposition 1 in Gabaix paper, where S,,;, needs to converge to zero in order
to obtain a Zipf’s distribution.

The result seems a little bit magical. Why does the process drift toward the
origin if p = 07 To understand why, consider the simple Brownian motion with
lower barrier at zero and no drift (the pure Gibrat’s process). This process auto-
matically drifts toward the origin making S log-normally distributed with mean
that goes to zero. The lower barrier at S,,;, > 0 is what induces some probability
mass to be accumulated near S,,;,, originating a Pareto distribution rather than
the log-normal distribution.

If S is Zipf’s distributed, why do we care about S < oo ? According to Gabaix,
this condition is needed to guarantee aggregate population equilibrium, at least
in expected value. But an alternative condition to guarantee equilibrium is to
assume F[uS] = 0 (zero expected growth of detrended cities), which is guaranteed
by the fact that p = 0. Naturally, E[S] = oo makes no sense for normalized (or
unnormalized) city size. That is an undesired consequence of approximating the
discrete distribution of S by a continuous distribution with support on the whole
real line (or at least above a minimum size).

The following Proposition summarizes the corrected result.

Proposition 15 Suppose the normalized sizes S follows the “reflected geometric
Brownian motion” process dS;/S; = odBy for Sy > Sy and dS; = Sy max (0d By, 0),
for Sy < Snin where ¢ is a Brownian motion, Sy, s the barrier of the process, i.e.,
the minimal normalized city size. Then the distribution converges to a Zipf’s dis-
tribution with exponent 1 regardless of the size of the lower barrier, Spn.

8 Conclusion

This chapter characterizes growth processes consistent with the evidence of Pareto
distributions for cities under quite general conditions. They include not only pro-
cesses that satisfy Gibrat’s law, but more importantly, processes that are size
dependent. We obtain a sharp characterization. The growth process must be such
that expected city growth is independent of its size and the variance of city growth
must have the form A- Size®~!, where § is the Pareto exponent.
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This characterization has powerful implications. First, it means that under
general conditions, Zipf’s law can only result from Gibrat’s law. Growth must
be independent of size. Thus, Gibrat’s law is not just an explanation of Zipf’s
law, as argued in the literature, but it is the explanation. Second, it provides a
rationalization of how the scale of a city may matter for its growth. It affects the
stability of growth but not its mean. Finally, it also provides a rationalization
for the diversity of exponents found in the data. Cities in different countries face
different growth stability.

We also offer simple and clear conditions under which a standard model of
cities reproduces Gibrat’s law. Negative externalities should not limit the size
of cities, and the model must possess a balanced growth path. In particular, our
model requires either Cobb-Douglas preferences or equal externalities across goods.
Along the way, we provide the first economic model with increasing returns able
to generate Zipf’s law.
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Appendix

Proof of the Main Theorem. In our case p(z,t) = 5(90”)6 =51 Then
%p(% t) = ~v6p(z,t). The KFE reads

2 pw.t) = 22 [t @(o. 0] - 2 a(a)plet)

10

18 (") a0 = =0 [0 @l )] — o fap(a)p(, 1)

integrating once (with respect to x)

L

N | —

—vyap(z,t) + A(t) =

[n(z) —Alopla, 1) = 52 [0 (@)pla, 0] — 5A() (A1

N | —

Now, integrating in the interval [z}, 00) we have

[ ne) = apt. e = ; [P0 @hp(a. ) — A2, (42

Tt
It

Now, according to the condition (4), the left hand side of the previous equation
must be zero for all t. Below we show that there are only two possible cases: either
A(t) =0 for all t or A(t) # 0 for all ¢.

Consider first the case A(t) = 0 for all ¢. Then the following equality must hold
for all t.

% [$202(I)p(x,t)]:; =0 for all ¢
or
|:O'2(33) (z)° xl_‘s} T —0forallt
@it
or

o2 (zy)xy = 28, lim v' 0% (v) for all ¢ (A3)

Define 8 = lim,_ o v'7°0?(v) (we require the limit to exist and be bounded to
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assure a solution satisfying (4)). Then,
o?(zy) = ﬁxft_l forallt >0
We can replace the previous condition “for all t” by the expression “for all z;”,

but then it is the same as “for all x” since z;; grows continuously and unboundedly
overtime. Thus, we conclude,

o?(z) = Ba®~! for all z (A4)
Now, replacing this expression into (A1) given that A(t) is zero, we get,
[2%0*(2)p(a, )]

[xQﬁx6—16 (1)’ x—6—1:|

[1(z) — y]zp(x,t) =

N~ DN~ DN —
PloPlof|o

38 ()’ =0
therefore,
w(x) =~ for all z. (A5)

Thus, (A4) and (A5) describe one possible solution. Now consider the case
A(s) # 0 for some s > 0. In that case, condition (4) imposes

[2' °0?(z)6x], — A(t)z] :; =0 forall t
or

ay [0 (an)6 — A(t)] = lim [m*602(x)6x?t — A(t)] for all t (A6)

T—00

This condition requires, among other things lim, .., x=%0?(z)ézf — A(t) = 0
for all t, or

A(t) = Sha), for all t (A7)

where h :=lim, .., x7%0*(x), a finite number. Substituting (A7) into (A6), we
obtain

xy [0%(2) — ha}y] = Oz), for all t
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where 0 := lim, .oz [t %0%(z) — h], a finite number according to (A8). Fi-
nally, solving for o2(x;;) from the previous equation we obtain

o*(x) = ha’ + 02°7' (A8)

Now, substituting (A7) and (AS8) into (Al),

_ 10 _ _ 1
[w(z) —y)6xba™ = 39 [(ha® 4 02°71) bapz' 0] — Eéhxft
10 1
1 1
0

Thus, (A5) also holds if A(s) > 0. In any solution, the drift must be v (expected
mean growth must be independent of size). The diffusion coefficient, in the other
hand, can either have the form (A4) or (A8), but (A4) is a particular case of (AS).
n
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Zipf's Plot Several Year 1840 - 1990
100 Largest Cities and Urban Places
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Population in 80 Largest Agglomerations

5
4.5 4

| \\
3.5 \

im >
\x\ ‘ ¢d .\‘«
1 h ~ ¥ 1993.slope= -1.15, stderr=0.009,
N R2=0.99
254 LS § N
1 ~ .- * \‘\ R
2] 1973, Slope=-1.14, LN . e
Stderr=0.012, R2=0.99 " e T
N o~

1.5 . m N e

1] AR . AN .

-

0.5 1 h hR

0 T T T T T T *-

9 10 11 12 13 14 15
Source: log of Population

Figure 2:

42

16



Log of Rank
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PARETO COEFFICIENTS

Several countries

Argentina 0.933 Malaysia 0.968
Australia 1.963 Mexico 1.153
Austria 0.875 Morocco 0.809
Brazil 1.153 Netherlands 1.266
Canada 1.132 Nigeria 1.537
Colombia 0.847 Norway 1.265
Czechoslavakia 1.107 Philippines 1.253
Denmark 1.374 Poland 1.127
Ethiopia 0.97 Romania 1.085
Finland 1.084 S. Africa 0.997
France 1.325 Spain 1.133
E. Germany 1.125 Sri Lanka 1.13
W.German 1.171 Sweden 1.41
Ghana 1.104 Switzerland 1.095
Greece 1.138 Thailand 0.961
Hungary 1.092 Turkey 1.077
India 1.204 U.K. 1.178
Indonesia 0.967 U.S.S.R 1.278
Iran 0.993 U.S.A. 1.184
Israel 0.983 Venezuela 1.106
Ttaly 1.046 Yugoslavia 1.186
Japan 1.289 Zaire 0.93
Source: Rosen & Resnik 1980
Figure 4:
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Transition Matrix U.S. Metropolitan Areas

322 cities, 1980 - 1990

1990
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 82.35 | 11.76 | 5.88
0.2 9.38 | 50.00 | 31.25 [ 6.25 | 3.13
0.3 34.38 | 37.50 | 25.00 | 3.13
1] 04 12.90 | 38.71 | 48.39
91 05 313 | 938 | 21.88 | 37.50 | 25.00 | 3.13
8| 06 9.09 | 60.61 [ 30.30
0] o7 3.13 | 15.63 | 62.50 | 18.75
0.8 6.25 | 75.00 | 18.75
0.9 1250 | 81.25 | 6.25
1 3.13 | 96.88
Source. Dobkins and loannides (2000) p. 258
Figure 5:
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