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Abstract

The purpose of this paper is to analyze the role of collateral constraints as a transmission
mechanism of monetary shocks. We do this by introducing money in the heterogeneous-agent
real economy of Kiyotaki and Moore (1997). Money enters in a cash-in-advance constraint and
is injected via open-market operations. In the model, a one-time exogenous monetary shock
generates persistent movements in aggregate output, whose amplitude depends on the degree of
debt indexation. Monetary expansions can trigger a large upward movement in output, while
monetary contractions give rise to a smaller downward movement. This asymmetry occurs
because full indexation of debt contracts can only be effective following a monetary contraction.
In contrast, following a monetary expansion indexation can only be partial because debtors end
up paying back just the market value of the collateral. Due to the existence of both cash-in-
advance and collateral constraints, monetary shocks generate a highly persistent dampening
cycle rather than a smoothly declining deviation.
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1 Introduction

The extent and mechanism through which monetary policy affects real economic activity over the

business cycles has been a long-standing question in macroeconomics. Different mechanisms that

explain the propagation of money shocks have been proposed. These include sticky prices, wage

contracting, monetary misperceptions, and limited participation.1 Another mechanism that has

received special attention in recent years is credit-market imperfections. In particular, the agency-

cost model of Bernanke and Gertler (1989) has been extended to monetary environments in order to

analyze how ßuctuations in borrowers� net worth can contribute to the ampliÞcation and persistence

of exogenous money shocks to the economy.2

In contrast with these agency-costs models, little attention has been devoted to analyzing mon-

etary economies in which agents face endogenous credit limits determined by the value of collat-

eralized assets. The environment we have in mind is one in which lenders cannot force borrowers

to repay their debts unless debts are secured. The use of this type of credit constraints appears to

be a promising avenue to generate the amount of ampliÞcation and persistence lacking in current

monetary models. This conjecture is motivated by the results obtained for the real-economy models

of Kiyotaki and Moore (1997), Kiyotaki (1998) and Kocherlakota (2000) among others, who have

shown that collateral constraints are a powerful mechanism of ampliÞcation and persistence of real

shocks.3 The central idea is that bad times for the economy are also times when the liquidation

value of the collateral is low, as potential buyers face difficult times. This reduces debt capac-

ity, which in turn reinforces the fall of the collateral price, as potential buyers become even more

1See Cooley and Hansen (1998) for an illustration of the role of monetary shocks in the equilibrium business cycle
theory.

2See Fuerst (1995), Bernanke, Gertler and Gilchrist (1999), and Carlstrom and Fuerst (2000). Credit-market
imperfections in these models emerge from asymmetric information and costly-state veriÞcation. In this framework,
entrepreneurs borrow to pay the amount of the factor bill that is not covered by their net worth. Lenders must pay
a monitoring cost in order to observe the entrepreneur�s project outcome. If an entrepreneur has little net worth
invested in the project, monitoring costs increase because there is larger divergence between the interests of the
entrepreneur and the lender, and so the premium for external Þnancing is larger. With procyclical net worth, periods
of low output are associated with higher monitoring costs and a higher external Þnance premium. This mechanism
ampliÞes the effects of external shocks on production and investment.

3Scheinkman and Weiss (1986) also study the effects of borrowing contraints in the presence of uninsurable risk.
They simulate a lump-sum monetary injection that changes the distribution of assets across agents.
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cash-strapped.

This paper analyzes the role of collateral constraints as a transmission mechanism of monetary

shocks. We do this by introducing a cash-in-advance constraint for consumption and investment in

the real-economy model of Kiyotaki and Moore (1997). We exploit the simplicity of this framework

to study monetary injections carried out via open-market operations, as opposed to the less realistic

but simpler helicopter drops employed by many monetary models. Due to the presence of credit-

market imperfections, the exact path of the money supply is crucial to determine the real effects of

open-market operations. We choose a parsimonious type of monetary paths which avoid changes

in long-run inßation and Þscal variables. Thus, current monetary expansions need to be offset

by future monetary contractions to avoid changes in inßation or unstable government-bond paths.

In this monetary economy the price of the collateral plays a central role in generating large and

persistent effects of exogenous shocks. Moreover, the response of the nominal interest rate becomes

also crucial in determining the effects of shocks.4.

The main Þnding of this paper is that a monetary shock can generate persistent movements in

aggregate output, whose amplitude depends on the degree of debt indexation. In particular, the

larger the indexation, the lower the amplitude of the ßuctuations. This result follows from the

fact that in our model, any redistribution of resources that favors borrowers is output enhancing

because in equilibrium borrowers are more productive than lenders.

We also Þnd that business cycles are asymmetric in the model. In particular, while monetary

expansions can trigger a large upward movement in output, monetary contractions give rise to a

smaller downward movement. This asymmetry occurs because full indexation of debt contracts can

only be effective following a monetary contraction. In contrast, following a monetary expansion

indexation can only be partial because in this case debtors repudiate their loans, there is debt

renegotiation, and they end up paying back just the market value of the collateral. This is so

because when there is a money expansion, the debt repayment increases by more than the market

value of the collateral, and so debtors have incentives to repudiate their debts.

4In Kiyotaki and Moore (1997), Kiyotaki (1998) and Kocherlakota (2000) the interest rate is constant in equilib-
rium.
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A third property of the model is that monetary shocks trigger highly persistent dampening

cycles rather than smoothly declining deviations. This occurs due to the interplay between cash-

in-advance and collateral constraints. In particular, if following an exogenous shock borrowers were

able to acquire more capital, the full impact of the shock would be delayed because with a binding

cash-in-advance constraint, collateral can only be accumulated gradually. The cyclical dynamics of

the model is consistent with the hump-shaped pattern of output response to shocks that has been

observed in the data.5

Finally, the model also generates endogenous limited participation in the government-bonds

market due to the fact that in equilibrium, collateral constraints are binding only for a set of

agents. This implies that only unconstrained agents hold government bonds and can participate in

open-market operations. In this context, the propagation of the money shock is nontrivial because

agents differ not only in whether they are or not credit constrained, but also in their productivity.

This paper offers a novel approach to the propagation of monetary shocks by combining collat-

eral and cash-in-advance constraints, in a world where changes in money supply occur via open-

market operations. As indicated above, other papers in the literature emphasize the role of credit-

market imperfections based on the existence of agency costs, but do not explicitly consider collat-

eral constraints. For instance, Bernanke, Gertler and Gilchrist (1999) embed the agency-cost model

into a dynamic new-keynesian framework that incorporates money, monopolistic competition and

nominal price rigidities. They Þnd that credit-market frictions amplify and propagate shocks in a

quantitatively signiÞcant way. However, in this paper loan contracts are not indexed to interest rate

shocks, and it is not clear how important this nonindexation is in generating such ampliÞcation.

Further, their model is fairly complicated because in order to replicate the hump-shaped behavior

of output, they need to allow for lags in investment and differential credit access across Þrms.

On the other hand, Calstrom and Fuerst (2000) conclude that even though the agency-cost

model delivers substantial propagation of monetary shocks, it does not deliver ampliÞcation. They

introduce money into the real model of agency costs developed in Calstrom and Fuerst (1998).

5See Bernanke, Gertler and Gilchrist (1999), and Carlstrom and Fuerst (2000). We review these two papers below.
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Money enters through a cash-in-advance constraint on household purchases of consumption and

investment goods. Different from Bernanke and Gertler (1989), this paper models entrepreneurs as

long lived. With long-lived borrowers, the net worth becomes a state variable which contributes to

the persistence of shocks.6

Outside of the agency-cost literature, our paper is also related to Cooley and Quadrini (1998).

They calibrate a monetary general equilibrium model with heterogeneous and long-lived Þrms where

Þnancial factors play an important role in production and investment decisions. Firms differ in size

and face borrowing constraints. Small Þrms tend to rely more on external Þnancing, and are more

sensitive to monetary shocks. The response of the economy to monetary shocks is characterized

by greater persistence than is typically found in other business cycle models. However, while

these shocks have only a small impact on aggregate output, they lead to considerable volatility in

Þnancial markets. Since our model is much simpler than Cooley and Quadrini�s, we are able to

obtain analytical results and develop some intuition on the fundamental mechanisms that generate

greater persistence of money shocks.

The reminder of the paper is organized as follows. Section 2 presents the model and characterizes

the steady state. In Section 3 we discuss the dynamics of the model in response to a monetary

shock. The dynamic structure of the model can be summarized by a nonhomogeneous second-

order difference equation in the distribution of capital across agents. We parameterize the model

and provide a numerical illustration of the dynamics in Section 4. Finally, Section 5 concludes.

Technical details omitted in the text are presented in the Appendix.

2 The model

The model for this heterogeneous-agent economy is an extension of the framework of Kiyotaki and

Moore (1997). We keep the main features of their model and introduce money using a cash-in-

6Calstrom and Fuerst (2000) consider two different ways of modeling entrepreneurs, and compare how the dynamics
of the model change under each scenario. In one scenario entrepeneurs are inÞnitely lived but discount the future
more heavily than households. In a second scenario, some entrepreneurs die each period and are replaced by new
births so as to hold steady population. It turns out that when entrepreneurs are inÞnitely lived net worth responds
more sharply to shocks.
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advance (CIA) constraint. There are two goods in this economy: a durable asset (capital), and a

nondurable commodity (output). We focus on the effects of monetary shocks on the distribution of

capital across agents and abstract from capital accumulation. Capital is available in an aggregate

Þxed amount K.

There are two types of private agents in this economy. They are both risk neutral, but operate

different technologies and have distinct discount factors. As will become clear below, around the

steady state the more patient agents become lenders, while the impatient agents become borrowers.

To abbreviate, let us refer to the two types of agents as borrowers and lenders. Both types of agents

face a CIA constraint and a collateral constraint. Finally, the government in this economy has the

only role of controlling money supply through open-market operations.

Events in this model occur as follows. Assume that there are two identical members per house-

hold who carry out different activities. Households enter each period with money balances stored

from the previous period. Production takes place overnight. Early in the morning households

observe the money shock and borrowers repay their outstanding debts in output.7 During the day,

all markets are opened simultaneously. The Þrst member of the household uses the money balances

to make transactions in both the capital and goods markets. He can buy or sell capital, and buy

goods.8 The second member stays at home selling the goods the household has produced, making

transactions in the money market and contracting new debt. Financial transactions must satisfy a

standard budget constraint for the household, as well as a collateral constraint.

2.1 Borrowers

The measure of borrowers is normalized to one. Their technology is given by the production function

yt = (a+ c)kt−1, where kt−1 is their capital stock at the end of last period.
9 They choose sequences

7Borrowers repay their outstanding debts at the beginning of the period to ensure that if the debt is repudiated,
lenders can appropriate the collateral. As in other CIA models, we assume that households value the different
�types� of output produced by other households. This implies that when lenders get paid in output, they will sell it
in exchange for money, and buy other varieties of output.

8Agents selling capital increase their money holdings and can use these balances to buy consumption good the
same day.

9Thus, at any point of time total supply of output is completely predetermined by the distribution of the capital
across the two types in the previous period.
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of consumption {xt}, capital holdings {kt}, nominal money balances {mdt }, private issued bonds
{bt}, and government-bonds purchases {ht} to solve the following problem for given sequences of

output prices {pt}, nominal capital prices {qnt }, nominal interest rates {Rt}, and government-bonds
nominal rates {Rht }

max
∞X
t=0

βtxt

subject to

qnt (kt − kt−1) + ptxt ≤ md
t−1, (1)

md
t +Rtbt−1 + ht ≤ (a+ c)ptkt−1 + bt +R

h
t ht−1, (2)

Rt+1bt ≤ qnt+1kt, (3)

where the nominal interest rate Rt is deÞned as the interest paid on loans made at t− 1. Equation
(1) is the CIA constraint. Money is required for both consumption and investment. Equation (2)

is the budget constraint. The revenues collected through output sales, new bonds issued, and the

proceeds from government-bond holdings must be enough to accumulate new money balances, pay

outstanding debt obligations, and purchase government bonds. Finally, equation (3) corresponds

to the collateral constraint. Borrowing can only take place up to the point where the principal plus

interest is secured by the market value of the capital owned by the household.

It is assumed that only the fraction a of the output is tradable between borrowers and lenders.

The fraction c can be traded only among borrowers, and it can be interpreted as a subsistence

minimum consumption. We refer to this fraction as the nontradable output. The purpose of the

assumption is to avoid the situation in which borrowers continuously postpone consumption.10

In Appendix A we prove that around the steady state of the model the borrower�s optimal

plan is to consume only the nontradable fraction of output, i.e. xt = ckt−1, to borrow up to the

10Kiyotaki and Moore (1997) introduce a similar assumption. As will be explained later on, due to the linearity of
preferences borrowers would like to continuosly postpone consumption in exchange for investment. This is avoided
by introducing a nontradable fraction of output, which we think of as subsistence minimum consumption. Notice
that money is required to buy nontradable output because this type of output can be traded among borrowers. One
can think that households can only produce say fruit of a particular color, but they value fruits of all colors.
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limit imposed by the collateral constraint, and to invest all remaining resources. This implies that

borrowers do not purchase government bonds, i.e. ht = 0, and that the CIA constraint is binding.

These results hold under the following assumption

Assumption 1.

c

a
>
(1− β)
β2

(2− β − β0)
(1− β0) ,

where β0 is the lenders discount factors. This condition is easy to satisfy if the discount factors are

similar and close to 1.11

We can use equations (1), (2) and (3) to obtain

kt =
1

ut

"
(a+ qt)kt−1 +

1

1 + πt

md
t−1

pt−1
− Rt
1 + πt

bt−1

pt−1
− m

d
t

pt

#
,

where πt ≡ pt−pt−1

pt−1
is the inßation between t − 1 and t, and qt ≡ qnt

pt
is the real price of capital.

The term in brackets corresponds to the real net worth of borrowers, which consists of the value

of tradable output, plus the value of capital held from the previous period, plus the real money

balances brought from the previous period, minus the real value of debt repayments, minus money

balances reserved for next period�s purchases. Finally, the users cost of capital for borrowers, ut,

is given by

ut ≡ qt − 1 + πt+1

Rt+1
qt+1. (4)

Thus, equation (??) says that borrowers use all their net worth to Þnance the difference be-

tween the value of their capital qtkt and the amount they can borrow against each unit of capital

qt+1

Rt+1
(1 + πt+1) kt in real terms. Notice that borrowers discount the future value of the capital at

the nominal interest rate. This is the case, as will become clear below, because in equilibrium

borrowers need to borrow in order to buy capital.

11In this case, (2−β−β0)
(1−β0) is some constant near to 2, and (1−β)

β2 is close to zero. Further, in the proposed equilibrium
c
a
is the ratio between the marginal propensity to consume and the marginal propensity to save for borrowers, which

can be assumed to be bounded away from zero.
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2.2 Lenders

The mass of lenders in the economy is n. Lenders differ from borrowers in their production tech-

nology and in the preferences. Lenders use a strictly concave technology, and they are more patient

than borrowers. Their production function is given by yt+1 = G(k
0
t), where G0 > 0, G00 < 0 and

G0(0) =∞. Lenders choose sequences of consumption {x0t}, capital holdings {k0t}, nominal money
balances {m0t}, bonds holdings {b0t}, and government-bonds purchases {h0t}, to solve the following
problem for given sequences of output prices, nominal interest rates, and nominal capital prices

max
∞X
t=0

β
0tx0t

subject to

qnt (k
0
t − k0t−1) + ptx

0
t ≤ md0

t−1, (5)

m0
t +Rtb

0
t−1 + h

0
t ≤ ptG(k0t−1) + b

0
t +R

h
t h
0
t−1, (6)

where the prime denotes a lender�s decision variable. Lenders face a CIA constraint and a budget

constraint. We do not explicitly write a collateral constraint for these agents. Around the steady

state this constraint is not binding due to the fact that lenders determine the interest rate in the

economy, and therefore face an interior solution in bonds. In order to obtain this result, it is

assumed that lenders have a larger discount factor than borrowers.

Assumption 2. β0 > β.

Let β
0tΩt be the Lagrange multiplier associated to the CIA constraint and β

0tΛt the one for the

budget constraint. Then, the Þrst order optimality conditions for the problem above are given by12

x0t : 1 = Ωtpt,

m0t : Λt = β
0Ωt+1,

12These are the Þrst order conditions for interior solutions. Assumptions above guarantee such result.
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b0t : Λt = β
0Rt+1Λt+1,

h0t : Λt = β
0Rht+1Λt+1,

k0t : q
n
t Ωt − β0qnt+1Ωt+1 = β

0Λt+1pt+1G
0(k0t).

It is immediate that the following arbitrage condition holds: Rt = Rht . From the optimality

conditions above is easy to obtain expressions for the equilibrium nominal interest rate and the

users cost of capital for the lenders u0

Rt =
1

β0
pt+1

pt
≡ 1 + πt+1

β0
, (7)

u0t ≡ qt − β0qt+1 =
β02

1 + πt+2
G0(k0t). (8)

Notice that the equilibrium nominal interest rate Rt depends on the inßation rate at t+1. This

is simply due to the CIA constraint. Loans made at t− 1 are repaid at time t in the bonds market.
However, lenders can only spend the returns of the loan at time t+ 1, due to the CIA constraint.

Thus, lenders must be compensated for any inßation at time t+ 1.

Equation (8) states that lenders equate their users cost of capital with the present value of its

marginal product. Since in equilibrium these agents are not credit constrained, the users cost is

simply the difference between the cost of buying capital today and the discounted value of selling

capital tomorrow. Notice that, in contrast with the borrowers, the lenders� users cost is not affected

by inßation since the proceeds of selling the capital can be consumed or invested immediately,

without requiring previous accumulation of cash.

2.3 Government

The government controls money supply in this economy through open-market operations (OMOs),

which take place in the bonds market. Let Hs
t be the nominal supply of government-issued bonds.
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The stock of money supply Ms
t in this economy is given by

Ms
t =M

s
t−1 −Hs

t +RtH
s
t−1,

where

Hs
t = τH

s
t−1,

so that at time t the government withdraws an amount τHs
t−1 of money and injects RtH

s
t−1 back

into the economy. There are two comments in order. First, we choose a simple law of motion

for government bonds Hs
t . This simplicity is convenient for our purpose of analyzing the effects

of a one-time money shock. Notice that following this shock, unless τ < 1 for all t, government

bonds may exhibit an explosive path. To avoid this, any one-time money expansion through OMOs

must be eventually followed by a �policy reversal� or �sterilization� that guarantees convergence

back to the steady state. In particular, the size of τ determines the speed at which such monetary

contraction takes place. We are aware that since credit markets are imperfect in this economy,

real effects of monetary shocks depend on the path of government debt. Although we choose a

parsimonious law of motion for Hs
t , we will discuss below the role of the size of τ in our results, as

well as other paths for government debt.

Second, notice that we do not consider a rebate of the inßationary tax. Since some agents

face corner solutions, such rebate cannot be lump-sum in general. For example, simple helicopter

drops redistribute wealth, and affect agents decisions. Since here we want to focus on the effects of

the �pure monetary shock�, we do not include any rebates in the model. Tax rebates in fact may

reinforce the results of the paper.13

13The intuition for this result is simple. Suppose the economy starts off at the steady state and there is a one-time
money expansion. Assume that borrowers were to receive a money transfer that compensates them for the inßationary
tax in an amount higher than their optimal consumption. This may happen, for example, with helicopter drops. In
this case, borrowers will buy capital with the extra resources, and next period output would increase. This reinforces
our results because, as will be shown below, in this economy monetary expansions generate booms. More details on
this are available from the authors upon request.
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2.4 Aggregate resource constraints

Let Kt, K
0
t, Bt, B

0
t, Ht, H

0
t, M

d
t , M

d0
t be the aggregate variables corresponding to the lowercase

individual variables. There are Þve markets in the model: consumption goods, capital, money,

private bonds, and public bonds. By Walras� Law one needs only to consider four of them. The

equilibrium conditions to clear the last four markets are

Ms
t =M

d
t +M

d0
t = m

d
t + nm

d0
t ,

Bt = bt = −B0t = −nb0t,

K = Kt +K
0
t = kt + nk

0
t,

and since Ht = 0,

H 0
t = nh

0
t = H

s
t .

Using the market clearing conditions above along with equations (6) and (2) we obtain

Ms
t +H

s
t −RtHs

t−1 ≡Ms
t−1 = pt

·
(a+ c)Kt−1 + nG

µ
K −Kt−1

n

¶¸
, (9)

which is just the quantity equation.

2.5 Steady state

DeÞne a steady state where all real variables are constant, and all nominal variables grow at the

constant rate π, which is the steady-state growth rate of money supply. From the law of motion of

government bonds it follows that to keep government�s debt H
s

p constant in real terms, it must be

the case that τ = 1 + π. Thus, if τ > 1 then π > 0, while for τ ≤ 1, π = 0.
Let d be the steady-state government bonds to money supply ratio, i.e., d ≡ Hs

Ms which can also

be seen as the public debt to money ratio. Using the law of motion of money supply and the fact
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that the steady-state nominal interest rate is R = 1+π
β0 we obtain

d ≡ Hs

Ms
=

πβ0

(1 + π)
¡
1− β0¢ ,

which implies that when π = 0, then Hs = 0.

Next, it is easy to see that the steady-state users cost of capital for lenders and borrowers is the

same: u = u0 = q(1− β0). Further, since under the proposed equilibrium the collateral constraint

(3) binds for the borrowers, we can use R, u0 and the budget constraint of these agents (2) to

get: u = a + c − Md

pK∗ , where K∗ is the borrowers� steady-state capital level. Next, using the CIA

constraint (1) one obtains: Md

p = cK∗ (1 + π), i.e. borrowers� real money balances exactly cover

their consumption adjusted by inßation.

Combining the last two expressions we obtain: u = a− πc. Notice that if π = 0, we obtain the
intuitive results that M

d

p = cK∗, and u0 = u = a. This last equation means in a steady state with

no money growth, the users cost equals the tradable marginal product of capital.

Finally, using equation (8), we obtain an implicit solution K∗

G0
µ
K −K∗

n

¶
=
1 + π

(β0)2
(a− πc) (10)

The equation above, along with Assumption 1 imply that in equilibrium borrowers have higher

marginal product of capital than lenders.

The following proposition summarizes the main features of the steady state.

Propostion 1. Under Assumptions 1 and 2,

(i) if G0
¡
K/n

¢
< 1+π

(β0)2 (a− πc) there exists a unique steady state;

(ii) ∂K∗
∂π 6= 0 for (1 + 2π)c 6= a, so that inßation affects the steady-state output Y ∗.

Proof: The existence of a unique steady state level K∗ is guaranteed from the properties of the

production function G(.). It is easy to see that the left-hand side of equation (10) is con-

tinuous and strictly increasing in K, while the right-hand side is a constant. If G0
¡
K/n

¢
<
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1+π
(β0)2 (a− πc) the left and right-hand side cross only once. Figure 1 illustrates the determina-
tion of the steady state. The second property follows easily.

It is interesting that in the long run money is not superneutral as indicated by Proposition 1,

(ii). The intuition for this result is as follows. Inßation acts as a tax for all agents, but in the

margin it affects differently borrowers and lenders. Higher inßation decreases the marginal cost

of investing for both types, i.e. it decreases the users cost of capital. For a given K∗, borrowers

net worth decreases with higher inßation because they must demand more money to sustain their

consumption, cK∗. Further, since borrowers are credit constrained, they are in a corner solution.

In contrast, lenders have an interior solution and since u has decreased, their marginal beneÞt of

investing needs to decrease, which can only happen if lenders� capital holdings, K −K∗, increase.

Thus, money is not superneutral due to the asymmetric effect of inßation on constrained and

unconstrained agents.14

3 Dynamics

To simplify the analysis, we only present the dynamics of the model around the steady state,

and assume zero steady-state inßation, π = 0. The solution for the case π > 0 is summarized in

Appendix D. We also assume that β0 is close to 1. This occurs, for example, if the length of the

periods is small. This assumption allows as to obtain some sharp analytical results, but numerical

simulations conÞrm that the main results hold even if β0 is far from 1. Let gt ≡ Ms
t

Ms
t−1
, i.e. gt is

one plus growth rate of money supply, vt ≡ pt
pt−1

, i.e. vt is one plus the inßation rate. Thus, in the

steady state, g = v = 1 + π. In general, let bxt = xt−x∗
x∗ denote the rate of deviation of a variable x

from its steady state value.

14If the borrowers� propensity to consume c
a+c

is larger than 0.5 then higher inßation reduces output, a result
consistent with Abel (1984). However, if money is injected via helicopter drops rather than via OMOs, higher steady-
state inßation may have the opposite results, i.e. higher π implies larger K∗ and larger Y ∗. This occurs if borrowers
receive a fraction of the transfer higher than their steady-state consumption share, α ≡ cK∗

Y ∗ . In this case, borrowers
are overcompensated for the inßationary tax and, as a result, they can afford to buy additional capital with the extra
resources. In addition, inßation increases the marginal cost of investing, u, but lenders are particularly hurt because
they face and interior solution.
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Assume that the economy starts off at the steady state, and that an unexpected one-time

decrease in the growth rate of money ε < 0 occurs at t = 0, i.e. bg0 =
ε

1+π . Since the monetary

contraction occurs through OMOs, H0 increases above its steady state level (H0 > 0). According

with the law of motion for government bonds, Hs
t = τH

s
t−1, Ht gradually returns to zero to avoid

changes in the long term inßation rate. Thus, the one-time money contraction at t = 0 is followed

by a monetary expansion, i.e. by a �sterilization policy�. In particular, the size of τ < 1 determines

the speed at which such monetary expansion takes place.

Using the law of motion of money supply and bonds, one can obtain the following path of money

growth15

bg0 = −∂d0,

and

bgt = −(R− τ)τ t−1bg0.

Notice that this path is fully determined by the exogenous initial shock, and converges to zero

at a rate determined by the size of τ . In particular, a larger τ implies a smoother sterilization of

the monetary contraction.

To complete the characterization of the dynamics of the model, we need to solve for the paths

of bvt, bqt and bKt. Linearizing equation (9) yields
bvt = bgt−1 − ρ

³ bKt−1 − bKt−2

´
,

where ρ = (a+ c−G0
) K∗
Ms/p . Notice that bv0 = 0 because both output and the money supply used

15Here we compute the absolute deviations of the government-debt to money ratio ∂d0 instead of the percentage
deviations from the steady state because d = 0. The Þrst expresion follows from linearizing the stationary version of
the equation Ms

0 =M
s
−1 −Hs

0 . For t > 1, combine the law of motion for Hs
t and M

s
t , transform variables to render

them stationary, and linearize to obtain bgt = (R−τ)∂dt−1. Next, use the law of motion of government debt to obtain
∂dt = τ∂dt−1 = τ

t∂d0, which together with the previous expresion implies that bgt = (R−τ)τ t−1∂d0 = −(R−τ)τ t−1bg0.

15



for transactions in the goods market are predetermined. Next, linearizing equation (8) we obtain

bqt − β0bqt+1 =
¡
1− β0¢ µ

1

η
− ρ

¶ bKt + ¡
1− β0¢ ρ bKt+1 − (1− β0)bgt+1,

where 1
η = −G00K∗

nG0 > 0.16 The equation above describes the forward-looking nature of capital

prices, i.e. the price of capital at t = 0 depends on the whole path of capital distributions across

types.

Finally, using the three expressions above, as well as the linearized versions of equations (1), (2)

and (3), it is easy to show that bKt satisÞes the following non-homogeneous second order difference
equation for t > 2

θ0
bKt = θ1

bKt−1 + θ2
bKt−2 + µ0τ

t−2bg0, (11)

where θ0, θ1, θ2,and µ0 are constants that depend on steady-state variables (see Appendix B). It

can be shown that for β0 close to 1, these constants are given by: θ0 = 1 − ρ > 0, θ1 ≈ 2θ0,

θ2 ≈ −θ0, and µ0 ≈ −(1− τ)2. This last term reßects that a money injection at t = 0 generates a

negative trend in Kt as a result of the sterilization that takes place after the injection.

The previous equation summarizes the equilibrium dynamics of the model. It can be shown

that bKt exhibits persistent and dampening cycles, as summarized in the following proposition
Proposition 2. For β0 sufficiently close to 1 and π = 0,

(i) the general solution to (11) is

bKt = Art cos (ωt− φ) +Aττ tbg0 (12)

where A and φ are constants, r =
p−θ2/θ0, ω = cos

−1
³
θ1/θ0

2r

´
, and Aτ =

µ0
θ0τ2−θ1τ−θ2

.17

(ii) r is close to, but less than, 1, and ω is close to, but larger than, zero.

16The term 1
η
can be rewritten as: 1

η
= −G00(K−K∗)/n

G0
K∗

K−K∗ , and so it can be interpreted as a measure of the
elasticity of the marginal product of borrowers� capital, weighted by the ratio of borrowers to lenders� capital in the
steady state.

17Note that lim
β0→1

Aτ = − 1
(1−ρ)

.
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Proof: See Appendix B.

Corollary. bKt exhibits persistent and dampening cycles.
To fully characterize the equilibrium solution, we require two additional conditions on the

trajectory of bKt. For reasons that we explain brießy, monetary injections via OMOs imply bK0 = 0.

Thus, the equilibrium path of the distribution of capital can be completely characterized in terms

of bK1. Using these two conditions, we obtain

A =
bK1 −Aττbg0

cos (ω − φ) and cos (φ) = −
Aτbg0

A
.

Before proceeding to study the effects of a monetary shock, bg0, it is useful to analyze Þrst the

simpler case of a real shock. In particular, suppose bg0 = 0, but bK1 > 0. This corresponds to

an exogenous redistribution of capital. This exercise illustrates that our monetary model retains

the powerful ampliÞcation mechanism displayed by the the real-economy version of Kiyotaki and

Moore (1997). The following lemma presents this result

Lemma. bKt attains its maximum at t∗ = φ
ω . In addition, lim

β0→1

bKt∗bK1
=∞.

Proof: When bg0 = 0, then A =
bK1

cos(ω−φ) , cos (−φ) = 0, and bKt = bK1
cos(ω−φ)r

t cos (ωt− φ). There-
fore, bKt attains its maximum when cos (ωt∗ − φ) = 1, or t∗ = φ/ω. Thus,

bKt∗ = bK1

cos (ω − φ)r
φ/ω

We have previously noticed that lim
β0→1

ω = 0, and lim
β0→1

r = 1. Thus, in order to show that

lim
β0→1

bKt∗bK1
= ∞, we only need to prove that lim

β0→1
rφ/ω = 1, or equivalently, that , lim

β0→1

ln r
ω = 0.

This can be easily shown by using L�Hopital rule, and the deÞnitions of r and ω.

Let us turn now to the monetary shock. As we already mentioned in this case bK0 = 0. This

result follows from the following four facts: i) the money contraction occurs in the bonds market;

ii) the shopper�s only resources are the money balances accumulated during the previous period

17



and the land holdings; iii) borrowers� consumption is predetermined, and as a consequence, lenders

consumption is also predetermined; iv) the nominal price of consumption at the moment of the

shock does not change. These facts together imply that at the moment of the shock households

cannot change their investment level.

We now solve for bK1 following a monetary shock at t = 0. For this purpose, combine (1), (2),

and (3) to obtain

q1(K1 −K0) + cK0 =
a+ c

1 + π1
K−1 +

1

1 + π1

B0

p0
− R0

(1 + π1) (1 + π0)

B−1

p−1
, (13)

where B−1

p−1
is the aggregate steady-state level of debt in real terms, and K−1 corresponds to the

borrowers� steady-state capital level. We consider two relevant cases at this point: in one debt is

fully indexed, while in the other debt can only be partially indexed. A fully-indexed contract states

that borrowers must compensate lenders for any unexpected inßation. Thus, debt repayments

at time zero are immune to period one�s inßation π1, i.e., R0B−1 =
1+π1

β0 B−1. Such contract

is feasible in our model only if such repayments are lower than the value of the collateral, i.e.,

1+π1

β0
B−1

p−1
≤ qn0

p−1
K−1 =

qn0
p0
K−1 = q0K−1. Otherwise, borrowers will repudiate the contract, and will

be able to renegotiate the debt down to the market value of the collateral.18 This is the case we call

partial indexation of debt contracts because following a monetary shock, debt can only be indexed

up to the market value of the collateral. We now discuss these two cases separately.

18The model of debt implicit in our model is the same as in Kiyotaki and Moore (1997). Collateral constraints
arise in this economy because of the following two assumptions. The Þrst is that once a borrower has started to
produce with capital Kt, he is the only one with the skill to complete production in period t+1. The second is that
the borrower�s human capital is inalienable. These assumptions guarantee that if a borrower ever repudiates his debt
contract, then he is able to renegotiate the debt down to the market value of the collateral. See Kiyotaki and Moore
(1997), page 217.
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3.1 Partial indexation

When debt is partially indexed, R0 in (13) is not the equilibrium value. Rather, the term R0
B−1

p−1
is

replaced by the market value of the collateral q0K−1. Linearizing equation (13) in this case yields

bK1 =
1

1− β0ρ
h
β0bq1 − bq0 +

³
1− rh

´
ε+ β0(R− τ)bg0

i
.

It turns out that in this case, the solution for bK1 is simple
19

bK1 =
1

θ0

h
(1− rh)− ¡

1− 2β0¢ (R− τ)i bg0. (14)

Since the expression above is algebraically simple, we can use it to analyze whether following

the one-time monetary expansion in period t = 0, it is the case that bK1 > 0 and so bY2 > 0. Further,

if bK2 > bK1, since the model exhibits persistent dampening cycles, we should observe a boom in the

economic activity as borrowers� capital level increases. Proposition 3 summarizes the conditions

under which these results hold. Let α ≡ cK∗
Y ∗ < 1 be the fraction of steady-state output consumed

by the borrowers.

Proposition 3. For β0 sufficiently close to 1 and π = 0,

(i) following a one-time increase in the money growth rate ε > 0 at t = 0, borrowers increase

their capital holdings in period t = 1, i.e. bK1 > 0. Further, the lower τ , the larger bK1 is.

(ii) if τ is sufficiently close to 1 then bK2 > bK1, while if τ → 0 then a sufficient condition forbK2 > bK1 is that α >
1
3 .

Proof: (i) When β0 → 1 it is the case that ρ → α and that rh → 0. Then, θ0 → (1 − α). Thus,
when β0 → 1 from equation (14) we have that: bK1 → 2−τ

1−αbg0, and since τ < 1 and bg0 > 0

it follows that bK1 > 0. Notice that the more slowly government debt returns to the steady

state, i.e. the larger τ , the lower the multiplier of monetary policy in the Þrst period.

19Under partial indexation, the solution for bK1 is the same as that implied by the non-homogeneous second order
differential equation for t = 1 and bK0 = 0.
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(ii) From equation (11) we have: bK2 =
θ1
θ0

bK1 +
µ0
θ0

bg0, and since when β
0 → 1 we have that R→ 1

and so µ0 → −(1 − τ)2, then: bK2 → 1
1−α

h
2−τ
1−α − (1− τ)2

i bg0. If τ → 1, then bK2 → 1
1−α bK1

and so bK2 > bK1. On the other hand, if τ → 0, then bK2 →
h

1
1−α − 1

2

i bK1, so that bK2 > bK1 if

α > 1
3 .

It is surprising that in this model, a monetary expansion generates a boom in output. Since due

to the endogenous limited participation lenders are the ones handing in the cash to the government,

one may guess that output should decrease. However, as shown in Proposition 3, this does not

happen. It is interesting to highlight the mechanisms behind this result. For this analysis, it is

useful to rewrite equation (13) as

q1(K1 −K0) + cK0 =
a+ c

1 + π1
K−1 +

β0q1K0

1 + π2
− R0

(1 + π1) (1 + π0)

B−1

p−1
,

where the left-hand side represents consumption and investment in t = 1, and the right-hand side

are the real balances brought from period t = 0. In particular, the Þrst term on the right-hand

side are output sales; the second term is new debt contracted in t = 0; and the third term is the

repayment for debt contracted in t = −1. Notice that consumption in t = 1 is Þxed because K0

remains at the steady-state level. Thus, the only way borrowers increase their investment in capital

K1, is if the right-hand side of the equation is large than its steady-state value.

First, notice that due to the monetary expansion bg0 > 0, the level of prices in t = 1 increases, so

that π1 increases (bv1 > 0). This hurts the borrowers because the Þrst term on the right-hand side

a+c
1+π1

K−1 decreases. However, this decrease is more than compensated by an increase in
β0q1K0

1+π2
.

This term increases because π2 decreases (bv2 < 0). In fact, in the general equilibrium of the model,

an increase in the borrowers� capital level K1 is consistent with a decrease in π2. This is so because

when borrowers increase their capital, then in the following period output increases (bY2 > 0), and

prices decrease (bv2 < 0). Further, this decrease in prices can be reinforced if the government starts

reversing the monetary expansion, i.e. if bg1 < 0. In fact, as indicated by part (i) in Proposition 3, a

lower τ implies a higher bK1, precisely because a lower τ is equivalent to a larger money contraction
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in t = 1 and a larger price decrease in t = 2.

Finally, since the third term on the right-hand side represents the repayment for debt contracted

in t = −1, it indicates the role of debt indexation. In particular, under full indexation, since
R0 =

1+π1

β0 , then this term would remain at its steady-state value. However, since under partial

indexation R0 increases by less than the increase in 1 + π1, then this term would decrease. This

represents a transfer of wealth from creditors to debtors, so that under partial indexation borrowers

have even more resources to buy capital. In fact, as will be shown in numerical exercises, under

partial indexation the ampliÞcation of the monetary expansion is larger than what it would be if

full indexation was possible.20

Part (ii) in Proposition 3 indicates the role of τ in the strength of the real effects following the

monetary expansion. In fact, when the sterilization policy is smooth, i.e. when τ is large, borrowers

further increase their capital stock in t = 2. This implies that they would be able to borrow more

against their collateral, and their capital holdings will increase for a number of periods after the

shock. This occurs because when the sterilization is smooth, then the government contracts the

money supply in small amounts during several periods, and so the nominal interest rate remains

below the steady state, i.e. bRt < 0 for a longer time. In contrast, when the monetary expansion is
reverted quickly, i.e. when τ → 0, this dynamic pattern for capital may not necessarily hold, unless

further conditions are imposed.

3.2 Full indexation

The collateral constraint implies that there is an asymmetry between monetary expansions and

contractions. A monetary expansion increases the price of the collateral by less than period one�s

inßation π1 so that
1+π1

β0
B−1

p−1
> q0K−1, so that full indexation is not feasible.

21 In contrast, a

monetary contraction drives down the price of the collateral by less than period one�s deßation so

that 1+π1

β0
B−1

p−1
< q0K−1. In this case fully-indexed contracts are feasible.

20The redistribution of wealth between debtors and creditors following a money shock has been emphasized by
Fisher (1933).

21See numerical examples below.
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If debt is fully indexed, linearization of equation (13) when π = 0 yields

bK1 =
1

1− β0ρ
h
β0bq1 +

³
1− β0τ − rh

´
ε
i
. (15)

To solve for bK1 we Þrst need to solve for bq1, which in turn depends on the whole sequence { bKt}.
Solving equation (??) forward we can obtain a solution for bq0 and bq1, as shown in Appendix C.

The expression that relates bq1 with bK1 is algebraically complicated.

We can use equation (15) to gain some intuition on the real effects of a monetary contraction

under full indexation. Suppose initially that the real price of capital remains unchanged after the

monetary shock so that bq1 = 0. In this case, the real effects of the shock depend on the size of

τ . SpeciÞcally, if τ < τ ≡ 1
β0

¡
1− rh¢

, then K1, and also Y2, move in the same direction as the

monetary shock. This is generally the case because β0 is close to 1, case in which τ is close to 1

too. Finally, this change in the distribution of capital toward the less productive agents induces an

decrease in the price of capital, bq1 < 0, which reinforces the initial effect of the shock. Therefore,

a one-time monetary contraction under full indexation generally induces a redistribution of capital

towards lenders, and decreases output. The following section illustrates the dynamics of the model

with a numerical example.

4 Numerical examples

To illustrate the magnitude and persistence of monetary shocks in this economy, we assign values

to the parameters of the economy and simulate the effects of a one-time 1% increase in the growth

rate of money. We choose the parameters of the model to satisfy the assumptions imposed. It is

worth mentioning that we were able to verify the predictions presented above for a large set of

parameters. We set β0 = 0.995 to simulate a time period equal to a month. Note that β0 is close

enough to 1, in line with many of the proofs presented above.

We normalize to unity the total stock of capital, i.e. K = 1, as well as the nontradable fraction

of output, i.e. c = 1. The production technology for lenders is: G(K) = B(K − K)γ , where
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B is also normalized to unity. We set γ = 0.5 and perform sensitivity analysis. We set n = 3,

which implies that in this economy only 25% of the agents are constrained. Finally, we choose a

steady-state capital distribution of K = 0.25, i.e. lenders hold 25% of the total capital.

Figure 2 displays the effects of a one-time increase of 1% in the growth rate of money when

π = 0 and τ = 0.9. Recall that in this scenario there is partial indexation in equilibrium. The

Þgure shows percentage deviations from steady-state values. Since τ is large, the subsequent money

contraction is smooth and government bonds go back gradually to their steady-state Hs = 0. As

is shown in the graph, this policy generates ample and persistent dampening cycles. The cycle

starts with an increase in borrowers� capital holdings, as well as an increase in output. The peak

of the cycle is reached about 50 months after the shock, when borrowers� capital is 30% above the

steady state, while output is around 3.5% higher. It takes about 100 months before both variables

reach levels below the steady state. Notice also that the minimum points reached are only 15% for

capital and 2% for output, which are lower than the absolute value of the maximum points. Since

the collateral constraint binds, real borrowers� debt mimics the behavior of capital.

These results emerge from the combination of two mechanisms that affect both sides of the

collateral constraint: one is the asset-price effect, and the other is the interest-rate effect. First,

there is an increase in real price of capital that increases the value of the collateral for a number of

periods. This increase in the asset price comes from the fact that to clear the capital market, the

users cost for lenders has to increase. Notice that the real price of capital is above the steady state

for 50 months, which is exactly the time at which capital and bonds reach their peaks. Second,

although the nominal interest rate increases in the period of the shock, it then decreases above

the steady state and remains low for around 50 months. This is consistent with the behavior of

the inßation rate. Further, notice that the nominal rate is below the steady state for a number of

periods, which indicates that this model can generate a persistent liquidity effect following a money

expansion.

Figure 3 replicates the same experiment of Figure 2, but with τ = 0.1. As observed in the

Þgure, in this case the policy reversal after the shock is faster. Otherwise, the results are similar
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to the ones in Figure 2. One main difference though is that with a low τ , the multiplier for capital

and output during the Þrst months is much larger than when τ is high. This large multiplier is

associated with the larger decrease in inßation in period t = 2, as observed in the graph. In fact, in

the experiment presented here this multiplier almost doubles when going from τ = 0.9 to τ = 0.1.

In particular, bY2 = 0.27% when τ = 0.1, while it is 0.15% when τ = 0.9. However, this gap closes

after some months. In fact when τ = 0.1 the peak occurs at bY50 = 3.5%, while it is 3.53% when

τ = 0.9.

To illustrate the case when full indexation is effective, Figure 4 displays the effects of a one-time

decrease of 1% in the growth rate of money when π = 0 and τ = 0.9. Recall that full indexation

with no renegotiation can only occur when the borrower does not have an incentive to repudiate

the debt contract. In this model, this occurs when there is a money contraction. In this case,

the model still exhibits persistence, but the amplitude of the effects is much smaller than the ones

observed in Figures 1 and 2. In fact, output reaches a trough of only about −0.1%.22

Finally, to illustrate the case when π 6= 0, Figure 5 displays the effects of a one-time increase
of 1% in the growth rate of money when π = 0.4% per month, which corresponds to a steady-

state annual inßation rate of about 5%. In this experiment, the government chooses a monetary

contraction in period T = 5 that allows for the transversality condition of government debt to

hold.23 Results are similar to those of Figure 2, except that now the peak in output is of a

magnitude of 2% above the steady state. In this case, to get the same output peak of Figure 2 we

would need a one-time money expansion of 1.6%. In general, when π > 0 we still obtain highly

persistent effects, but the magnitude varies somewhat depending on the government�s choice of T .24

Kochelakota (2000) concludes that the magnitude of the ampliÞcation of shocks in economies

22In this model expansions are larger than contractions. This asymmetry is the opposite to that found by Kocher-
lakota (2000). The reason for the difference is that here collateral constraints are always binding for borrowers, while
this is not the case in Kocherlakota (2000). Evidence on the U.S. unemployment rate shows downward movements
that are sharper and quicker than upward movements. However, as shown by Falk (1986) this evidence is not com-
pelling for real gross national product, investment and productivity in the U.S., as well as for industrial production
in a sample of other countries.

23See details on this in Appendix D.
24When π 6= 0, if bg1 = 0, it is possible that bK1 > 0. This is so because as explained in the text, one important

condition to obtain bK1 < 0 following a one-time monetary contraction is that bv2 > 0. Since bg1 > 0 contributes to
have bv2 > 0, then it may be possible that with bg1 = 0 the increase in v2 is not enough to achieve bK1 < 0.
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with credit constraints is particularly sensitive to the value of the factor shares in the production

function. Although γ is not the capital share in our model because here we have agents with

heterogeneous production functions, we perform sensitive analysis for this parameter. In particular,

we Þnd that for the experiment in Figure 2, as γ increases, the amplitude of the expansion also

increases. For instance, if γ = 0.8, the peak observed in output is around 6.6%. Also, if γ = 0.1,

then output increases up to 1.6%, which is still larger than the size of the shock (1% increase in

money supply). Thus, although we also Þnd that ampliÞcation varies with γ, future work would

need to involve careful calibration of the model economy. Our only purpose here is to illustrate the

dynamics generated by our model following a one-time money shock.

5 Concluding comments

This paper presents a novel approach to the propagation of monetary shocks by combining collateral

and cash-in-advance constraints, in a world where changes in money supply occur via open-market

operations. We Þnd that a one-time exogenous monetary shock generates persistent movements in

aggregate output, whose amplitude depends on the degree of debt indexation. Monetary expansions

can trigger a large upward movement in output, while monetary contractions give rise to a smaller

downward movement. This asymmetry occurs because full indexation of debt contracts can only be

effective following a monetary contraction. In contrast, following a monetary expansion indexation

can only be partial because debtors end up paying back just the market value of the collateral.

Due to the existence of both cash-in-advance and collateral constraints, monetary shocks trigger a

highly persistent dampening cycle rather than a smoothly declining deviation.

One of the limitations of the model presented here is that since the capital stock is Þxed, we

can only observe redistribution of capital, but not comovements in output and investment. Also,

the model we used here is simple and stylized, and some of the functional forms are not general.

For instance, utility functions for borrowers and lenders are linear. Even though Kiyotaki (1998)

has shown that persistence and ampliÞcation of shocks in the real-economy model of Kiyotaki

and Moore (1997) would still hold with concave utility, in future work we plan to explore the
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implications of changes in functional forms in our model. Finally, it would be interesting, once we

modify some of the functional forms, to perform a more careful calibration. We plan to modify

the model to resolve some of these limitations in future research. In spite of these limitations, our

model is simple enough to provide insights on how credit-market imperfections work in a monetary

economy where the asset that serves as a collateral is also a factor of production.

26



References

[1] Abel, A (1985). Dynamic Behavior of Capital Accumulation in a Cash-in-Advance Model.
Journal of Monetary Economics, 16, pp. 55-71.

[2] Bernanke, B. and M. Gertler (1989). Agency Costs, Net Worth, and Business Fluctuations.
American Economic Review, 79, March, 14-31.

[3] Bernanke, B., M. Gertler and S. Gilchrist (1999). The Financial Accelarator in a Quantitative
Business Cycle Framework. Handbook of Macroeconomics, Vol 1, edited by J.B. Taylor and
M. Woodford, 1341-1393.

[4] Carlstrom, C. and T. Fuerst (2000). Monetary Shocks, Agency Costs and Business Cycles.
Carnegie-Rochester Public Policy Conference, April 14-15.

[5] Carlstrom, C. and T. Fuerst (1997). Agency Costs, Net Worth, and Business Fluctuations: A
Computable General Equilibrium Analysis. American Economic Review, 87, December, 893-
910.

[6] Cooley, T. and G. Hansen (1998). The role of monetary shocks in equilibrium business cycle
theory: Three examples. European Economic Review, 42, 605-617.

[7] Cooley, T. and V. Quadrini (1998). Monetary Policy and The Financial Decisions of Firms.
University of Rochester, Mimeo.

[8] Falk, B. (1986). Further evidence on the asymmetric behavior of economic time series over the
business cycle. Journal of Political Economy, 94, October.

[9] Fisher, I. (1933). The Debt-Deßation Theory of Great Depressions. Econometrica, Vol.1, Issue
4, 337-357.

[10] Fuerst, T. (1995). Monetary and Financial Interactions in the Business Cycles. Journal of
Money, Credit and Banking, Vol.27, No.4, November, Part 2.

[11] Kiyotaki, N. and J. Moore (1997). Credit Cycles. Journal of Political Economy, 105, No.2,
211-248.

[12] Kiyotaki, N.(1998). Credit and Business Cycles. The Japanese Economic Review, Vol. 49, No.
1, March.

[13] Kocherlakota, N. (2000). Creating Business Cycles Through Credit Constraints. Federal Re-
serve Bank of Minneapolis Quarterly Review, Vol. 24, No. 3, Summer.

[14] Scheinkman, J. and L. Weiss (1986). Borrowing Constraints and Aggregate Economic Activity.
Econometrica, 54, Issue 1, January, 23-46.

27



A Proof of optimal solution for borrowers

We need to prove the claim that borrowers� optimal plan is to consume only the nontradable fraction
of output, i.e. xt = cKt−1, to borrow up to the limit and to invest all remaining resources. To
do that we compare the utility achieved under the different alternative plans. The Þrst one is to
follow the proposed investment path. Alternatively, borrowers can consume or save. For these last
two alternatives, we only consider single deviations from the investment path at date t = 0.25

Consider the borrower�s marginal utility of investing p0 dollars given that all aggregate variables
remain unchanged at their steady state levels. For simplicity let π = 0. In steady state, we have
R = 1/β0and q = a/(1 − β0). Therefore, for given prices and aggregate variables at their steady
state levels, equations (1), (2) and (3) can be rewritten as:

qkt + (c− q)kt−1 =
mdt−1

pt−1
(A1)

bt
pt
= qβ0kt (A2)

md
t

pt
= (a+ c)kt−1 +

bt
pt
−Rbt−1

pt−1
. (A3)

Replacing the borrowing constraint into the budget constraint,

mdt
pt
= (a+ c− q)kt−1 + qβ

0kt. (A4)

Substituting (A4) into (A1) and solving for kt:

kt =

·
β0 + 1− c

q

¸
kt−1 +

·
a+ c

q
− 1

¸
kt−2. (A5)

¿From the steady state value of q we have that
³
β0 + 1− c

q

´
= 2 − (1 − β0) − c

q = 2 − a+c
q

= 2− rh. Let rh ≡ a+c
q . We can rewrite (A5) as:

kt =
³
2− rh

´
kt−1 + (r

h − 1)kt−2 (A6)

It is easy to check that the roots of the associated characteristic polynomial are 1 and 1− rh.
Therefore, kt can be expressed as:

kt = A1 +A2(1− rh)t. (A7)

where constants A1 and A1 need to be determined. Under the proposed guess, the optimal strategy
for borrowers is to use the extra p0 dollars to invest in capital. With this amount, the borrower

25Following the logic of Kiyotaki and Moore (1997), �we appeal to the principle of unimprovability�, which states
that to prove that our proposed strategy of investing all the extra p0 dollars is optimal, we need to consider only
single deviations from this plan at date t = 0.
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can buy k0 = 1/q units of capital at t = 0. This allows him to borrow qβ0k0 = β
0 additional units

of output.26 At t = 1, consumption increases by ck0 units so that from the additional resources,

β0 − c/q can be used to buy capital. Therefore, investment is given by: k1 − k0 =
β0−c/q
q , so that

k1 = k0(β
0− c/q+1).With these two initial values (k0,k1), constants A1and A2 can be determined

as follows:

A2 =
k0 − k1

rh
and A1 =

1

rh

h
k1 − (1− rh)k0

i
.

Utility under the investment path is given by:

U inv = βc
∞X
t=0

βtkt

= βc
∞X
t=0

βt
h
A1 +A2(1− rh)t

i
= cA1

β

1− β + cA2
β

1− β(1− rh)

=
c

q

β

1− β
1

1− β(1− rh) .

To show that higher utility is attained in the investment path than in the consumption path,
we need to Þnd conditions under which:

c

q

β

1− β
1

1− β(1− rh) > 1

We can transform the expression above to obtain:

c

a
>
(1− β)
β

(1− β)
(1− β0) + (1− β)

a+ c

a
.

Since (1−β)
β < (1−β)

β2 then a sufficient condition for the utility from the investment path being

higher is:
c

a
>
(1− β)
β2

·
(1− β)
(1− β0) + 1

¸
which corresponds to Assumption 2 in the text.

To complete the proof we need to show that higher utility is attained in the investment path
than in the saving path. Borrowers can save the p0 dollars and use the return R to commence a
strategy of maximum levered investment from date t = 1 onwards. Then, all we need to show is
that the returns from saving p0 dollars in period t = 0 are lower than the return from investing at
t = 0. Since from Assumption 1, β0 > β, using Assumption 2 is easy to show that β0 > a

a+c . Thus,

26Note that p0 dollars are equivalent to one unit of output at t = 0 prices. Also, by borrowing extra b0 = β
0, the

agent can demand extra β0 real money balances in the third subperiod of t = 0, in order to buy additional capital in
the Þrst subperiod of t = 1.
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1 + rh = 1 +
a+ c

q
= 1 +

(a+ c)(1− β0)
a

> 1 +
1− β0
β0

=
1

β0
= R.

Therefore, 1+ rh > R , which guarantees that the investment path yields more utility than the
alternative savings path. This completes the proof that the proposed solution is an equilibrium. We
have presented an analytical proof for π = 0. For π 6= 0 it is not possible to provide an analytical
proof. However, for all the numerical simulations in the text, we have veriÞed in the computer that
the decision rules for the borrower are optimal.

B Proof of Proposition 2

Let π = 0 so that in steady state u = a. Equation (11) in the text reads:

θ0
bKt = θ1

bKt−1 + θ2
bKt−2 + µ0τ

t−2bg0 (B1)

where:
θ0 = 1 + (1− 2β0)ρ

θ1 = (1− rh)(1− ρ) + 1 + (1− 2β0)ρ− (1− β0)1
η

θ2 = −(1− rh)(1− ρ)
µ0 = −(R− τ)

h¡
1− 2β0¢ τ + (1− rh)i

Since the particular solution for the equation above is

bKp = µ0bg0τ
t

θ0τ2 − θ1τ − θ2

then the general solution is given by:

bKt = A1λ
t
1 +A2λ

t
2 +Aττ

tbg0 (B2)

where Aτ =
µ0

θ0τ2−θ1τ−θ2
is a constant and the eigenvalues λ1 and λ2 satisfy: λ1λ2 =

−θ2
θ0

and

λ1 + λ2 =
θ1
θ0
. Finally, the solutions for constants A1 and A2 can be obtained from: bK1 =

A1λ1 +A2λ2 +Aττbg0 and bK0 = A1 +A2 +Aτbg0.
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B.1 Cycles

The dynamic properties of equation (B1) depend on the eigenvalues associated to the homogeneous
difference equation θ0

bKt = θ1
bKt−1 + θ2

bKt−2 which are given by:

λ1,λ2 =
θ1 ±

q
θ2

1 + 4θ0θ2

2θ0
.

The necessary and sufficient condition for cycles is θ2
1+4θ0θ2 < 0. Note that θ1can be rewritten

as:

θ1 = θ0 − θ2 − (1− β0)1
η
. (B3)

Adding and subtracting proper terms, θ2 can be rewritten as

θ2 = ξ(β
0)− θ0 (B4)

where:

ξ(β0) ≡ 2ρ(1− β0) + rh(1− ρ)
= (1− β0)(2ρ+ a+ c

a
(1− ρ)) > 0.

From (B3) and (B4), θ1 can be written as:

θ1 = 2θ0 − ζ(β0) (B5)

where:

ζ(β0) ≡ (1− β0)(2ρ+ a+ c
a
(1− ρ) + 1

η
)

< (1− β0)
·
max

½
2,
a+ c

a

¾
+
1

η

¸
.

Finally, from (B3) and (B4), lim
β0→1

θ2 = θ0 and lim
β0→1

θ1 = 2θ0.

B.2 Proof of Proposition

To show that for β0 sufficiently large the model exhibits cycles, it needs to be proven that θ2
1+4θ0θ2 <

0. Use (B4) and (B5) to get:

θ2
1 + 4θ0θ2 = (2θ0 − ζ(β0))2 − 4

£
θ0 − ξ(β0)

¤
θ0

< −4θ0(1− β0)1
η
+ (1− β0)2

·
max

½
2,
a+ c

a

¾
+
1

η

¸2

.

Note that lim
β0→1

1
η = −

G00((K̄−K1)/n)K1

nG0((K̄−K1)/n)
> 0 where K1 is the solution of (10) for β0 equal to 1 and
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π = 0. Therefore, the second term in the last expression approaches to zero faster than the Þrst
term as β0 → 1. Note that θ0

1
η remains bounded above since θ0 approaches 1 − αN (K1) > 0 and

the fact that 1
η approaches a constant greater than zero. Thus, for β

0 large enough the Þrst term
dominates and the expression is negative.

It is also useful to state solution (B2) in its polar representation (See Allen, 1959, page 189)

bKt = Art cos (ωt+ φ) +Aττ t,
where A and φ are constants that can be determined from the initial conditions, and

r =
p
−θ2/θ0,

ω = cos−1

µ
θ1/θ0

2r

¶
.

Stability is guaranteed if the modulo r is less than 1, a result that follows from (B5) for large β0.
In addition, r is close to 1 when β0 is close to 1. Thus, the difference equation displays persistent
dampening cycles.

C Forward looking solution for asset prices

This appendix gives the solution for bq0 and π = 0. From equation (??) in the text:

bqt − β0bqt+1 =
¡
1− β0¢ µ

1

η
− ρ

¶ bKt + ¡
1− β0¢ ρ bKt+1 − (1− β0)bgt+1

iterate forward and use the transversality condition bq∞ = 0 to rule out bubbles in the price of
capital to obtain:

bq0

(1− β0) =
∞X
j=0

β0j
·µ
1

η
− ρ

¶ bKj + ρ bKj+1 − bgj+1

¸

=

µ
1

η
− ρ

¶ bK0 +
∞X
j=0

β0j
µ
β0

µ
1

η
− ρ

¶
+ ρ

¶ bKj+1 −
∞X
j=0

β0jbgj+1.

Using the solution for the non-homogeneous second order difference equation (B1) we have:

bq0

(1− β0) =

µ
1

η
− ρ

¶ bK0 +

µ
β0

µ
1

η
− ρ

¶
+ ρ

¶ ∞X
j=0

β0j
³
A1λ

j+1
1 +A2λ

j+1
2 +Aττ

j+1bg0

´
+(R− τ)bg0

∞X
j=0

β0jτ j
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which after some algebra yields:

bq0

(1− β0) =

µ
1

η
− ρ

¶ bK0 +

µ
β0

µ
1

η
− ρ

¶
+ ρ

¶
(λ1A1 + λ2A2)− β0λ1λ2 (A1 +A2)

1− β0(λ1 + λ2) + β
02λ2λ2

+

µ
β0

µ
1

η
− ρ

¶
+ ρ

¶
τAτbg0

1− β0τ +
(R− τ)bg0

1− β0τ .

Finally using bK0 = 0 and the properties of λ1, λ2 and bK1 from Appendix B we get, after some
algebra:

bq0

(1− β0) =

³
β0

³
1
η − ρ

´
+ ρ

´
θ0

θ0 − β0θ1 − β02θ2

bK1 +
(R− τ)bg0

1− β0τ
+

µ
β0

µ
1

η
− ρ

¶
+ ρ

¶ ·
τ

1− β0τ −
(θ0τ + β

0θ2)

θ0 − β0θ1 − β02θ2

¸
Aτbg0

which solves for bq0 as a function of bK1. Also, the following equation relates bq0, bq1 and bK1:

bq0 = β
0bq1 +

¡
1− β0¢ ρπ bK1 + (1− β0)(R− τ)bg0

D Solution for π > 0

When the steady-state inßation is not zero, but π > 0, then the simple rule that following a one-
time money shock at t = 0 we can guarantee convergence of dt back to the steady state by imposing
τ < 1 does not hold anymore. Recall that since Hs

t = τHs
t−1 and when π = 0 we have Hs = 0,

then τ < 1 is enough to guarantee that Hs
t eventually converges to zero. In contrast, this is not

the case when π > 0 then d > 0. Thus, when π > 0 the �sterilization� policy needs to be changed.
In particular, assume that the economy starts off the steady state and at time t = 0 there is

an unexpected one-time increase in growth rate of money ε > 0, i.e. bg0 =
ε

1+π . In this case, the
government chooses a period t = T such that from T on, the growth rate of money supply is zero,
i.e. bgt = 0 for t > T . What this implies is that for t > T , the law of motion of bdt is given by:27

bdt = 1

β0
bRt + 1

β0
bdt−1

which is clearly unstable, since β0 < 1. Iterating forward on the equation above and imposing the
transversality condition that bd∞ = 0, we obtain that bdT−1 must satisfy:

bdT−1 = −
∞X
τ=0

β0τ bRτ+T

to guarantee convergence back to the steady-state. Further, since using the law of motion of money

27This equation is the linearized version of the law of motion of the money supply when bgt = 0.
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supply we have that bgT−1 is given by:

bgT−1 = − d

1 + d
bdT−1 +

d

β0 (1 + d)
bRT−1 +

d

β0 (1 + d)
bdT−2

so that bgT−1 depends on bdT−1. In summary, when the government chooses a period T such thatbgT = 0, it must also choose bgT−1 to satisfy the transversality condition. Further for periods
1 ≤ t < T − 2 we allow the government to choose any exogenous law of motion for bgt 6 0, i.e.
any rule in which the monetary expansion at time t = 0 is reverted. For instance, a natural choice
would be a gradual money contraction up to period T − 2 and a choice of bgT−1 that satisÞes the
condition above.

When π > 0, the dynamics of capital are described by:

θπ0 bKt = θπ1 bKt−1 + θ
π
2

bKt−2 +
1

1 + π

h¡
1− 2β0¢ bgt + (1− rh)bgt−1

i
where:

θπ0 = 1 + (1− 2β0)
ρ

(1 + π)

θπ1 =
(1− rh)(1− ρ)

(1 + π)
+ 1 + (1− 2β0) ρ

(1 + π)
− (1− β0)
η(1 + π)

θπ2 = −
(1− rh)(1− ρ)

(1 + π)
.

Using the dynamic equation of capital, as well as the transversality condition for government
debt, the law of motion of money supply and the forward-looking solution for capital prices it is
possible to construct a system of 5 equations in 5 unknowns: bKT−1, bqT−2, bqT−1, bdT−1 and bgT−1.
Since this system is a function of past values bKT−3, bKT−2 and bdT−2 an iterative procedure that
starts with a guess for bK1 must be implemented to Þnd the solution. Details on the solution
procedure are available from the authors upon request.
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