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Abstract

Semiparametric estimation of the expectations of a general class of dynamic functions is
considered. Such expectation functionals that are of interest for dynamic models are one-
and multi-period ahead forecasting functions, distribution functions, and covariance matri-
ces. The semiparametric efficiency bound for this problem is established and an estimator
which attains the bound is developed. The explicit form of the semiparmetric efficient ex-
pectation estimator is worked out for several explicit assumptions regarding the degree of
dependence between the predetermined variables and the disturbances of the model. Under
the assumption of independence, the one- and multi-period ahead residual-based predictors
proposed by Brown and Mariano (1989) are shown to be semiparametric efficient. Under un-
conditional mean zero assumption, we propose an improved heteroskedastic autocorrelation
consistent estimator.
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1 Introduction

Models of expectations have an important role in econometric theory and applications because of
a need to estimate functions which can be represented as conditional or unconditional expecta-
tions. These include point predictions and any target function which results from the integration
of random variables, for example, distribution functions, covariance matrices.
In a fully parametric models, where both the structural equations and distribution function

are speciÞed, the estimation of an expectation function is simple. When the target expectation
function is available in closed form, the problem can be solved by substituting the estimated
parameters into the expectation function. If the expectation functions is not available in closed
form, then the target function can be estimated by averaging a sample of Monte Carlo stochastic
simulations of the random variables in the model.
However, semiparametric models, models which have both parametric and nonparametric

components, have received increasing attention because of the problem of misspeciÞcation and
measurement error. The semiparametric approach to those problems is to allow the functional
form of some components of the model to be unrestricted. SpeciÞcally, we want to look at
a semiparametric model with speciÞed structure and unrestricted error distribution except for
general restrictions such as unconditional and conditional mean zero. In reality, we do seldom
have a complete speciÞcation of the distribution of these models except for general restrictions
such as unconditional or conditional mean zero. So it is interesting to take a semiparametric
approach which allows us to take advantage of the speciÞed structural equations.
For the expectations of static systems, Brown and Mariano (1984) propose a residual-based

simulation procedure as an alternative to Monte Carlo simulation for point prediction problem.
This procedure avoids the need to specify an explicit distribution for the disturbances. Brown
and Newey (1998) establish the semiparametric efficiency bounds of target functions and suggest
a feasible estimator which attains the bounds for unconditional expectations. For the expecta-
tions of dynamic nonlinear systems, Brown and Mariano (1989) shows that the residual-based
predictors are quite promising alternative to Monte Carlo simulation when applied to conditional
prediction problems under independence assumption between predetermined variables and error
distribution.
In this paper, we propose general procedures for optimal estimation of expectation functions

in nonlinear dynamic models under relaxed distributional assumptions. This also extends Brown
and Newey (1998) to the class of dynamic nonlinear systems. An important application for the
systems is in the construction of ex ante predictions. Typically, the system is dynamic with
either lagged endogenous variables or serially correlated disturbances (or both). We develop
semiparametric efficiency bounds and an estimator which achieves the bound for the expectation
of dynamic nonlinear systems. The explicit form of the semiparametric efficient expectation
estimator is worked out for several explicit assumptions regarding the degree of dependence
between the predetermined variables and the disturbances of the model.
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2 Model

Suppose that we observe the stationary and ergodic ((g + k) × 1) vector zt = (y0t, x0t)0 for
t = 1, . . . , n. and the following dynamic nonlinear equations holds:

ρ(zt, zt−1, . . . , zt−l;β) = εt (1)

where ρ is a possibly non-linear relationship of known functional form, εt is a g×1 disturbances
vector which is possibly serially correlated, and β is an unknown p-dimensional vector of param-
eters of interest with true value β0. We assume that we can invert the function ρ and solve for
yt in terms of the following reduced form model:

yt = π(εt, zt−1, . . . , zt−l, xt;β) (2)

We can simplify above models as

ρ(yt, wt,β) = εt (3)

yt = π(εt, wt,β) (4)

where wt = (y0t−1, . . . , y
0
t−l, x

0
t, x

0
t−1, . . . , x

0
t−l)

0 and β ∈ int Θ ⊂ Rp.
The problem studied in this paper is efficient estimation of expectation of a known dynamic

function of the observable variables when the density and parameters are unknown. Formally,
the functional which is the object of interest has the following representation

µ(β, h) = Eβ,h [m(zt, zt−1, . . . , zt−v,β)] (5)

=

Z
m
¡
z−vt ,β

¢
Π∞r=0f(zt−r|z−lt−r;β, h)dzt−r

where m(·) is a known (q × 1) function and f(·) is a density function with respect to some
measure. Let ν = max{l, v} and redeÞne wt be (y0t−1, . . . , y

0
t−ν , x0t, x0t−1, . . . , x

0
t−ν)0. Then the

(5) will be Eβ,h [m(yt, wt,β)] . The presence of h allow the form of f(·) to be unrestricted ex-
cept for general restrictions on densities. Lots of expectation functionals can be included in
general framework of (5). Under some regularity conditions and independence between ε and
w, the conditional expectation of y given wτ is the unconditional expectation of m(y, wτ ,β) =
π(ρ(y,w,β), wτ ,β) where wτ is treated as Þxed. This also applies to conditional covariance ma-
trix, m(y,wτ ,β) = π(ρ(y,w,β), wτ ,β) · π(ρ(y,w,β), wτ ,β)0, and conditional distribution func-
tion, m(y,w,β) = 1(π(ρ(y, w,β), wτ ,β) ≤ c). Under nonindependence assumption, conditional
expectation becomes difficult but a number of interesting unconditional expectations remain.
covariance matrix of the disturbances, distribution function of the disturbances, and distribu-
tion function of the observable variables are unconditional expectations and plays an important
inferential role in the model. These are the expectations of m(y,w,β) = ρ(y, w,β) · ρ(y, w,β)0,
m(y, w,β) = 1(ρ(y, w,β) ≤ c), and m(y, w,β) = 1(π(ρ(y,w,β), w,β) ≤ c), respectively.
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3 The semiparametric efficiency bound

Semiparametric efficiency bound is developed by Stein (1956), Kposhevnik and Levi (1976),
Pfanzagl and Wefelmeyer (1982), Begun et al. (1983), and Bickel et al. (1992). We can deÞne
a parametric submodel, f(z|z−l;βi, h(ηi)), where z−l = (z−1, . . . , z−l) and ηi is a Þnite-length
vector of shape parameters for parametric submodel i, that satisÞes the semiparametric as-
sumptions and contains the truth. f(z|z−l;β0, h0) is the true density of z where a zero subscript
indicates the true parameter value, h0 = h(η0). The �sub� preÞx refers that it is a subset of
the model consisting of all distributions satisfying the assumptions. For each parametric sub-
model, we can obtain classical Cramer-Rao bound. Any consistent and asymptotically normal
semiparametric estimator has an asymptotic variance that is comparable to the Cramer-Rao
bound of a parametric submodel. It is no smaller than the bound for a parametric submodel.
Since a semiparmetric model can be represented by inÞnite number of parametric submodels,
the asymptotic variance of any semiparametric estimator is no smaller than the supremum of
the Cramer-Rao bounds for all parametric submodels. The supremum of the Cramer-rao bounds
is a lower bound on the asymptotic variance of any semiparametric estimator. Some regularity
conditions are necessary to guarantee that the Cramer-Rao bound is well-deÞned and gives an
asymptotic efficiency bound. The regularity conditions for parametric submodels are mean-
square differentiability with respect to θ = (β0, η0)0, nonsingular information matrix, and some
additional smoothness conditions, for example existence of variance. A regular estimator is one
that the limiting distribution of

√
n(bβ − βn) does not depend on a sequence of true parameter

values θn = (β00, η00)0 + ξ/
√
n, where ξ > 0. The precise deÞnition of the efficiency bound is that

it is the supremum of the Cramer-Rao bounds of all regular parametric submodels. The class of
regular estimators also excludes superefficient estimators that has an asymptotic variance less
than that of the maximum-likelihood estimator for some true parameter values.
Assuming that we have some initial observations {z0, z−1, . . . , z−l}, and that the density of

these initial conditions is asymptotically negligible in the analysis of the likelihood function.
The parametric submodel also satisÞes mean-square continuous differentiability of the square-
root of the likelihood function and has a nonsingular information matrix. We can base our
derivation of semiparametric efficiency bound on the analysis of the following likelihood for
{zt}nt=1, conditioning on the initial conditions:

L ({zt}nt=1,β, h) = Π
n
t=1fz|z−l(zt|z−lt ;β, h) (6)

We are assuming that the density fz|z−l is unknown, so we have written the likelihood for a para-
metric submodel in which h represents some parameterization that contains the true densities.
Let sθ denote the score for θ, then we have

Pn
t=1 sθ(yt, wt) =

Pn
t=1 ∂ ln fz|z−l(zt|z−lt ; θ0)/∂θ

0

where wt = (x0t, z0t−1, . . . , z
0
t−l). Note that we have to use the sum of scores in the followings

because of possible correlation among scores. In parametric estimation theory, local asymptotic
normality (LAN) condition played a very important rule in establishing general lower bounds
on the accuracy of estimates (Le Cam (1972) and Hajek (1972)). Levit (1975) applies this
concept for nonparametric estimation theory. We use Ibragimov and Khas�minskii (1991) LAN
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condition1 to establish the semiparametric efficiency bound. Given notations, we can state the
following result.

Lemma 3.1 Assume that fz|z−l(zt|z−lt ;β, h) is three times differentiable with respect to β and
has bounded third derivative, that E

£
1
n

Pn
t=1 sθ(yt, wt)

Pn
s=1 sθ(ys, ws)

0¤ is Þnite. Then the data
{zt}nt=1 falls into locally asymptotically normal (LAN) family.

Lemma 3.2 Assume that {zt}nt=1 is ρ−mixing2 process. Then E
£
p(zt)

Pn
s=−∞ q(zs)

0¤
= E

£
1
n

Pn
t=1 p(zt)

Pn
s=1 q(zs)

0¤+ o(1) where p(·).and q(·) are functions of their argument.
Let En [·] denote the expectation taken at θn, i.e., µn = En [m(y,w,β)] . DeÞne an estimatorbµ to be asymptotically linear if it is asymptotically equivalent to a sample average, i.e., there is

a function ψµ(y,w) at the truth

√
n(bµ− µ0) =

√
nψµ + op(1), ψµ =

1

n

nX
t=1

ψµ(yt, wt) (7)

where E
£√
nψµ

¤
= 0, and E

h
nψµψ

0
µ

i
is Þnite and nonsingular. For a matrix A let kAk ≡

[trace(A0A)]1/2 .

Lemma 3.3 Assume that the data {zt}nt=1 is LAN family and ρ−mixing process, that bµ is
asymptotically linear and for all regular parametric submodels µ(θ) is differentiable, and that

Eθ

h°°√nψµ°°2
i
exist and is continuous on a neighborhood of θ0. Then bµ is regular if and only

if, for all regular parametric submodels,

∂µ(θ)

∂θ0
= E

£
nψµs

0
θ

¤
+ op(1) (8)

Equation (8) is fundamental in the sense that it gives an important formula for the Cramer-

Rao bound of a parametric submodel j. The Cramer-Rao bound for θ is
³
E
h
nsjθs

j0
θ

i´−1
.

Furthermore, if µ(θ) is differentiable, then the Cramer-Rao bound for µ is V jµ =
¡
∂µ(θ0)/∂θ

0¢³
E
h
nsjθs

j0
θ

i´−1
(∂µ(θ0)/∂θ) by the invariance of maximum-likelihood and delta method. It can

be rewritten as follows

V jµ = E
h
nψµs

j
θ
0
i³
E
h
nsjθs

j0
θ

i´−1
E
h
nsjθψµ

0
i

= E
h√
nψµ,θ

√
nψ

0
µ,θ

i
where

√
nψµ,θ = E

£
nψµsθ

j0¤ ³E hnsjθsj0θ i´−1√
nsjθ

1For formal deÞnition, see Ibragimov and Khas�minskii (1991 p.1682)
2 If limn→∞ ρn = 0, then the sequence {ξn} is deÞned to be ρ-mixing where
ρn = sup{|E [ξη]| ξ ∈ Fk, E [ξ] = 0, kξk ≤ 1, η ∈ Gk+n, E [η] = 0, kηk ≤ 1}
Fn = σ{ξk : k ≤ n},Gn = σ{ξk : k ≥ n}.

5



This is nothing but the variance matrix of a projected value from the population regression
of
√
nψµ on the sum of scores. For the efficiency bound of semiparametric estimation, i.e.,

supremum of Cramer-Rao bound of all parametric submodels, we deÞne the complete tangent
set Sq to be the mean square closure of all q−dimensional linear combinations of scores sθ for
smooth parametric submodels.

Sq =
½
ωθ ∈ Rq : E

h
kωθk2

i
<∞,∃ Aj ,

√
nsjθ with lim

j→∞
E

·°°°ωθ −Aj√nsjθ°°°2
¸
= 0

¾
(9)

where Aj is a constant matrix with q rows. Since the tangent set is an inÞnite-dimensional
set that includes all parametric submodels, the projected value from nψµ on the tangent set
should have larger variance than the projected value for any parametric submodel. Let

√
nψ

∗
µ =

Proj
¡√
nψµ |Sq

¢
, then we can write

√
nψµ =

√
nψ

∗
µ +

√
nξ (10)

where
√
nξ is orthogonal to the tangent set Sq. Equation (8) will be

∂µ(θ)

∂θ0
= E

h
nψ

∗
µsθj

0
i
+ op(1) for all j. (11)

Furthermore, the linearity of the tangent set gives us a unique projection onto the tangent
set,

√
nψ

∗
µ, for all asymptotically linear and regular semiparametric estimators. Let µ+ be

other aymptotically linear regular estimator, so
√
n(µ+ − µ0) =

√
nψ

+
µ (yt, wt) + op(1) →d

N(0, V +
µ ). By linearity of the tangent set

³√
nψ

+
µ −

√
nψ

∗
µ

´
=
√
nψ

+
µ − Proj

³√
nψ

+
µ |Sq

´
+

Proj
³√
nψ

+
µ −

√
nψµ |Sq

´
. Also, by the regularity two estimators satisfy ∂µ(θ)/∂θ0 =

E
£
nψµsθ

j0¤+op(1) = E hnψ+
µ sθ

j0
i
+op(1). So that E

h³√
nψ

+
µ −

√
nψµ

´√
nsθ

j0
i
+op(1) = 0 for

all j. We have a unique projection
√
nψ

∗
µ for all asymptotically linear regular estimators. Com-

bining the previous results, we obtain the efficiency bound for estimation of Eβ,h [m(y, w,β)] as
follows.

Theorem 3.1 Assume that the data {zt}nt=1 is LAN family and ρ−mixing process, that bµ is
regular and asymptotically linear, that for all regular parametric submodels µ(θ) is differentiable,

Eθ

h°°√nψµ°°2
i
exists, and is continuous on a neighborhood of θ0, and that Sq is linear and

E
h
nψ

∗
µψ

∗0
µ

i
is nonsingular for the projection

√
nψ

∗
µ of

√
nψµ on Sq. Then V ∗µ = E

h
nψ

∗
µψ

∗0
µ

i
.

4 Calculating the efficiency bound

Using the structure of our model, the likelihood function, equation (6), can be rewritten in terms
of the density of ε, the change of variables formula gives us:

L ({zt}nt=1,β, h) = Π
n
t=1

eJ(yt, wt,β) · fε|w(εt|wt;h) · fx|z−l(xt|z−lt ;h) (12)
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where eJ(y, w,β) = ¯̄̄det ∂ρ(y,w,β)
∂y0

¯̄̄
.

We can then write the scores of the likelihood for all observations (y, x) with respect to β
and η as

nX
t=1

sβ(yt, wt) =
nX
t=1

½
Jβ(yt, wt,β0) +

∂ ln fε|w(εt|wt;h0)

∂ε
· ρβ(yt, wt,β0)

¾
(13)

nX
t=1

sη(yt, wt) =
nX
t=1

(
∂ ln fε|w(εt|wt;h0)

∂η
+
∂ ln fx|z−l(xt|z−lt ;h0)

∂η

)

where J(y,w,β) = ln eJ(y,w,β) and the β subscripts on J and ρ denote partial derivatives. Note
that the terms in sum of nuisance scores

Pn
t=1 sη(yt, wt) are unrestricted (except for the zero

mean property of sum of scores) functions of their arguments, εt and (xt, z−lt ).
To get efficient scores, we need to orthogonalize

√
nsβ to the nuisance scores

√
nsη, where

normalization term, n−1/2, is required to satisfy Þniteness of the second moments. Since the
nuisance scores could come from any parametric submodel that includes the truth, this requires
orthogonalization with respect to the space spanned by suitable linear transformations of all, in
a sense that includes all parametric submodels, nuisance parameter scores. This space is known
as the tangent set and is the linear Hilbert space given by

Tq =
(
t =

1√
n

nX
t=1

n
t1(εt, wt) + t2(xt, z

−l
t )
o
: E [t] = 0

)
(14)

Since t1(εt, wt) is an unrestricted function of its arguments, any functions orthogonal to the set
of t1(εt, wt) must also be orthogonal to the set of t2(xt, z−lt ). The efficient score is given by the
residual of

√
nsβ less its projection on this space, which, for arbitrary function R(z), is given by

Proj (R(z)|Tq) = E
£
R(z)

¯̄√
nt1
¤−E [R(z)] (15)

By the mean zero property of scores we can show that Proj (
√
nsβ|Tq) = E

£√
nsβ |

√
nt1
¤
,

whereupon we have

√
ns =

√
nsβ − Proj

¡√
nsβ

¯̄Tq¢ (16)

=
√
nsβ −E

£√
nsβ

¯̄√
nt1
¤

as the efficient score. This is different from that of static problems, so any estimators derived
from one efficient score do not necessarily consistent in dynamic problems.
The efficiency bound for semiparametric estimation of β is then

V ∗β =
¡
E
£√
nss0

¤¢−1 (17)

The semiparametric efficiency bound is a lower bound on the asymptotic covariance matrix
among regular, consistent, and asymptotic normal estimators. There is another way to establish
the bound without regularity. This method is not to restrict allowable estimators but to use
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the local asymptotic minimax criteria to derive optimality. An estimator whose asymptotic
covariance matrix is V ∗β will be optimal under both of approaches.
The previous discussion shows how the semiparametric variance bound can be computed for

the Þnite dimensional parameter β of a semiparametric model f(z|z−l;β, h). Now, we want to
compute the bound for an dynamic nonlinear function like µ(β, h) = Eβ,η [m(y,w,β)] using
the general result of previous section. Combining this result with Theorem 3.1, we obtain the
efficiency bound for estimation of E [m(y,w,β)] as follows

Theorem 4.1 Suppose that the assumptions of Theorem 3.1 are satisÞed, and that M =

∂E [m(y, w,β)] /∂β|β0
exists. Then the semiparametric efficiency bound of the model µ(θ) =

E [m(y,w,β0)] is given by V
∗
µ = Vp +

fM · V ∗β · fM 0 where

Vp = E

"
Proj

Ã
n−1/2

nX
t=1

m(yt, wt,β0)|Tq
!
· Proj

Ã
n−1/2

nX
t=1

m(yt, wt,β0)|Tq
!0#

and

fM = M +E

"
1

n

nX
t=1

m(yt, wt,β0) ·
nX
s=1

s(ys, ws)
0
#
.

5 Efficient Estimation

Given the efficiency bounds in the previous section, our objective is to develop feasible estimators
that attain them. Since the bound is based on the projection on tangent set Tq. the tangent
set and the projection of

√
nm on Tq have to be calculated. The calculation of tangent set is

usually straightforward. It is often to conjecture a form of tangent set from the restrictions on
the scores implied by the semiparametric model. This conjecture can be veriÞed by showing
that this set contains the scores and can approximate the scores for parameters of interest
arbitrarily well in mean square. But the calculation of the projection is difficult though it is
easy in several interesting examples. The simple model is that the estimation problems satisfy
(m(y, w,β0)− µ0) ∈ Tq. The efficiency bound will be a more simpliÞed form.
Corollary 5.1 If (m(y,w,β0)− µ0) ∈ Tq, then the semiparametric efficiency bound of the model
will be Vm +M · V ∗βM 0 where

Vm = E
h©
(n−1/2

Pn
t=1(m(yt, wt,β0)− µ0)

ª©
(n−1/2

Pn
t=1(m(yt, wt,β0)− µ0)

ª0i
.

Satisfaction of this condition depends on the form of m(·) and the nature of function that
deÞnes Tq. Other interesting examples are under several semiparametric assumptions regarding
the stochastic dependence between ε and w : ε independent of w and E [ε] = 0. Since we are
dealing with unconditional expectation of dynamic functions, we can modify Brown and Newey
(1998) result. As a general feasible estimator that attains the efficiency bound for µ(β, h), we
propose beµ³bβ,bh´ = 1√

n
Proj

Ã
1√
n

nX
t=1

m(yt, wt, bβ)|Tq!+ µ³bβ,bh´ (18)
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Under restriction on the dependence of the limiting distribution of beµ on bh, and other more
standard assumptions, it turns out that this estimator is efficient if bβ is semiparametric efficient.
For simplicity, we deÞne em(β, h) = n−1/2 Proj

¡
n−1/2

Pn
t=1m(yt, wt,β)|Tq

¢
+ µ (β, h) , eµ(β) =R em (y,w,β, h0)Π

n
t=−∞f(zt|z−lt ;β0, h0)dz, and µ0 =

R
m(y, w,β0)Π

n
t=−∞f(zt|z−lt ;β0, h0)dz.

Theorem 5.1 Suppose that (i) {zt}nt=1 is ρ−mixing process and LAN family, (ii) bβ is regular
and asymptotically linear where E

£√
nψβ

¤
= 0 and Vβ = E

h
nψβψ

0
β

i
is Þnite, (iii) fM(β) =

∂eµ(β)/∂β0|β0
is bounded and continuous on a neighborhood of β0, (iv) n

−1/2
Pn
t=1[{em (β, h0)−eµ(β)}−{em (β0, h0)−eµ(β0)}] is stochastically equicontinuous at β = β0, (v) n

−1/2
Pn
t=1[em(bβ,bh)−em(bβ, h0)] = op(1), and (vi) Vp = E[Proj

¡
n−1/2

Pn
t=1(m(yt, wt,β0)|Tq

¢
Proj

¡
n−1/2

Pn
t=1(m(yt, wt,β0)|Tq

¢0
] is Þnite and continuous on a neighborhood of β0. Then

n1/2
³beµ− µ0

´
→d N

¡
0, Veµ¢ where Veµ = Vp + fM · Vβ · fM.

Assumption (i) is a primitive condition for asymptotic normality of the function,
n1/2 [em (β0, h0)− eµ(β0)]. Asymptotic independence of m(·) comes from mixing {zt} process and
measurable mapping m(·) that depends on Þnite sequences of {zt}, i.e., m(·) is a function of
(yt, wt). This holds for m(·) function which depends on inÞnite sequences of {zt} if it can be
approximated by Þnite sequences with small errors (Billingsley (1999)).
A sufficient condition of (iv) is the following Lipschitz condition in probability. This condition

provides easily veriÞable conditions for Theorem 5.1. DeÞne

bQn(bβ) = n1/2{em³bβ, h0

´
− eµ(bβ)}

and bQn(β0) = n
1/2{em (β0, h0)− eµ(β0)},

then the Lipschitz condition is¯̄̄ bQn(bβ)− bQn(β0)
¯̄̄
≤ Bn

°°°bβ − β0

°°°α
where α > 0 and Bn = Op(1). If the derivative of bQn(bβ) can be replaced by the derivative
of the limit of bQn(bβ), a sufficient condition of stochastic equicontinuity is boundedness of the
derivative.
Assumption (v) indicates that estimation of h should not have effect on the asymptotic vari-

ance. From the Newey and McFadden (1994), this condition requires sufficiently fast convergence
rate of bh to its target. If bh depends on a Þnite number of estimated parameters, η, then the
derivatives of E [em (β0, h(η))] with respect to η is zero, a standard condition for estimation of h
to have no effect on asymptotic variance.
The asymptotic variance matrix of Theorem 5.1 is that of beµ(bβ, h0). Structure of the co-

variance matrix shows that the efficiency of beµ(bβ, h0) depends on that of parameter estimator.
If the parameter estimator is semiparametric efficient, the estimator attains a lower bound for
asymptotic covariance, V ∗µ given in Theorem 4.1. With the addition of assumptions to guarantee
regularity, we have following corollary.
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Corollary 5.2 Suppose the conditions of Theorem 5.1 are satisÞed and Eβ,η
h°°ψ∗µ(y,w)°°2

i
is

Þnite and continuous on a neighborhood of (β0, η0). Then beµ based on a semiparametric efficient
estimator of β is regular and attains the lower bound V ∗µ .

Since the result of Corollary 5.2 needs beµ(wn+1) based on a semiparametric efficient estima-
tor of β, we need those estimators for following examples. We assume for each case that a
semiparametric efficient estimator of β is available3.

5.1 ε is independent of w

Here we deal with a dynamic forecasting function given w where the function depends on (y, w)
only through ε = ρ(y,w,β0). Assume that ε is i.i.d. and that {xt}∞−∞ is exogenous and given. It
is a well-known result that conditional prediction is a efficient estimator for forecasting in mean
squared error sense. So we work on semiparametric efficient estimation of conditional prediction.
First, a conditional prediction function with a unknown variable is considered, m(ε, wn+1,β)

where wn+1 is given. This, one-period ahead prediction function, can be represented by the
function of β and f(ε|wn+1;h).

µ0(wn+1) =

Z
m(ε, wn+1,β0)f(ε|wn+1;h0)dε (19)

=

Z
m(ε, wn+1,β0)f(ε;h0)dε

where h denotes nonparametric components and the second equality comes from independency.
So, we can use beµ³bβ,bh´ = em³bβ,bh´ as a efficient estimator of target function. Although realized
εt correlated with the Þnal value wn+1, an analogy with initial value problem of processes
indicates that the Þnal value wn+1 should be negligible in the analysis of εt. This requires
asymptotic independence and symmetry of m(·). Symmetry condition tells us that past and
future of processes can be interchanged. Time reversibility of m(·) process is immediate from
the deÞnition of ρ−mixing process. The assumption (i) of theorem 5.1 is also important to
asymptotic distribution of bβ. To have the same form of asymptotic variance as unconditional
expectation, the asymptotic distribution of

√
n(bβ − β0)

¯̄̄
wn+1

should be same as that of
√
n(bβ−

β0). Asymptotic independency is a sufficient condition of having same asymptotic distribution.
Assumption (v) of theorem 5.1 can be veriÞed easily under the independence assumption between
ε and w.

∂E [em (ε, wn+1,β0, η)]

∂η0

¯̄̄̄
η0

=
∂

∂η0

½Z em (ε, wn+1,β0, η) fε|w(ε|wn+1,β0, η)dε

¾
=

∂

∂η0

½Z
m (ε, wn+1,β0) fε(ε,β0)dε

¾
(20)

= 0

3Brown and Hodgson (2000) proposed a locally efficient estimator under elliptical symmetry assumption.
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where the second equality comes from independency and zero mean property of tangent set T .
SpeciÞc form of efficient estimator under independence assumption can be worked out by

imposing this additional restriction on the general tangent set. Assume that the parameter
matrix β does not include an intercept. Instead the distribution of the disturbances ε are
allowed to have a nonzero location parameter. Then equation (14) is given by

Tq =
(
t =

1√
n

nX
s=1

n
t1(εs) + t2(xs, x

−l
s )
o
: E
£√
nt1(εs)

¤
= E

h√
nt2(xs, x

−l
s )
i
= 0

)
(21)

where
√
nt1(·) and √nt2(·) are unrestricted except for the mean zero property. The projection

onto this set of the sum of an arbitrary function of R(εt) consists of following two parts

Proj

Ã
1√
n

nX
t=1

R(εt)

¯̄̄̄
¯ 1√n

nX
s=1

t1(εs)

!
=

1√
n

nX
t=1

E[R(εt)|εt]−
√
nE[R(ε)]

Proj

Ã
1√
n

nX
t=1

R(εt)

¯̄̄̄
¯ 1√n

nX
s=1

t2(xs, x
−l
s )

!
=

1√
n

nX
t=1

E
h
R(εt)|xt, x−lt

i
−√nE[R(ε)]

These are indeed projections to the tangent set that are closest to the original function with
minimum mean squared error. Note that the projection to the space of n−1/2

Pn
s=1 t2(xs, x

−l
s )

is zero because R(εt) is a function of only ε. Using this result, we obtain

em(ε, wn+1,β, h) = n−1/2 Proj

Ã
n−1/2

nX
t=1

m(εt, wn+1,β)|Tq
!
+ µ(β0, h0) (22)

= n−1
nX
t=1

E[m(εt, wn+1,β)|ε]

= n−1
nX
t=1

m(εt, wn+1,β)

Given a semiparametric efficient bβ, we obtain
beµ(wn+1) =

1

n

nX
t=1

m(bεt, wn+1, bβ) (23)

as the optimal semiparametric estimator of µ(wn+1,β0, η0). This is a method of moment esti-
mator that integrates out unknown distribution of ε using empirical distribution. Naturally,
the next question will be about efficient estimators for multi-period ahead prediction. For two-
period ahead prediction, we have 2 unknown disturbance vectors, i.e., em(εs+1, εs, wn+1;β, h).

The nonparametric tangent set is the same as before. The projection onto this set of an arbitrary
function of n−1/2

Pn
s=1R(εs+1, εs) results in

Proj

Ã
n−1/2

nX
s=1

R(εs+1, εs)|Tq
!

= n−1/2
nX
s=1

{E[R(εs+1, εs)|εs+1] +E[R(εs+1, εs)|εs] (24)

−2E[R(εs+1, εs)]}

11



Thus we have

em(εs+1, εs, wn+1,β, h) =
1√
n
Proj

Ã
n−1/2

nX
s=1

R(εs+1, εs)|Tq
!
+ µ(β, h) (25)

= n−1
nX
s=1

{E[R(εs+1, εs)|εs+1] +E[R(εs+1, εs)|εs]}−E[R(εs+1, εs)]

=

Z
m(εs+1, εs, wn+1,β)fε(εs)dεs

+

Z
m(εs+1, εs, wn+1,β)fε(εs+1)dεs+1

−
Z ·Z

m(εs+1, εs, wn+1,β)fε(εs)dεs

¸
fε(εs+1)dεs+1

Since we do not know the nature of fε(ε) and ε is independent of wn+1
√
n−consistent estimates

of these integrals given bβ and wn+1 are obtained by utilizing the empirical distribution functions
of ε. Therefore, we have

em(εs+1, εs, wn+1, bβ,bh) = n−1
nX
j=1

m(bεi,bεj , wn+1, bβ) + n−1
nX
j=1

m(bεj,bεi, wn+1, bβ)
−n−1

nX
i=1

n−1
nX
j=1

m(bεi,bεj, wn+1, bβ)
where εi is ε(yi, wi). When we average this function, the second and the third terms cancel and
we obtain beµ = n−1

nX
i=1

n−1
nX
j=1

m(bεi,bεj , wn+1, bβ) (26)

as the optimal semiparametric estimator of two-period ahead prediction function µ(wn+1,β0, h0).

By the same analogy, multi-period, s, ahead case, we obtain

beµ = n−1
nX

t1=1

· · ·n−1
nX

ts=1

m(bεt1, . . . ,bεts , wn, bβ) (27)

as an efficient estimator of µ(wn+1,β0, h0). This is the residual-based estimator of Brown and
Mariano (1989). Here, we have established the semiparametric optimality of the estimator when
the underlying parameter β is estimated semiparametric efficiently.
Similarly, the estimators

bΩ = 1

n

"
nX
t=1

π(bεt, wn+1, bβ)π(bεt, wn+1, bβ)0# (28)

and bF (c|wn+1) =
1

n

nX
t=1

1
³
π(bεt, wn+1, bβ) ≤ c´ (29)

are the optimal semiparametric estimators of the conditional covariance matrix and the condi-
tional distribution function of endogenous variables.
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5.2 Expectation of ε is zero

This is the type of assumption that would be utilized to obtain general heteroskedasticity autoco-
variance consistent (HAC) estimators. A important problem is generalized method of moments
(GMM) estimators of β under E [ρ(y,w,β0)] = 0. The optimal weight matrix for GMM is given
by the inverse of Ω = E [nρ(y,w,β0)ρ(y,w,β0)

0] and the efficiency of GMM estimates depends
on that of estimates for Ω. One of the most popular estimates for Ω was proposed by Newey
and West (1987). Their positive semi-deÞnite, heteroskedasticity and autocorrelation consistent
estimator is given by

bS = bΩ0 +
mX
j=1

p(j,m)
hbΩj + bΩ0ji , p(j,m) = 1− j

m+ 1
(30)

where bΩ0 =
1
n

Pn
i=1 ρ(yi, wi,

bβ)ρ(yi, wi, bβ)0, bΩj = 1
n

Pn
i=j+1 ρ(yi, wi,

bβ)ρ(yi−j, wi−j, bβ), and m,
the bound on the number of sample autocovariances, is equal to the number of nonzero auto-
correlations of ρ(yi, wi,β0).

However, this is not a efficient estimator because it�s based on the sample moments. Using the
method proposed in the previous section, we can obtain the efficient estimate of the covariance
matrix. Let ρt(β) = ρ(yt, wt,β) and ρt = ρt(β0). To derive the nonparametric tangent set, we,
Þrst, differentiate E [ρ(yt, wt,β0)] = 0 with respect to η.

0 =

Z
ρsΠ

n
t=−∞

∂fz|z−l(zt|z−lt ;β0, h0)

∂η
dz (31)

= E

"
ρs

nX
t=−∞

sη(yt, wt)
0
#

= E

"
1

n

nX
s=1

ρs

nX
t=1

sη(yt, wt)
0
#

Then, combining the result of section 3, the nonparametric tangent set is give by

Tq =
(
1√
n

nX
s=1

t(ys, ws) : E

"
1√
n

nX
s=1

t(ys, ws)

#
= 0, E

"
1

n

nX
s=1

t(ys, ws)
nX
t=1

ρ0t

#
= 0

)
(32)

where t(yt, wt) is any function of arguments which satisÞes mean zero and imposed semipara-
metric assumption.
The corresponding projection of an arbitrary function onto this set has the form

Proj

Ã
1√
n

nX
t=1

R(yt, wt)|Tq
!

=
1√
n

nX
t=1

R(yt, wt)−E
"
1√
n

nX
t=1

R(yt, wt)

#
(33)

−E
"
1

n

nX
t=1

R(yt, wt)
nX
τ=1

ρ0τ

#
Ω−1 1√

n

nX
t=1

ρt

where Ω = E
£

1
n

Pn
t=1

Pn
s=1 ρtρ

0
s

¤
.
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To improve the efficiency of Newey and West (1987) estimator we estimate Ωj = E
h
ρtρ

0
t−j
i
=

µ(β, h) efficiently. Let mj(yt, wt,β) = vec(ρtρ
0
t−j). Using the previous result, we have

emj(β, h) =
1√
n
Proj

Ã
1√
n

nX
t=1

mj(yt, wt)|Tq
!
+ µ(β, h) (34)

=
1

n

nX
t=1

mj(yt, wt)−E
"
1

n

nX
τ=1

mj(yτ , wτ )
nX
s=1

ρ0s

#
Ω−1 1

n

nX
t=1

ρt

=
1

n

nX
t=1

©
mj(yt, wt)−CΩ−1ρt

ª
where C = E

£
n−1

Pn
τ=1mj(yτ , wτ )

Pn
s=1 ρ

0
s

¤
. An optimal semiparametric estimator of Ωj is

given by bΩj = 1

n

nX
t=1

h
mj(yt, wt)− bCbΩ−1ρt

i
(35)

where consistent estimators for bC and bΩ can be obtained using Newey andWest�s (1987) method.
Note that this estimator differs from the standard approach by the second term in the summa-
tion. This estimator will be asymptotically efficient if semiparametric efficient estimates of β
are used. By substituting all components, bΩj, of Newey and West (1987) estimator, we will get
a more efficient estimator of Ω.

6 Conclusion

This paper explores scores, semiparametric efficiency bound, and efficient estimation of expec-
tation in dynamic nonlinear systems. The semiparametric efficiency bound is developed for
dynamic problems. The explicit form of the semiparametric efficient expectation estimator is
worked out for two important semiparametric assumptions. Under the assumption of indepen-
dence between disturbances and predetermined variables, the residual-based predictors proposed
by Brown and Mariano (1989) are shown to be semiparametric efficient. Under unconditional
mean zero assumption, we developed improved heteroskedasticity, autocorrelation consistent
(HAC) estimators.
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Appendix: Mathematical Proofs

Proof of Lemma 3.1. DeÞne the vector of unknown parameters

δ =
³
β, fz|z−l(z|z−l)

´
∈ ∆ = Θ× Ξ

DeÞne the sequence of absolute continuous probability measures {Pδ,n}, which represent the
distribution of the sample of size n when δ is the parameter vectors. By Radon-Nikodym
theorem, there exist densities relative to a measure µ. DeÞne the Hilbert space H = H1 +H2

where H1 and H2 are the Hilbert space containing functions of the form

h1(y, w,β) = κ
0 1√
n

nX
t=1

sβ(yt, wt,β)
q
Πnt=1fz|z−l(zt|z−lt )

where κ is a vector of constants with dimensionality equal to that of β. We further deÞne H2

as the set of all bounded, square-integrable functions h2(y,w,β) having the form

h2(y, w,β) =
1√
n

nX
t=1

t(yt, wt,β)
q
Πnt=1fz|z−l(zt|z−lt )

such that
R
h2(y,w,β)

q
Πnt=1fz|z−l(zt|z−lt )dz = 0 where z = (z1, · · · , zn).

DeÞne the norm of an element h ∈ H by

khkH =
½Z

(h1(y,w,β) + h2(y,w,β))
2 dydw

¾1/2

The following sequence of linear operators {An} maps H into Rp × L2 :

An(h) = n
−1/2

 V ∗β R 1√
n

Pn
t=1 s(yt, wt)

1√
n

Pn
s=1 h

0
1

q
Πnt=1fz|z−l(zt|z−lt )dz

h2(y,w,β)
q
Πnt=1fz|z−l(zt|z−lt )


For every h ∈ H, we have

δ +An(h) = δ + n
−1/2

"
κ

h2(y,w,β)
q
Πnt=1fz|z−l(zt|z−lt )

#

To obtain our LAN theory, we have to verify that conditions 1-3 of Ibragimov and Khas�minskii
(1991, p.1682) hold for our model. Condition 1 states that limn→∞ kAn(h)k = 0, for all h ∈ H,

which holds by the boundedness and integrability of h2(y,w,β). Condition 2 will follow if we
can show that for every h ∈ H, there exists n sufficiently large that δ + An(h) ∈ ∆. We note
that β + n−1/2κ ∈ Θ, since β ∈ int Θ for n sufficiently large. It�s not hard to see that for n

sufficiently large, fz|z−l(zt|z−lt ) + n−1/2h2(y, w,β)
q
Πnt=1fz|z−l(zt|z−lt ) is a density function. So,

Condition 2 holds.
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To check Condition 3, we analyze the asymptotic behavior of the likelihood ratio Λn(δ +
An(h), δ) =

dPδ+An(h)

dPδ
.With appropriate assumptions on the distribution of the initial conditions,

and deÞning βn = β + n
−1/2k, we can approximate the likelihood ratio by

Λn(δ +An(h), δ) ∼= Πnt=1

fz|z−l(zt|z
−l
t ;βn)

fz|z−l(zt|z−lt ;β)
+ n−1/2

h2(yt, wt,βn)
q
fz|z−l(zt|z−lt ;βn)

fz|z−l(zt|z−lt ;β)


Note that the following Taylor expansion;

fz|z−l(zt|z−lt ;βn) = fz|z−l(zt|z−lt ;β) + n−1/2κ
0 ∂fz|z−l(zt|z−lt ;β)

∂β

+
1

2n
κ
0 ∂

2fz|z−l(zt|z−lt ;β)
∂β∂β0

κ+Op(n
−3/2)

Now deÞne
rt(β) = h2(yt, wt,β)

q
fz|z−l(zt|z−lt ;β)

We have

n−1/2rt(βn) = n
−1/2rt(β) + n

−1κ
0 ∂rt(β)

∂β
+Op(n

−3/2)

Substituting the above expansion into the likelihood ratio equation, we get

Λn(δ +An(h), δ) ∼= Πnt=1

(
1 + n−1/2κ

0 ∂fz|z−l(zt|z−lt ;β)/∂β
fz|z−l(zt|z−lt ;β)

+n−1/2 h2(yt, wt,β)q
fz|z−l(zt|z−lt ;β)

+
1

2n
κ
0 ∂

2fz|z−l(zt|z−lt ;β)/∂β∂β0
fz|z−l(zt|z−lt ;β)

κ

+
1

n

κ
0
∂rt(β)/∂β

fz|z−l(zt|z−lt ;β)
+ op(1)

)

We note that
exp(x) = 1 + x+

1

2
x2 + · · · ,

that

n−1
nX
t=1

∂2fz|z−l(zt|z−lt ;β)/∂β∂β0
fz|z−l(zt|z−lt ;β)

= op(1),

and that

n−1
nX
t=1

∂rt(β)/∂β

fz|z−l(zt|z−lt ;β)
= op(1).
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Using above results, we obtain

Λn(δ +An(h), δ) = exp

n−1/2
nX
t=1

κ
0 ∂fz|z−l(zt|z−lt ;β)/∂β

fz|z−l(zt|z−lt ;β)
+ n−1/2

nX
t=1

h2(yt, wt,β)q
fz|z−l(zt|z−lt ;β)

− 1

2n

nX
t=1

κ0 ∂fz|z−l(zt|z
−l
t ;β)/∂β

fz|z−l(zt|z−lt ;β)
+

h2(yt, wt,β)q
fz|z−l(zt|z−lt ;β)


2

+ op(1)


DeÞning the quantity

∆n(h) = n
−1/2

nX
t=1

κ0 ∂fz|z−l(zt|z
−l
t ;β)/∂β

fz|z−l(zt|z−lt ;β)
+

h2(yt, wt,β)q
fz|z−l(zt|z−lt ;β)


We can show that

∆n(h)→d N
³
0, khk2

H

´
by the stationarity and boundedness of sum of covariances, where

1

n

nX
t=1

κ0 ∂fz|z−l(zt|z−lt ;β)/∂βfz|z−l(zt|z−lt ;β)
+

h2(yt, wt,β)q
fz|z−l(zt|z−lt ;β)


2

→P khk2
H

It follows that

Λn(δ +An(h), δ) = exp

½
∆n(h)− 1

2
khk2

H + op(1)

¾
so that the LAN conditions of Ibragimov and Khas�minskii (1991) are satisÞed.

Proof of Lemma 3.2. By adding and subtracting,

E

"
1

n

nX
t=1

p(zt)
nX
s=1

q(zs)
0
#
=

1

n

nX
t=1

E

"
p(zt)

nX
s=1

q(zs)
0
#

=
1

n

nX
t=1

E

"
p(zt)

nX
s=−∞

q(zs)
0
#
− 1

n

nX
t=1

E

"
p(zt) ·

0X
s=−∞

q(zs)
0
#

=
1

n

nX
t=1

E

"
p(zt) ·

nX
s=−∞

q(zs)
0
#
+ o(1)

To show the last line, we decompose each term as follows

1

n

nX
t=1

E

"
p(zt)

0X
s=−∞

q(zs)
0
#
=

1

n

nX
t=1

E

"
p(zt)

−rX
s=−∞

q(zs)
0
#
+
1

n

nX
t=1

E

"
p(zt)

0X
s=−r+1

q(zs)
0
#

=
1

n

nX
t=1

E

"
p(zt)

−rX
s=−∞

q(zs)
0
#
+
1

n

nX
t=r+1

E

"
p(zt)

0X
s=−r+1

q(zs)
0
#

+
1

n

rX
t=1

E

"
p(zt)

0X
s=−r+1

q(zs)
0
#

< O(ξ(r)) +O

µ
r2

n

¶
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where ξ(r) > 0.

Proof of Lemma 3.3. Consider an local data generating process with parameter θn. Since
local data generating process for regular parametric submodels are contiguous to the process
with θn = θ0,

√
n(bµ− µ0) =

1√
n

Pn
t=1 ψµ(yt, wt) + op(1) also holds under the process. Then by

the addition and subtraction,

√
n(bµ− µn) =

1√
n

nX
t=1

¡
ψµ(yt, wt)−En

£
ψµ(y, w)

¤¢
+
√
n(µ0 − µn)

+
√
nEn

£
ψµ(y, w)

¤
+ op(1)

where µn = µ(θn). By regularity f(θn)→a.s f(θ0), so that

limn→∞
h

1√
n

Pn
t=1

¡
ψµ(yt, wt)−En

£
ψµ(y, w)

¤¢i
= 0. Also, by LAN condition,

√
n
³bθ − θn´→d

N(0, Vθ). Therefore, we have

1√
n

nX
t=1

¡
ψµ(yt, wt)−En

£
ψµ(y,w)

¤¢→d N(0, Vµ)

where Vµ = E
£

1
n

Pn
t=1 ψµ(yt, wt)

Pn
s=1 ψµ(ys, ws)

0¤ . We can expand √nEn £ψµ(y, w)¤ around
θ0.

√
nEn

£
ψµ(y, w)

¤
=

√
n

(
E
£
ψµ(y,w)

¤
+E

"
ψµ(y,w)

nX
t=−∞

sθ(yt, wt)
0
#
(θn − θ0)

)
+o
¡√
nkθn − θ0k

¢
= E

"
ψµ(y,w)

nX
t=−∞

sθ(yt, wt)
0
#
√
n (θn − θ0) + op(1)

= E

"
1

n

nX
t=1

ψµ(yt, wt)
nX
t=1

sθ(yt, wt)
0
#
√
n (θn − θ0) + op(1)

The last line comes from Lemma 3.2. Also, by differentiability of µ(θ),

√
n(µ0 − µn) =

√
n

·
−∂µ(θ0)

∂θ0
(θn − θ0) + o (θn − θ0)

¸
= −∂µ(θ0)

∂θ0
√
n(θn − θ0) + o(1)

Thus, we have
√
n(bµ− µn) → dN(0, Vµ)

+

(
E

"
1

n

nX
t=1

ψµ(yt, wt)
nX
t=1

sθ(yt, wt)
0
#
− ∂µ(θ0)

∂θ0

)
√
n(θn − θ0) + o(1)

Since
√
n(bµ−µ0)→d N(0, Vµ) for θn = θ0, it follows from the above that the limiting distribution

of
√
n(bµ− µ(θn)) exists and does not depend on the sequence {θn} if and only if(

E

"
1

n

nX
t=1

ψµ(yt, wt)
nX
t=1

sθ(yt, wt)
0
#
− ∂µ(θ0)

∂θ0

)
√
n(θn − θ0) = o(1)
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This equation holds for all sequences such that
√
n(θn − θ0) is bounded if and only if

∂µ(θ0)
∂θ0 =

E
£

1
n

Pn
t=1 ψµ(yt, wt)

Pn
t=1 sθ(yt, wt)

0¤+ op(1).
Proof of Theorem 3.1. For any asymptotically linear and regular estimator bµ the variance

will be

Vµ = lim
n→∞V ar

¡√
nψµ

¢
= lim

n→∞

n
V ar

³√
nψ

∗
µ

´
+ V ar

¡√
nξ
¢o

= V ∗µ + lim
n→∞V ar

¡√
nξ
¢

Therefore, the minimum variance will be V ∗µ .

Proof of Theorem 4.1. Let Sq =
©
B
√
nsβ +

√
nt :

√
nt ∈ Tq and B is a constant q × p matrixª ,

which is linear. By deÞnition, B
√
nsβ = B

√
ns+B Proj (

√
nsβ|Tq) = B

√
ns+

√
nt. So we can

rewrite Sq =
©
B
√
ns+

√
nt :

√
nt ∈ Tq

ª
. From the differentiability of any regular parametric

submodels, ∂µ(θ)/∂θ0 can be written as follows

∂µ(θ)

∂θ0
=

∂
©R
m(y,w,β)Πnt=−∞f(zt|zt−1,β0, h0)dz

ª
∂β0

¯̄̄̄
¯
β0

· ∂β
∂θ0

+

Z
m(y,w,β0) ·

∂Πnt=−∞f(zt|zt−1,β0, h0)/∂θ
0

Πnt=−∞f(zt|zt−1,β0, h0)
Πnt=−∞f(zt|zt−1,β0, h0)dz

= M [Ip, 0] +E

"
m(y,w,β0)

nX
t=−∞

sθ(yt, wt,β0)
0
#

= M
¡
E
£
nss0

¤¢−1
E
£
nss0θ

¤
+E

"
1

n

nX
t=1

m(yt, wt,β0)
nX
t=1

sθ(yt, wt,β0)
0
#
+ op(1)

= E
h³
M
¡
E
£
nss0

¤¢−1√
ns+

√
nm
´√

ns0θ
i
+ op(1)

The third line follows byE [nss0θ] = (E [nss
0] , 0) and Lemma 3.2. Therefore,

√
nψµ =M (E [nss0])−1

√
ns +

√
nm. Since B

√
ns is orthogonal to Tq the projection on Sq is direct summation of the

projection on the linear space of B
√
ns and the projection on Tq. The projection

√
nψµ on Sq is

Proj
¡√
nψµ|Sq

¢
= M

¡
E
£
nss0

¤¢−1√
ns+Proj

¡√
nm|Sq

¢
= M

¡
E
£
nss0

¤¢−1√
ns+E

£
nms0

¤ ¡
E
£
nss0

¤¢−1√
ns+Proj

¡√
nm|Tq

¢
= Proj

¡√
nm|Tq

¢
+
¡
M +E

£
nms0

¤¢ ¡
E
£
nss0

¤¢−1√
ns

=
√
nψ

∗
µ

Therefore, the semiparametric efficiency bound is the covariance of
√
nψ

∗
µ. Since

√
ns is orthog-

onal to the tangent set Tq, then it has zero covariance with Proj (√nm|Tq) . We have the form
given in the theorem for the efficiency bound.
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Proof of Corollary 5.1. By the mean zero property of score functions and the orthog-
onality of Tq and √ns, we have E [nms0] = 0. By the assumption, we have Proj(

√
nm|Tq) =

n−1/2
Pn
t=1(m(yt, wt,β0)− µ0). Therefore, the efficiency bound is

Vp + fM · V ∗β · fM 0 = E

"Ã
1√
n

nX
t=1

(m(yt, wt,β0)− µ0)

!
·
Ã
1√
n

nX
t=1

(m(yt, wt,β0)− µ0)

!0#
+M · V ∗β ·M

Proof of Theorem 5.1. Adding and subtracting, we get the expression

n1/2
³beµ− eµ(β0)

´
= n1/2 [em (β0, h0)− eµ(β0)] + n

1/2
heµ(bβ)− eµ(β0)

i
+n1/2

nhem³bβ, h0

´
− eµ(bβ)i− [em (β0, h0)− eµ(β0)]

o
+n1/2

hem³bβ,bh´− em³bβ, h0

´i
By the mean value theorem, the second term yields

eµ(bβ)− eµ(β0) = fM(β∗)n1/2(bβ − β0),

where β∗ lies between bβ and β0. The continuity of fM(β∗) together with (ii) impliesfM(β∗)n1/2(bβ − β0) = fM(β0)n
−1/2Σnt=1ψβ(yt, wt) + op(1)

Assumptions (iv) and (v) imply that the last two lines are op(1), whereupon we have

n1/2
³beµ− eµ(β0)

´
= n1/2

n
[em (β0, h0)− eµ(β0)] + fM(β0)n

−1/2Σnt=1ψβ(yt, wt)
o
+ op(1)

Now, asymptotic normality of the Þrst term is given by (i) and
√
nψβ must be orthogonal

to elements of Tq for E
£√
nψβ

¤
= 0. Thus

√
nψβ and Proj

¡
n−1/2

Pn
t=1m(yt, wt,β0)|Tq

¢
are

orthogonal and the covariance matrix exists by (ii) and (vi) with the form given in the theorem.
To show eµ(β0) = µ0, we know

eµ(β) =

Z em (β, h0)Π
n
t=−∞f(zt|zt−1;β0, h0)dz

= µ(β, h0)

identically in β since a projection on the tangent set has mean zero. So,

eµ(β0) = µ(β0, h0) = µ0.

By differentiating this equation with respect to β, we have

fM(β0) +E

"em (β0, h0)
nX

t=−∞
sβ(yt, wt)

0
#
=M +E

"
m(y,w,β0)

nX
t=−∞

sβ(yt, wt)
0
#
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Since

E

"em (β0, h0)
nX

t=−∞
sβ(yt, wt)

#
=

1

n

nX
t=1

E

"
Proj (m(yt, wt,β0)|Tq)

nX
t=−∞

sβ(yt, wt)

#

= E

"
m(y,w,β0)Proj

Ã
nX

t=−∞
sβ(yt, wt)|Tp

!0#
,

we have

fM(β0) = M +E

"
m(y,w,β0)

(
nX

t=−∞
sβ(yt, wt)− Proj

Ã
nX

t=−∞
sβ(yt, wt)|Tp

!)0#

= M +E

"
m(y,w,β0)

nX
t=−∞

s(yt, wt)

#

∼= M +E

"
1

n

nX
t=1

m(yt, wt,β0)
nX
s=1

s(ys, ws)

#

Proof of Corollary 5.2. Under the assumptions, Corollary 5.2 follows directly from
Corollary 1 in Brown and Newey (1998).
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