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Abstract

We consider the bootstrap method for the covariates augmented Dickey-
Fuller (CADF) unit root test suggested in Hansen (1995) which uses related
variables to improve the power of univariate unit root tests. It is shown
that there are substantial power gains from including correlated covariates.
The limit distribution of the CADF test, however, depends on the nuisance
parameter that represents the correlation between the equation error and the
covariates. Hence, inference based directly on the CADF test is not possible.
To provide a valid inferential basis for the CADF test, we propose to use the
bootstrap procedure to obtain critical values, and establish the asymptotic
validity of the bootstrap CADF test. Simulations show that the bootstrap
CADF test signi..cantly improves the ..nite sample size performances of the
CADF test, especially when the covariates are highly correlated with the
error. Indeed, the bootstrap CADF test ozers drastic power gains over the
conventional ADF test. We apply our testing procedures to the extended
Nelson-Plosser data set for the post-1929 samples as well as postwar annual
CPI-based real exchange rates for 14 OECD countries.

This version: September 18, 2001

JEL Classi..cation: C12, C15, C22.
Key words and phrases: Unit root tests, covariates, bootstrap consistency.

1We are grateful to Joon Park, Bill Brown, and David Papell for helpful discussions and comments.
Correspondence address to: Robin Sickles, Department of Economics - MS 22, Rice University, 6100 Main
Street, Houston, TX 77005-1892, Tel: 713-348-3322, Fax: 713-348-5278, Email: rsickles@rice.edu.



1. Introduction

Conventional univariate tests for the presence of unit roots in aggregate economic time
series have important implications for the conduct of domestic macro and international
economic policy. These tests unfortunately have been plagued by reliance on relatively
short time series with relatively low frequencies. Size distortions and low power are well-
known problems with conventional testing procedures (see, e.g., Stock 1991, and Campbell
and Perron 1991, Domowitz and EI-Gamal, 2001). Current macroeconomic theory provides
little in the way of guidance on how to increase the power and moderate size distortions other
than by increasing the length of the time series. Reliance on the sort of information that
was utilized in conventional empirical macroeconomics before the Lucas critique took hold,
namely the information contained in the correlated errors of other overidenti..ed equations
in the structural system, has little apparent place in the current unit root testing literature.
Even agreement on the candidate set of correlated series has little theoretical basis (Stock
and Watson, 1999). The ..rst wide-spread use of univariate tests for the presence of unit
roots was carried in the seminal work of Nelson and Plosser (1982) who found that most
U.S. macroeconomic time series could be characterized as a univariate time series structure
with a unit root. Subsequent empirical analyses have largely con..rmed their ..ndings while
the literature continues to acknowledge the low power of unit root tests and an implication
of this low power, that in ..nite samples it is almost impossible to discriminate between a
unit root process and one which is very close to it.

Clearly the unit root hypothesis has important implications for determining the ezect
of random shocks on an economic system and the literature has not been silent on the many
eoorts to overcome the low power of conventional unit root tests. One such contribution
was made by Hansen (1995) who noted that conventional univariate unit root tests ignore
potentially useful information from related time series and that the inclusion of related
stationary covariates in the regression equation may lead to a more precise estimate of
the autoregressive coe@cient. He proposed to use the covariates augmented Dickey-Fuller
(CADF) unit root test rather than conventional univariate unit root tests. He analyzed the
asymptotic local power functions for the CADF t-statistic and discovered that enormous
power gains could be achieved by the inclusion of appropriate covariates. His Monte Carlo
study suggested that such gains were also possible in the ..nite sample power performances
of the CADF vis-a-vis conventional ADF test.

Hansen showed that the limit distribution of the CADF test is dependent on the nuisance
parameter that characterizes the correlation between the equation error and the covariates.
Therefore, it is not possible to perform valid statistical inference directly using the CADF
test. To deal with this inferential di¢culty, Hansen (1995) suggested using critical values
based on an estimated nuisance parameter.? His two-step procedure can be a practical
solution for the implementation of the CADF test. Strictly speaking, however, the validity
of the resulting test is questionable since the variability in the nuisance parameter estimate
is ignored.

ZHansen (1995)’s Table 1 provides asymptotic critical values for the CADF ¢-statistic for values of the
nuisance parameter in steps of .1 via simulations. For intermediate values of the nuisance parameter, critical
values are selected by interpolation.



In this paper, we apply the bootstrap method to the CADF test to deal with the nuisance
parameter dependency and to provide a valid basis for inference based on the CADF test. In
particular, we show the consistency of the bootstrap CADF test and establish the asymptotic
validity of the critical values from the bootstrap distribution of the test. The ..nite sample
performances of the bootstrap CADF test are investigated and compared with those of
the CADF test and the usual ADF test through simulations. The simulations show that
the CADF test based on the two-step procedure suzers serious size distortions, especially
when the covariates are highly correlated with the error, while our bootstrap CADF test
signi..cantly improves the ..nite sample size performances of the CADF test. Moreover, the
bootstrap CADF test ozers dramatic power gains over the conventional ADF test.

As an illustration, we apply our covariate tests and standard unit root tests in a reex-
amination of the stationarity of U.S. domestic macroeconomic aggregates and international
rates of exchange. The former are analyzed with the extended Nelson-Plosser data set for
the post-1929 period. We investigate whether the ..ndings of unit roots in the Nelson-Plosser
data set are reversed when the more powerful covariate tests are used. The latter are ex-
amined using postwar annual CPI-based real exchange rates for 14 OECD countries, for
which most previous studies failed to reject the null hypothesis of a unit root. We ..nd that
our new covariate test rejects the unit root hypothesis in all the series in the Nelson-Plosser
data set for the period 1930-1988 and in most cases for the postwar real exchange rates.

The paper is organized as follows. Section 2 introduces the unit root test with covariates
and derives limit theories for the sample tests. Section 3 applies the bootstrap methodol-
ogy to the sample tests considered in Section 2 and establishes the asymptotic validity of
the bootstrap test. Section 3 also provides a discussion of practical issues arising from the
implementation of the bootstrap methodology. In Section 4, we conduct simulations to
investigate the ..nite sample performances of the bootstrap CADF test. Empirical appli-
cations are presented in Section 5 while Section 6 concludes. All mathematical proofs are
provided in the Appendix.

2. Unit Root Tests with Covariates

2.1 Model and Assumptions
We consider the time series (y;) given by
Ayt = Y1 + Ut (1)

fort =1,...,n, where A is the usual dicerence operator. We let the regression errors (u;) in
the model (1) to be serially correlated, and also allow them to be related to other stationary
covariates. To de..ne the data generating process for the errors (u;) more explicitly, let (w;)
be an m-dimensional stationary covariates. It is assumed that the errors (u;) are given by
a p-th order autoregressive (AR) process speci..ed as

a(L)ug = B(L) we + & 2

where L is the lag operator, a(z) =1 —YF_ ap2® and B(z) = 34_ B2k
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We consider the test of the unit root null hypothesis « = 0 for (y;) given as in (1),
against the alternative of the stationarity o < 0. The initial value of yy of (y;) does not
arect our subsequent analysis so long as it is stochastically bounded, and therefore we set
it at zero for expositional brevity.

Under the null hypothesis of unit root, Ay, = u; and we have from (2) that

P q
Ay =oyr 1+ > oDy ke + Y Brwik + e (3)
k=1 k=—r

which is an autoregression of Ay, augmented by its lagged level y;—1 and the leads and
lags of the m stationary covariates in w;. Indeed, the above regression may be viewed as
a further augmentation of the usual ADF regression, which is an autoregression of Ay
augmented by its lagged level y,_; only. Our test statistics for testing the unit root in (y;),
which are introduced in the next section, will be based on the least squares estimator for «
from this CADF regression.

For the subsequent analysis, we also need to be more explicit about the data generating
process for the stationary variables (w;) that are used as covariates. We assume that (w;)
is generated by an AR(¥) process as

O(L)Wetrt1 =1y 4)

where ®(z) = I, — Y b_, 2.

To de..ne explicitly the correlation between the covariates (w;) and the series to be
tested (y;), we consider together the innovations (7,) and (e;) that generate, respectively,
the covariates (w;) and the regression error (u;), which in turn generates (y;). De..ne

é.t = (8t7 77;)/

and denote by | - | the Euclidean norm: for a vector = = (x;), |z|> = 3, #? and for a matrix
A = (aiz), |[Al =225 afj. We now lay out assumptions needed for the development of our
asymptotic theory.

Assumption 2.1 We assume

(@) Let (¢&,) be a sequence of iid random variables such that E¢, = 0, E¢,& = ¥ > 0 and
E|¢,|° < oo for some s > 4.
(b) a(z), det(®(z)) # 0 for all |z| < 1.

Here, we assume (&,) to be an iid sequence, which is stronger than needed, to make the
bootstrap procedure in the next section meaningful. Assumption 2.1 (a) states that the
regression error () in equation (3) is serially uncorrelated and independent of 7, ., for
k > 1. The condition ecectively implies that the regression error ¢; is orthogonal to the
lagged dizerences of the dependent variable (Ay;_1,...,Ay,—,) and the leads and lags
of the stationary covariates (w¢,,...,w;—q), Which is necessary for the regression (3) to
be consistently estimated via usual least squares estimation. Such orthogonalities can be
achieved by appropriately increasing the orders p, ¢ and r in the lag polynomials «(L)
and §(L) as the sample size tends to in..nity, as shown in Saikkonen (1991). To discuss
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it more explicitly, let v, = >0 | Brwi_ + . The error v, becomes orthogonal to the
lagged dizerences (Ay;—1,. .., Ay—p) if we allow the order p in the lag polynomial a(L) in
(2) to increase at a controlled rate as the sample size increases. The orthogonality between
the error ; in v, and the leads and lags of the stationary covariates (wii,,...,w;—q) can
also be achieved if the orders ¢ and r in the lag polynomial 5(L) are su¢ciently large
enough to whiten the error. Moreover, we may extend the analysis to allow «(L) to be
an in..nite order lag polynomial and approximate it by a ..nite order AR with the order
increasing with the sample size, as done by Berk (1974), Said and Dickey (1984) and more
recently by Chang and Park (2001). Our subsequent theory will also hold under these
schemes. As ¢ and r increase, the error ¢, will become independent of the innovation 7,
at all leads and lags, and as p increases ¢, becomes orthogonal to the lagged dimerences
of the dependent variable. Hence, it is natural to think of the error ¢; as a residual, i.e.,
ag’s and (3,’s are the coe¢cients such that ¢, is orthogonal to all of the included regressors
(Aytfl, ceey Aytfp; WiAry - - ,wt,q).
Under Assumption 2.1 (a), the following invariance principle holds

ns|

[
% > —a BG) ®)

for s € [0,1] as n — oo. The limit process B = (B, B,)" is an (1 + m)-dimensional vector
Brownian motion with covariance matrix

O'2 g
y= (% “’) : 6
<Una Y ©)
The asymptotic behavior of (y;) is determined by that of (u;) as shown in model (1),
and the latter is dependent upon the limiting behaviors of the stationary covariates (w;)

and the innovations (e;) as indicated in the relation (2). We may then derive the limit
behavior of (u;) using the speci..cation given in (2) from those of (¢;) and (w;) as follows:

[ns

]

1
—= ) ur —a (1) (B(1)U(1)By(s) + Be(s)
\/T—Zt:1 t ( Y] )
as n — oo, where 7(1) = 1/a(1) and ¥(1) = ®(1)~!. This is derived in Lemma A.1 (b) in
Appendix. The variance of the limit process given in the previous equation is easily derived
as

0% = 7(1)* (B W(1)Z, (1) B(1) + 02 +2B(1) (1) ) %
using the parameters de..ned in the preceding equations.
Let 2o = (Ayi—1,. -, DYt—p, Wiy, - -, wi_,) . We assume

Assumption 2.2 o2 >0 and Ez:z, > 0.

The condition o2 > 0 ensures that the series (y;) is 1(1) when a = 0, which is necessary to
be able to interpret testing o = 0 as testing for a unit root in (y;). The condition Ez;z;, > 0
implies that the stationary regressors in z; are asymptotically linearly independent, which is



required along with the condition Assumption 2.1 (a) for the consistency of the LS coe@cient
estimates for (z;).2

2.2 Covariates Augmented Unit Root Tests

To introduce our test statistics more ecectively, we ..rst de..ne

n n n _1 n
4, = zy<zy> (z) (z)
t=1 t=1 t=1

t=1
n n n _1 n
B, = ZZ/?A* (Zyt—12£> (Zztzl/t) (Z%Z/t—l)
t=1 t=1 t=1 t=1
n n n -1 n
C, = Zsf — (sté) (Zztzl{) (Z ztst>.
t=1 t=1 t=1 t=1
Now we have
bn = A.B;!
62 = nt (C’n — AiBTZl)
s(an)® = 6.8,

where @, is the OLS estimator of « from the covariates augmented regression (3), 62 is the
usual error variance estimator, and s(éay,) is the estimated standard error for &,,. We also
let

p
k=1

where &;’s are the OLS estimators of «’s in the CADF regression (3).
The statistics that we will consider in the paper are given by

né,
O

Note that S, is a test for the unit root based on the estimated unit root regression coe¢cient,
and T,, is the usual ¢-statistics for testing the unit root hypothesis from the CADF regression
(3). The test T, is considered in Hansen (1995).

The limit theories for the tests S,, and T;, are given in

% As discussed below Assumption 2.1, the entire stationary regressors z; in the regression (3) are orthogonal
to the regression error &, i.e., Ezier = 0 under Assumption 2.1 (a).



Theorem 2.3 Under Assumptions 2.1 and 2.2, we have

as n — oo, where

and P(s) = B.(s)/oe.

The asymptotic distributions are presented explicitly in terms of the Brownian motions B,
and B, via Q = ((1)'¥(1)B,, + B. and P = B./o.. In this way we can easily relate the
asymptotic distributions of the bootstrapped tests, which are developed in the next section,
to the limit distributions of the sample statistics given above.

The null asymptotic distribution for the CADF test T,, given in Theorem 2.3 is actually
equivalent to the one derived in Hansen (1995, Theorem 3). To deal with the nuisance
parameter dependency, the limit distributions there are, however, derived from the limit
Brownian motions (B, B,)’ for the partial sum processes of (¢4, v;)’ where v, = (L) w; +e&.
Notice that B, = @, where ( is de..ned in Theorem 2.3 above. The limit distributions are
then presented in terms of the standard Brownian motions de..ned from the Brownian
motions B, and B,. To see this, let U and W be independent standard Brownian motions.
Then we may express the limit Brownian motion (B;, B,) = (B., Q)" as

(5)- (/e

with 02 = 02 /7(1)2, 0ue = B(1)'¥U(1)oye + 02, and p? = 02_/(c%02), where the nuisance
parameters are obtained from (6) and (7). We may further simplify B, as

B. =o0.(\/1—p2U + pW).
Let P = B./o. = (/1 —p?U + pW) and Q = o,W. Then, the null asymptotics for T,
derived in Theorem 2.3 becomes

1
/ Wdw
0

1
| wav
/ 0
(L) ()
0 0

Notice that the limit Brownian motion U is independent of W, and consequently the distri-
bution of the stochastic integral [, WdU is mixed normal with the mixing variate [ 2. It
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is now easy to see that the limit distribution obtained in the previous equation is equivalent
to the limit distribution derived in Hansen (1995).

The asymptotic distributions for both S,, and 7,, are nonstandard and depend upon
the nuisance parameters that characterize the correlation between the covariates and the
regression error. The limit distributions are therefore basically unknown. Consequently it
is impossible to perform valid statistical inference based directly on the CADF tests. As a
feasible practical solution, one may simulate critical values for the tests for each value of the
nuisance parameter and use its estimated value to obtain the most appropriate critical value
available from the tabulated values.* This two-step procedure can be a feasible practical
solution for the implementation of the CADF tests; however, the resulting tests will not be
valid in strict sense since the variability in the nuisance parameter estimate is not properly
taken into account.

The models with deterministic components can be analyzed similarly. When the time
series (z;) with a nonzero mean is given by

2t = b+ Yt (12)

or with a linear time trend
zt:,u+5t+yt (13)

where (y;) is generated as in (1), we may test for the presence of the unit root in the process
(y;) from the CADF regression (3) de..ned with the ..tted values (y.') or (y7) obtained from
the preliminary regression (12) or (13). The limit theories for the CADF tests given in
Theorem 2.3 extend easily to the models with nonzero mean and deterministic trends, and
are given similarly with the following demeaned and detrended Brownian motions

@)= Q) - [ QUi

and

Q7(s) = Q(s) + (65 — 4) /0 " Ot)dt — (125 — 6) / Lot

0
in the place of the Brownian motion Q(s).

In the next section, we consider bootstrapping the covariates augmented tests S,, and
T, to deal with the nuisance parameter dependency problem and to provide a valid basis
for inference based on the covariates augmented unit root tests.

3. Bootstrap Unit Root Tests with Covariates

In this section, we consider the bootstrap for the covariates augmented unit root tests .S,
and T, introduced in the previous section. We establish the bootstrap consistency of the

4Noting that the null limit distribution of the CADF ¢-test depends only on the correlation coe¢cient
p?, Hansen (1995, Table 1, p.1155) provides the asymptotic critical values for the CADF t-test for values of
p? from 0.1 to 1 in steps of 0.1. The estimate for p? is constructed as p? = 62, /6262, where &,.,62 and &2
are consistent nonparametric estimators of the corresponding parameters.



tests and show the asymptotic validity of the tests. Throughout the paper, we use the usual
notation * to signify the bootstrap samples, and use P* and E* respectively to denote the
probability and expectation conditional on a realization of the original sample. Various
issues arising in practical implementation of the bootstrap methodology are also addressed.

To construct the bootstrap CADF tests, we ..rst generate the bootstrap samples for
the m-dimensional stationary covariates (w:) and the series (y;) to be tested. We begin by
constructing the ..tted residuals which will be used as the basis for generating the bootstrap
samples. We ..rst let u; = Ay; and ..t the regression

p q
. ~1 -
U = E Uik + E Brwi—k + E¢ (14)
k=1 k=—r

by the usual OLS regression. It is important to base the bootstrap sampling on regression
(14) with the unit root restriction o = 0 imposed. The samples generated by regression (3)
without the unit root restriction do not behave like unit root processes, and this will render
the subsequent bootstrap procedures inconsistent as shown in Basawa et al. (1991).

Next, we ..t the /-th order autoregression of w; as

Wiipt1 = (i)lthrr + -+ (i)Zwt-l—r—é-&-l + 7 (15)

by the usual OLS regression. We may prefer, especially in small samples, to use the Yule-
Walker method to estimate (15) since it always yields an invertible autoregression, thereby
ensuring the stationarity of the process w; [see, e.g., Brockwell and Davis (1991, Sections
8.1 and 8.2)]. As the sample size increases, however, the problem of noninvertibility in the
OLS estimation vanishes a.s., and the two methods become equivalent. Our subsequent
results are applicable also for the Yule-Walker method, since it is asymptotically equivalent
to the OLS method.

We then generate the (1+m)-dimensional bootstrap samples &; = (e, n;’)’ by resampling
from the centered ..tted residual vectors (£,) = (&, 7,)" where (Z;) and (3,) are the ..tted
residuals from (14) and (15). That is, obtain iid samples (¢;) from the empirical distribution

of
- 1™~
(ft - ﬁ;€t>

The bootstrap samples (¢}) constructed as such will satisfy E*¢; = 0 and E*¢¢) = %,

where £ = (1/n) iy £€,.°
Next, we generate the bootstrap samples for (w;) recursively from (n;) using the ..tted
autoregression given by

n

t=1

Wiipiy = Prwf, + -+ Qowi g + 0} (16)

®Alternatively, we may resample €; and 7} separately from the & and 7, for t = 1,...,n. In this case,
however, preserving the original correlation structure needs more care. We basically need to pre-whiten
&. and 7, before resampling, and then re-color the resamples to recover the correlation structure. More
speci..cally, we ..rst pre-whiten &; and 7, by pre-multiplying 2712 to Et = (&, 1), for t =1,...,n. Next,
generate & = (ef,n;")’ by resampling from the pre-whitened &; and 7, and subsequently re-coloring them
by pre-multiplying 2'/2 to restore the original dependence structure.



with appropriately chosen /-initial values of (wj), where dp, 1 < k < (¢ are the coeC-
cient estimates from the ..tted regression (15). Initialization of (w;) is unimportant for our
subsequent theoretical development, though it may play an important role in ..nite sam-
ples.® Then we obtain (w},,, ... , wi_,) from the sequence (wy), and construct the bootstrap
samples (v;) as

q
* ok *
Uy = Z Brwi_y + & 17)
k=—r

using the LS estimates Bk, —r < k < q from the ..tted regression (14). Then we generate
(uy) recursively from (v}) using the ..tted autoregression given by

uf = Gruiy e Gyl + 0] 18)

with appropriately chosen p-initial values of (u;), and where &, 1 < k < p are the estimates
for ay’s from the ..tted regression (14).

Finally, we generate (y;) from (u;) with the null restriction o = 0 imposed. This is to
ensure the nonstationarity of the generated bootstrap samples (y;), which is claimed under
the null hypothesis, and to make the subsequent bootstrap tests valid. Thus we obtain (y;)

as
t

Vi =y b =g+ ) up (19)
k=1
which also requires initialization y§. An obvious choice would be to use the initial value yg
of (y¢), and generate the bootstrap samples (y; ) conditional on yo. As discussed earlier, the
choice of initial value may axect the ..nite sample performance of the bootstrap; however,
the exect of the initial value becomes negligible asymptotically as long as it is stochastically
bounded. If the mean or linear time trend is maintained as in (12) or (13) and the unit root
test is performed using the demeaned or detrended data, the eaect of the initial value yg of
the bootstrap sample would disappear. We may therefore just set y; = 0 for the subsequent
development of our theory in this section.
To construct the bootstrapped tests, we consider the following bootstrap version of the
covariates augmented regression (3), which was used to construct the sample CADF tests
S, and T,, in the previous section

p q
Ay =oyi 1+ Y alyf > Brwi g +er (20)
k=1 k=—r

We test for the unit root hypothesis a = 0 in (20) using the bootstrap versions of the
CADF tests, de..ned in (23) and (24) below, that are constructed analogously as their
sample counterparts S,, and 7,, de..ned in (9) and (10).

®We may use the ..rst ¢-values of (w;) as the initial values of (w;). The bootstrap samples (w;) generated
as such may not be stationary processes. Alternatively, we may generate a larger number, say n + M, of
(wf) and discard ..rst M-values of (wf). This will ensure that (w;) become more stationary. In this case
the initialization becomes unimportant, and we may therefore simply choose zeros for the initial values.
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Similarly as before, we denote by &, and s(a;,) respectively the OLS estimator for o and
the standard error for &), obtained from the CADF regression (20) based on the bootstrap
samples. To de..ne them more explicitly, we let

* * */ N/
Rt = (Ayt—17 ceey Ayt_p7 wt-H"? oo 7wt_q)

and subsequently de..ne

n n n - n
A = Zy?_182‘<zy 1%) >z ') (ZZ?&?)
t=1 t=1

t=1 t=1
n n - n
5 = St (Soiar) (Saer) (S
t=1 t=1 t=1 t=1
and the variance of the bootstrap sample (¢}), which is given by

1 n
= (E &) (21)
n

where z, = n=! 37 | . Then we may write the OLS estimator of o from the bootstrap
CADF regression (20) and its estimated variance as

a, = At
Ax\2 . =2 px—1
(an) - Uan :

where &;’s are the estimates for ay’s from the ..tted regression (14).
Now we consider the statistics

* noy,
A )
* é4n
= e 0

corresponding to S,, and 7,, introduced in (9) and (10) of the previous section. For the
construction of the bootstrap statistics S and T}, it is possible to replace &,(1) and &2
with & (1) and 62*, the bootstrap counterparts to &, (1) and 2. We can compute & (1)
and & A2* from regression (20) in the same way that their sample counterparts are computed
from regression (3). We may indeed show that such replacements do not acect the limiting
distributions of the statistics. For the theoretical analysis in the paper, however, we only
consider S} and T7¢ de..ned in (23) and (24) for the expositional brevity.
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To implement the bootstrap CADF tests, we repeat the bootstrap sampling for the given
original sample and obtain a} () and b} () such that

PS5, < ap,(\)} =P H{T, <br (M)} = A (25)

for any prescribed size level A\. The bootstrap CADF tests reject the null hypothesis of a
unit root if
Sn < ak(N), T < B(N).

It will now be shown under appropriate conditions that the tests are asymptotically valid,
i.e., they have asymptotic size A. We do not analyze in the paper the randomness associated
with the bootstrap sampling in computing the bootstrap critical values «(\) and b} (\).
We simply assume that enough number of bootstrap iterations are carried out to make it
negligible. See Andrews and Buchinsky (1999) for a study on the number of bootstrap
iterations to achieve the desired level of bootstrap sampling accuracy.

We now introduce the notation —g4« for bootstrap asymptotics. For a sequence of
bootstrapped statistics (Z;), we write

Zrn —g« Z as.

if the conditional distribution of (Z) weakly converges to that of Z a.s. Here it is assumed
that the limiting random variable Z has distribution independent of the original sample
realization.

We now present the limit theories for the bootstrap CADF tests S;; and 7.

Theorem 3.3 Under the null hypothesis o = 0, we have as n — oo,

Q(s)dP(s)
Sy = o a.s
Q(s)?ds
0
1
Q(s)dP(s)
Tr —% Y a.s.

([ oors)”

under Assumptions 2.1 and 2.2, where Q(s) and P(s) are de..ned in Theorem 2.3.

Theorem 3.3 shows that the bootstrap statistics S;; and 7,y have the same null limiting
distributions as the corresponding sample statistics S,, and 7;,. It implies, in particular,
that the bootstrap CADF tests are asymptotically valid.

To discuss the asymptotic validity of the tests using bootstrap critical values, denote
by S and T the weak limits of S, and T, respectively, and de..ne a(\) and b(\) to be the
asymptotic critical values of the size A tests based on S,, and T, i.e.,

P{S < a(\)} = P{T < b(\)} = \.
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Since the distributions of S and T are absolutely continuous with respect to Lebesgue
measure, we have from Theorem 3.3

P*{S; <a(N)}, PH{T; <b(AN)} — A as. (26)
under Assumptions 2.1 and 2.2, and the results in (26) imply
(an (), b, () = (a(A),b(N)) as.,

where a (\) and b}, (\) are the size \ bootstrap critical values de..ned in (25). Consequently,
we have under Assumptions 2.1 and 2.2

P{S, < a*(\)}, P{T, < b (\)} — A

as n — oo, which proves that the bootstrap CADF tests have size A asymptotically.

Our bootstrap theory here easily extends to the tests for a unit root in models with de-
terministic trends, such as those introduced in (12) or (13). It is straightforward to establish
the bootstrap consistency for the CADF tests applied to the demeaned and detrended time
series, using the results obtained in this section. The bootstrap CADF tests are therefore
valid and applicable also for the models with deterministic trends.

4. Simulations

We perform a set of simulations to investigate the ..nite sample performances of the boot-
strap CADF ¢-test. For the simulations, we consider (y;) given by the unit root model (1)
with the error (u;) generated by

Up = QU1 + Vg,
where the error term (v;) is given by
vy = Pwg + &4
In our simulation study, the covariate (w;) is assumed to follow an AR(1) process
Wil = QWi + 1)y

The innovations &, = (¢, n,)" are i.i.d. N(0,X), where

s—( 1 o=
ope 1
Under this setup, we have the following covariate augmented ADF regression:

Ay = ayp—1 + 0 Ay—1 + Pwg + €. 27

The correlation between the innovation v; = Sw; + &; and the covariate w; depends on two
parameter values, the coe@cient 3 on the covariate and the AR coe@cient ¢ of the covariate,
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as can be seen clearly from the data generating process (DGP). Consequently, the relative
merit of constructing a unit root test from the covariate augmented regression depends on
the parameters 5 and ¢. We control the degree of correlation between the error v; and the
covariate w; through these parameters. The values of the parameters 3 and ¢ are allowed
to vary among {—0.8,—0.5,0.5,0.8}. Parameter «; on the lagged dicerence term does not
acect the aforementioned correlation and, hence, we set a; = 0 throughout the simulations
for convenience. The contemporaneous covariance, o.,, is set at 0.5.

For the test of the unit root hypothesis, we set & = 0 and investigate ..nite sample sizes in
relation to corresponding nominal test sizes. For ..nite sample powers, we consider the cases,
a = —0.05, and —0.10. The ..nite sample performances of the bootstrap CADF test are
compared with those of the sample CADF test computed from the regression (27) and also
with those of the ADF test based on the usual ADF regression. The usual ADF regression
does not include the covariate w; as a regressor and thus the regression error ecectively
becomes v; = PBw; + &; with the DGP considered in this simulation setup. The ezective
error v, is obviously serially correlated due to serial correlation in w;. This invalidates
the use of the conventional ADF test which uses the critical values from the Dickey-Fuller
distribution. To make more meaningful comparisons with the results of the ADF test, we
may increase the number of lagged dicerences to whiten the error v;. In this simulation
experiment we set the lag order for the ADF test at 3.7

The regression equation for the CADF test contains no AR lag terms and includes
only the current value of the covariate in each regression. All regressions include a ..tted
intercept. The regression equation for covariate (15) is estimated using AR(1) model. To
implement the CADF test, asymptotic critical values, corresponding to each sample estimate
of p?, are taken from Table 1 in Hansen (1995).8 Sample sizes of n = 50,100, and 250 are
examined for 1%, 5%, and 10% nominal size tests; we report the results for n = 100 only,
since those for n = 50, and 250 are qualitatively similar. Each replication discards the
..rst 100 observations to eliminate start-up exaects. The reported results are based on 5,000
simulation iterations with the bootstrap critical values computed from 3,000 bootstrap
repetitions. The ..nite sample sizes and powers for the ADF, the CADF, and the bootstrap
CADF tests are reported, respectively, in Tables 1 and 2.

As can be seen clearly from Table 1, the bootstrap CADF test signi..cantly improves the
..nite sample size performances of the sample CADF test, especially when the covariates are
highly correlated with the error. More precisely, when the parameter ( is large in absolute
value and the parameter ¢ is large with positive value, the size distortions of the CADF test
are quite noticeable. The downward size distortions of the CADF test for (3, ¢) = (—0.8,0.8)
and (—0.5,0.8) are very serious while the overrejections for (3, ¢) = (0.8,0.8) and (0.5,0.8)
are not negligible. This tendency becomes more severe as the contemporaneous covariance,
oen, Qets large in absolute value. For example, when o, = 0.8, actual 10% size of the
CADF test for (5, ¢) = (0.8,0.8) goes up to 16% and in the case of (5,¢) = (—0.8,0.8) it

"The ADF test with lag order smaller than 3 tends to overreject the null hypothesis. The lag order 3
seems to have the best overall size and power performances and thus is chosen for our simulations.

8sample estimates of p? are calculated using the Parzen kernel and Andrews’ (1991) automatic bandwidth
estimator.
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goes down to as low as 1%.° In the case of the bootstrap CADF test, however, we do not
observe such size distortions. The bootstrap CADF test performs generally very well for
dizerent choices of parameters. The size distortions of the ADF test are little or mild.

The signi..cant improvement in the ..nite sample sizes that the bootstrap CADF test
oxers does not come at the expense of ..nite sample powers. Indeed, the results in Table
2A and 2B show that the bootstrap CADF test also ocers drastic power gains over the
conventional ADF test for all the 1%, 5%, and 10% tests. In particular, the discriminatory
powers of the bootstrap CADF test are noticeably much higher than those of the ADF test
for the cases when the parameter 3 has positive values. For 5 = 0.8, the powers of the
bootstrap CADF test for a = —0.10 are more than three times as large as those of the ADF
test. The discrepancies become four times as large when o« = —0.05. The bootstrap CADF
test performs much better than the ADF test for low values of p> when 3 is negative. Note
that the powers of the bootstrap CADF test are comparable to those of the CADF test in
most cases, and even better in some cases.

5. Empirical Applications

We next apply our testing procedures to a set of U.S. macroeconomic aggregates and OECD
..nancial time series. A number of econometric studies have found that standard tests for
a unit root, such as the ADF (Dickey and Fuller, 1979, 1981) and the Phillips and Perron
(1988) tests, have low power against stationary alternatives in the relatively small samples
we consider in this section (See, Dejong, Nankervis, Savin, and Whiteman 1992a, 1992b,
among others). This is especially true when a series under investigation is a near-integrated
process. Since the low power of the univariate unit root tests is the primary problem, it
is important to investigate whether or not the null hypothesis of a unit root is rejected
by the more powerful covariate tests. Moreover, various univariate unit root tests provide
mixed results for a given time series when they do not consistently reject or accept the null
hypothesis. In this situation making a de..nitive conclusion about the (non)stationarity of
the time series may be problematic. Hence, the use of more powerful tests may point to
sharper conclusions about the stationarity property of the particular time series.

We consider two data sets. The ..rst is the Nelson-Plosser data set extended by Schotman
and Van Dijk (1991) to end in 1988. The second is annual CPI-based real exchange rates'®
for 14 OECD countries from 1951 to 1998. The real exchange rate, r;;, for the i-th country is
computed using the U.S. dollar as numeraire currency. Real exchange rates are analyzed for
Australia, Austria, Belgium, Canada, France, Finland, Germany, Italy, Japan, Luxemburg,
Netherlands, Norway, Spain, and the United Kingdom.

The testing strategy is as follows. Note ..rst that the order of autoregression has im-
portant ecects on the size and power performances of the tests (see Ng and Perron 1995,
and Schwert 1989, among others). Secondly, note also that a deterministic rule relating lag
length p to sample size n is inferior to a data-dependent rule that takes sample information

®The result for o, = 0.8 is not reported in the paper. It is available upon request from the authors.
1%The real exchange rate is calculated as r;; = log(eip«t/pit), Where e, p.t, and p;; denote respectively
nominal spot exchange rate for the i-th country, the CPI for the U.S., and the CPI for the :-th country.
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into account (Ng and Perron 1995). Based on these ..ndings, we ..rst use the ADF test
with dizcerent lag order selection criteria such as AIC, BIC, and STC (the sequential test
criteriont!), and the Phillips and Perron (PP) tests, Z; and Z,, for dicerent choices of trun-
cation lag parameter. If all of these tests consistently reject or accept the null hypothesis of
a unit root for a particular time series, we will use that variable as a possible candidate for
a covariate. If the variable to be used as a covariate is stationary, then we will use the level
of it, and if the variable is nonstationary, then we will take a ..rst dicerence of it. Thus,
only stationary covariates will be utilized in our multivariate tests.

To the time series whose test results are undetermined, we apply the CADF and the
bootstrap CADF tests with covariates selected by the above ‘pre-tests’ which are now known
to be either 1(0) or 1(1). Among the candidates for covariates we choose the one which gives
us the smallest p? since this covariate provides the most powerful test, as shown in Section
4. Unless otherwise stated, all regressions include a constant and a time trend. For the
covariate tests, we do not use future covariate values, i.e., we let » = 0 in all the regressions.
The AIC lag order selection rule is used as a lag selection criterion for the CADF test
and for the AR estimation of covariates. For the CADF test, asymptotic critical values,
corresponding to each sample estimate of p?, are taken from Table 1 in Hansen (1995). For
the bootstrap test we use critical values computed from 5,000 bootstrap iterations.

5.1 The Extended Nelson-Plosser Data Series

The Nelson and Plosser data set is one of the most widely analyzed macroeconomic aggregate
time series data sets. Nelson and Plosser (1982) studied the time series properties of 14
series and found that all of them, with the exception of the unemployment rate series,
were characterized by stochastic nonstationarity. In our empirical application we use the
extended Nelson-Plosser data set of Schotman and Van Dijk (1991). All variables are
measured in logarithms. The estimated period is 1930-1988 in consideration of a structural
break in 1929 coinciding with the onset of the Great Depression.

We perform the ADF and the PP tests for the 14 time series whose non-stationarity
have been questioned. Table 3 presents the results. With the ADF test we reject the null
hypothesis for 12 series at least at the 10% signi..cance level. With the PP test, the unit
root hypothesis can be rejected for 9 series at least at the 10% signi..cance level. Both tests
fail to reject the unit root hypothesis for real wages. The null hypothesis is rejected using
both tests for 4 series: real GNP, real per capita GNP, employment, and unemployment
rate’?. The standard tests clearly do not give de..nitive conclusions for 9 out of 14 time
series (nominal GNP, industrial production, GNP defator, consumer prices, wages, money
stock, velocity, interest rate, and common stock prices). Panel (c) of Table 3 contains

1 The value of lag length p chosen is determined by a test on the signi..cance of the estimated coeGcients
&;. We actually used a fairly liberal procedure choosing a value of p equal to p* if the ¢ statistic on &; was
greater than 1.60 in absolute value and the ¢ statistic on &; for [ > p* was less than 1.60 (with a maximum
value for p of 8 for the Nelson-Plosser series, and 6 for real exchange rates). This liberal procedure is justi..ed
in the sense that including too many extra regressors of lagged ..rst-dicerences does not acect the size of
the test but only decreases its power. Including too few lags may have a substantial ezect on the size of the
test (Perron 1989, and Ng and Perron 1995).

12|n the case of the unemployment rate series, the result is obtained without a time trend in the regression.
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the test results of the remaining 5 series for which the null hypothesis can be consistently
accepted or rejected.’® We will use these 5 series as covariates for the CADF test. Note
that 1(1) variables will be ..rst-dicerenced before they are used as covariates.*

To the 9 time series whose results are undetermined, we apply the covariate tests using
as covariates the series consistently found to be either 1(0) or 1(1) by the above pre-tests.
The results are given in Panel (a) of Table 3. For all cases the values of 5 are lower than
0.1; thus we should expect, based on our simulation results, more powerful test results with
the CADF and the bootstrap CADF tests than with the ADF test. With these new tests
we can reject the null hypothesis of a unit root for 8 time series. The only exception is for
the series on industrial production. Non-stationarity of the GNP defator, wages, velocity,
interest rate, and common stock prices series are strongly rejected at the 1% signi..cance
level. These results are fairly robust to the choice of maximum lag length in the cases of
nominal GNP, industrial production, velocity, and interest rate, while for the other series
the tests tend to reject the null hypothesis for higher orders of lag length. The results
show that with the more powerful covariate tests there is much less uncertainty about the
potential stationarity of many commonly studied U.S. macroeconomic aggregates.

We can compare our ..ndings with those of Perron (1989). For the post-1929 period, he
could not reject the null hypothesis of a unit root for interest rate. With the CADF and
the bootstrap CADF tests, however, we can reject the unit root hypothesis in the interest
rate series at the 1% signi..cance level. We cannot, however, reject the null hypothesis for
real wages and industrial production. To check the possibility that this dicerence may come
from the exect of the 1973 oil shock, we analyze the two series for the period of 1930-1972.
Results are shown in Panel (b) of Table 3. The ADF and the PP tests give us mixed
results, while the CADF and the bootstrap CADF tests strongly reject the null hypothesis
at the 1% signi..cance level. Therefore, the CADF and the bootstrap CADF tests reject the
nonstationarity of all the series in the Nelson-Plosser data set for the post-1929 samples.

Given that the unit root hypothesis can be rejected for all the series, we can assess the
signi..cance of the other coecients since the asymptotic distributions of their ¢-statistics
are standard normal. In all cases except consumer prices, interest rate, and common stock
prices, the time trend coeCcients are signi..cant at least at the 5% level. These results
suggest that the underlying processes of these series are characterized mainly by stationary
Fuctuations around a deterministic trend function for the sample period. The consumer
prices, interest rate and common stock prices series are analyzed without a time trend and
the results indicate that these series are stationary around a constant.

BWe varied the maximum lag length, gmax, from 2 to 8 for the ADF test, and similarly from 2 to 8 for the
choice of truncation lag parameter for the PP test. The results seem to be robust to the choice of maximum
lag lengths.

Hstock and Watson (1999) note that current theoretical literatures in macroeconomics provide neither
intuition nor guidance on which covariates are candidates for our CADF and bootstrap CADF tests other
than on the basis of stationarity.
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5.2 Real Exchange Rates

Another situation in which the covariate tests are especially useful is with certain types
of panel data in which cross-sectional correlations between time series are present. If this
information can be properly modeled then it can provide an e@ciency gain over univariate
methods as pointed out by Hansen (1995). To properly exploit these potential edciency
(and power) gains, we analyze annual CPI-based real exchange rates for 14 OECD countries
for the period of 1951-1998, the period including the Bretton Woods system and fexible
exchange rate regime. We have a bit more intuition here as to which covariates may be
more important since covariance with close trading partners has a geographical as well as
an economic rationale.

Movements in real exchange rates are thought to be driven primarily by deviations
from purchasing power parity (PPP). Models of exchange rate determination are built on
the assumption that the PPP hypothesis holds. There are, however, conticting empirical
evidences. Recent studies by MacDonald (1996), Frankel and Rose (1996), Oh (1996),
Papell (1997), and O’Connell (1998), among others, suggest that the issue is not completely
settled. In particular, when considering data for the recent fexible rate experience (1973-
present), many researchers have been unable to reject the null hypothesis of a unit root (see,
e.g., Mark 1990, and Edison and Pauls 1993). One response to this non-rejection might be
that the tests do not encompass a su¢ciently long time-span to capture the mean reversion
necessary to reject the null hypothesis. It is of interest, therefore, if real exchange rates are
mean reverting for longer spans of time than the period of recent foat regime, using low
frequency data. One advantage of using relatively low frequency annual or quarterly data is
that it can possibly increase the power of statistical tests for random walk behavior (Shiller
and Perron 1985).

As pretests, the ADF and the PP tests are performed for the 14 real exchange rate series.
With the ADF test, we can reject the unit root hypothesis for 9 countries, while the null
hypothesis is rejected for 12 countries with the PP test. We cannot reject the null hypothesis
with both tests for the Netherlands and Norway, and both tests consistently reject the null
hypothesis of a unit root for 6 countries. Table 4 shows the result. We therefore have
6 remaining countries whose stationarity properties are undetermined (Australia, Austria,
Canada, Japan, Belgium, and Germany).

The results of the covariate tests for the 6 countries are in Panel (a) of Table 4. For
the chosen covariates, the estimated 5? are quite low, ranging between 0.001 and 0.042.
This indicates that the powers of the CADF and the bootstrap CADF tests should be
considerably higher than those of the ADF test (and possibly higher than those of the PP
test). Results based on the CADF and the bootstrap CADF tests now indicate that we
can reject the null hypothesis of a unit root for all the countries, although the evidence
for Belgium and Germany is less compelling than for Australia, Austria, Canada, Japan,
and the U.K. for which the null hypothesis of a unit root is strongly rejected at the 1%
signi..cance level (5% level in the case of Australia).'®

15For these two countries, the CADF test cannot reject the null hypothesis. However, the critical values
of the 10% test are —1.753 and —1.952, respectively, and their test statistics, ¢ = —1.560 and —1.811,
respectively, are very close to the critical values. Thus the evidence for these two countries is marginal.
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Our results based on the more powerful covariate tests are at variance with those based
on standard univariate unit root tests. Frankel (1985) tested for a unit root in the real
exchange rate of the United Kingdom using the Dickey-Fuller test on annual data and was
unable to reject the random walk hypothesis when the sample period was limited to the
postwar era (1945-1984). Whitt (1992) tested for a unit root in the real exchange rates
of the U.K., Japan, Australia, and several other countries using the Dickey-Fuller test on
annual data post World War Il and was unable to reject the null hypothesis of a unit root
for these countries. Flynn and Boucher (1993), using monthly data for the similar period,
conducted tests for the PPP hypothesis and concluded that PPP does not hold for Canada
and Japan. Now, with an expanded data set (through 1998) and more powerful tests, we
can decisively reject the null hypothesis of a unit root for Australia, Canada, Japan, and the
U.K.. These ..ndings are supportive of the idea of Aizenman (1984) on the PPP hypothesis
that “the doctrine of PPP should hold better between neighboring countries, and between
countries with larger potential trade, because of the lower transaction cost of trade in goods
between such countries.”16

6. Conclusion

In this paper, we consider the bootstrap procedure for the covariates augmented Dickey-
Fuller (CADF) unit root test which substantially improves the power of univariate unit root
tests. Hansen (1995) originally proposed the CADF test and suggested a two-step procedure
to overcome the nuisance parameter dependency problem. Here, we propose bootstrapping
the CADF test in order to directly deal with the nuisance parameter dependency and base
inferences on the bootstrapped critical values. We also establish the bootstrap consistency
of the CADF test and show that the bootstrap CADF test is asymptotically valid.

The ..nite sample performances of the bootstrap CADF test are investigated and com-
pared with those of the CADF test and the usual ADF test through simulations. The
bootstrap CADF test signi..cantly improves the ..nite sample size performances of the
CADF test, especially when the covariates are highly correlated with the error. Indeed,
the bootstrap CADF test oxers drastic power gains over the conventional ADF test. As
an illustration, we apply the tests to the 14 macroeconomic time series in the extended
Nelson-Plosser data set for the post-1929 samples as well as postwar annual CPI-based real
exchange rates for 14 OECD countries. In contrast to the results of previous studies using
the univariate unit root tests, our empirical results show that the null hypothesis of a unit
root is rejected for all the series in the Nelson-Plosser data set and for most of the countries
in the real exchange rates series.

7. Appendix

Lemma A.1 Under Assumption 2.1, we have as n — oo

18|n particular, Canada and Japan are ranked as the U.S.’s top two trading partners.
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where ¥ (1) =®(1)~tand 7(1) = 1/a(1).

Proof of Lemma A.1 To establish the stated results, we use the Beveridge-Nelson (BN)
representations for the ..nite order lag polynomials «(L), (L) and ®(L) de..ned in (2) and
(4) and the limit theory from the invariance principle given in (5).

Part (a) We begin by deriving the BN representation for (w;) from (4). Let ®(1) =
— Zﬁzl ®,.. Then we may easily get
¢

P(Dwr =ny_p_q + Z Z D (wy—p — wy—g11)
k=1j=k

or

wy = W(L)n;_p 1 + (V-1 — W), (28)
where ¥(1) = (1)~ and @y = Y j_; Prwi—pr1, With & = (1) 35, @;. Under our
condition in Assumption 2.1, {w,} is well de..ned both in a.s. and L*® sense [see Brockwell
and Davis (1991, Proposition 3.1.1)]. Then we have

t

Z wy = ¥(1) Z Ng—r—1 + (Wo — Wy).
k=1

k=1

Note that (w;) is stochastically of smaller order of magnitude than the sum Y% _, n,, and
hence will become negligible in the limit. Then it follows directly from (5)

[ns] [ns]
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for s € [0, 1], giving the stated result in part (a).
Part (b) Let a(1) =1-Y7%_; o). Similarly, we derive the BN representation for u; from
(2) as follows

1 P p L
uy = E (BL) wy + &) + kgl (1) (gt — Up—p11)
= (1) (B(L) w + &) + (-1 — )

where 7(1) = 1/a(1) and @; = Y-} _; agug—g+1, With a = 7(1) 3-%_; a;. The process {;}
is also well de..ned both in a.s. and L™ sense. We may also obtain the BN representation
for B(L) w; as follows

B(L)w, = wt-i‘z Z B (wi—p—1 — wi—g +Z Z BL (W ik y1 — Werk)

k=0 j=k+1 k=0 j=k-+1
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where w;” = Y070 B w—p and w; = 52 By wiskgr, With B = Y0, 8; and B =
> iek+1B-;. The {w; } and {w; } are well de..ned both in a.s. and L" sense.
Then it follows that

up = (1) (B(1)we + &¢) + (1) ((w;r_1 —w;) + (w; — w;ﬂ) + (@e—1 — ) (29)

o ns] fns | sl
fzut—w ( fzwt‘i‘\/—zgt)-i-op
since
1 el 1
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Now the stated result is immediate from the invariance principle given in (5) and the result
in part (a).
Lemma A.2 Under Assumption 2.1, we have

n 1
(a) -2 2_ _ 7_(12 Q Qd
w3t —a w0 [ Qs

n 1
(o) n! Zyt,lst —q agr(l)/o Q(s)dP(s)
t=1
as n — oo, where Q and P are de..ned in Theorem 2.3.

Proof of Lemma A.2 When o = 0, we have
Yt = Y1+ Ut = Zuk

since yo = 0. Then it follows from Lemma A.1 (b) that

[ns]
% Yo = Zut g 7 (D)Qs) (30)

using the notation introduced in Theorem 2.3. The stated result in part (a) now follows
immediately from (30) and the continuous mapping theorem. For part (b), we also have
from (30) that

%Z%A&f = ZM&
t=1
E— /0 Q(s)dP(s)
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as required, where P is the normalized Brownian motion of B., i.e., P = B./o..

Proof of Theorem 2.3 We have from Lemma 2.1 of Park and Phillips (1989) that

Zztzé = Op(n), Zztet = 0,(n'/?), and Z?Jt—lzfe = Op(n).
t=1 t=1

t=1

Then it follows that
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Hence,
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Under the null, o = 0 and we have from (9) that
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as required, due to Lemma A.2. Similarly, the stated limit distribution of T,, follows directly
from (10) and Lemma A.2 as
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For the derivation of the limit distributions for the bootstrap CADF tests .S;; and 7}, we
rely on the invariance principles for the bootstrapped samples, which are analogous to those
derived for the original samples in Lemma A.1. We will use the symbol o5 (1) to signify the
bootstrap convergence in probability. For a sequence of bootstrapped random variables 77,
for instance, Z;; = o;(1) a.s. and in P imply respectively that

P*{|Z;| > 6} —0 as. orin P

for any 6 > 0. Similarly, we will use the symbol O;(1) to denote the bootstrap version of
the boundedness in probability. Needless to say, the de..nitions of 0;,(1) and O, (1) naturally
extend to ojy(c,) and Oj(c,) for some nonconstant numerical sequence (c,,). Many of well
known results for o, and O, extend to o, and Oy and are provided in Lemma 3.1 of Chang
and Park (1999).

For a sequence of bootstrapped statistics (Z;) which weakly converges a.s. (or in P),
it follows that Z; = O;(1) as. (or in P). Moreover, if Z —4 Z as. (or in P), then
Zy+ Yy —q Z as. (orin P) for any (Y,7) such that Y,* = o;(1) a.s. (or in P). For further
discussions on bootstrap asymptotics, the reader is referred to Park (1999) and Chang and
Park (1999).

Lemma A.3 Under Assumption 2.1, we have
[ns]

(@) \/— Zwt —a W(1)By(s)
[ns

(b) —= Zut —g 7( 5(1) (1) By(s) + B:(s))
as n — oQ.

Proof of Lemma A.3 Under Assumption 2.1, the following invariance principle for (£7) =
(ef,my") holds:

[ns]

76 i 8=(p) (31)

as n — oo due to Theorem 3.2 of Chang, Park and Song (2000). As in the proof of Lemma
A.1, we use the BN representations for the bootstrapped series (w;), (vf) and (u;) to derive
the limit distributions of their partial sum processes.

Part (a) Let ®,(1) = I,, — Y.t_, @, Where ®;’s are the coeCcient estimates from the
..tted regression (15), and de..ne

U,(1) = d,(1)7 L

We may derive the BN representations for (w;) from the ..tted autoregression (15) as we
did for (w;) in (28) as .
wik = ‘I’n(l)n:ﬁer + (71}2;1 - w:ﬁk)a

where @ = 35— (U (1) S5, ®j)w; ., . Then the stated result in part (a) follows directly
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from the invariance principle (31) as
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Part (b) De..ne
7~Tn(1> = &n(l)il and Bn(l) = Z Bk?

where &, (1) is de..ned as in (22) and Bk’s are the estimates from (14). Now we derive the
BN representation for (u;) from the ..tted regression (14) similarly as in (29) as

ui = a(1) (B (V)] +&7) + Fa(L) (@57 — a7 ) + (@7 — @) + (@ — 47), (32)
where

i = 3 () i

k=1

.

Wt = Zﬂk wy_y,

o ~—1

wiT = Z Br Wikt
k=0

with 3 = Y 1 B;and B =37, B Note that 7,(1) —a. m(1) and 3,(1) —a.s.
B(1). Then the stated result follows as

[ns] N [ns] [ns
Zut = (ﬂ(l)'% sz‘ Zst> + 05,
t=1

—% 7(1) (B(1)"¥(1)B,(s) + Be(s))

due to (31) and the result in part (a).
Lemma A.4 Under Assumption 2.1, we have

n 1
@n2Y 52— 7(1)? /0 Q(s)%ds
t=1

n 1
) n 'Sy — oer(1) /0 Q(s)dP(s)

t=1
as n — oo, where Q(s) and P(s) are de..ned in Theorem 2.3.

Proof of Lemma A.4 We have from (19) and the BN representation of (u;) derived in
(32) that

NI kZ::luk + 7n (Uo - U[ns}> + \/—%



[ns]
= (1) —= B wk + € ) + 0p(1)*
<>\/ﬁk§1(<> F+ek) +op(1)

—a (1) (B(1)¥(1)By(s) + Be(s)) (33)
using the results in Lemma A.3. Now we may easily derive the stated results in parts (a)
and (b) as in the proof of Lemma A.2.

Proof of Theorem 3.3 The stochastic orders for the bootstrap sample moments appear-
ing in the de..nitions of the bootstrap test S;; and 7;; are easily obtained

n -1
> 7
t=1

from the results in Lemma 3.3 of Chang and Park (2000). Then we have

n

2 #ie

=1

=05(n7h), = O3(n*/?) and

Zyt 12

t=1

= Op(n)

and consequently

n
ntAr = pt ny_lsz‘ +0,(1)
t=1

n’B; = _ZZyt 1+ 0p(

Note that &, (1) —,.s a(l) and 62 —, . o2. Then it follows from the de..nitions of S
and T, given in (23) and (24), and the results in the previous equation that

n
n_lzy:—ﬁ:
t=1
-2 < *2
n Zyt—l
t=1
n
) 4 . n_lzy?—ﬁf
* t=1 *
I, = —(—1/2> = = +op(1).
n n

EN o 12 p
(n_ Zy?—1>
=1

Now the stated limit theories for S}, and 7;; follow immediately from Lemma A.4.
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Table 1: Finite Sample Sizes for AR Errors

ADF CADF BCADF
8 ¢ 1% 5% 10% 1% 5% 10 % 1% 5% 10 % P
0.000  0.000 0.013 0.056 0.103 0.012 0.053 0.103 0.012 0.055 0.114 0.991
0.800 0.800 0.014 0.063 0.112 0.021 0.075 0.132 0.012 0.047 0.100 0.369
0.500 0.011 0.052 0.101 0.014 0.061 0.118 0.010 0.048 0.100 0.587
-0.500 0.009 0.051 0.101 0.012 0.061 0.112 0.010 0.054 0.103 0.771
-0.800 0.009 0.047 0.088 0.013 0.058 0.111 0.011 0.056 0.111 0.871
0.500 0.800 0.009 0.043 0.087 0.014 0.069 0.127 0.009 0.048 0.093 0.478
0.500 0.010 0.051 0.100 0.013 0.062 0.115 0.010 0.054 0.107 0.726
-0.500 0.011 0.047 0.098 0.013 0.050 0.098 0.011 0.049 0.099 0.886
-0.800 0.010 0.046 0.089 0.010 0.051 0.105 0.010 0.052 0.110 0.921
-0.500 0.800 0.009 0.039 0.076 0.003 0.016 0.031 0.008 0.040 0.080 0.206
0.500 0.010 0.055 0.104 0.006 0.032 0.058 0.010 0.053 0.101 0.583
-0.500 0.010 0.053 0.103 0.011 0.051 0.100 0.011 0.056 0.116 0.866
-0.800 0.010 0.048 0.091 0.012 0.053 0.105 0.013 0.059 0.114 0.902
-0.800  0.800 0.008 0.041 0.083 0.001 0.006 0.017 0.006 0.037 0.079 0.030
0.500 0.011 0.054 0.103 0.004 0.018 0.036 0.009 0.042 0.092 0.307
-0.500 0.012 0.053 0.102 0.010 0.050 0.098 0.010 0.055 0.115 0.679
-0.800 0.011 0.054 0.102 0.011 0.051  0.099 0.011 0.055 0.113 0.754

Note: BCADF stands for the bootstrap CADF test.
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Table 2A: Finite Sample Powers for AR Errors (o = —0.10)

ADF CADF BCADF

154 ¢ 1% 5% 10% 1% 5% 10 % 1% 5% 10 % P

0.000  0.000 0.076 0.255 0.417 0.102 0.323  0.508 0.090 0.313 0.508 0.990

0.800 0.800 0.045 0.170 0.301 0.997 0.999 1.000 0.996 1.000 1.000 0.407
0.500 0.060 0.229 0.372 0.954 0.995 0.998 0.938 0.994 0.998 0.609
-0.500 0.072 0.247 0.398 0.456 0.831 0.937 0.395 0.797 0.929 0.769
-0.800 0.055 0.211 0.370 0.358 0.760  0.908 0.324 0.746 0.905 0.875

0.500 0.800 0.026 0.127 0.234 0.939 0991 0.996 0.918 0.985 0.996 0.493
0.500 0.060 0.225 0.375 0.661 0.906 0.966 0.601 0.888 0.962 0.731
-0.500 0.074 0.254 0.412 0.251 0.635 0.820 0.212 0.601 0.807 0.888
-0.800 0.060 0.227 0.375 0.225 0.587 0.781 0.197 0.565 0.774 0.922

-0.500  0.800 0.029 0.129 0.241 0.716  0.863  0.922 0.807 0.940 0.973 0.207
0.500 0.093 0.296 0.454 0.171 0389 0.534 0.226 0.518 0.675 0.585
-0.500 0.071 0.260 0.416 0.073 0.256  0.420 0.068 0.252 0.422 0.866
-0.800 0.061 0.225 0.375 0.075 0.252 0.416 0.068 0.252 0.418 0.903

-0.800  0.800 0.031 0.132 0.240 0.961 0.989 0.994 0.981 0.995 0.997 0.027
0.500 0.075 0.254 0.418 0.447 0.685 0.793 0.581 0.821 0.900 0.310
-0.500 0.077 0.258 0.423 0.086 0.275 0.417 0.082 0.284 0.441 0.678
-0.800 0.067 0.248 0.416 0.079 0.259 0.411 0.072 0.261 0.423 0.754
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Table 2B: Finite Sample Powers for AR Errors (a = —0.05)

ADF CADF BCADF

B8 ¢ 1% 5% 10% 1% 5% 10 % 1% 5% 10 % P>

0.000  0.000 0.029 0.120 0.220 0.030 0.131 0.240 0.024 0.126 0.241 0.991

0.800 0.800 0.028 0.106 0.194 0.949 0.984 0.993 0.937 0.983 0.991 0.406
0.500 0.026 0.110 0.196 0.554 0.827 0.916 0.504 0.808 0.910 0.608
-0.500 0.026 0.113 0.201 0.105 0.340 0.521 0.077 0.297 0.487 0.771
-0.800 0.021 0.090 0.176 0.076  0.270  0.446 0.067 0.255 0.435 0.875

0.500 0.800 0.013 0.071 0.138 0.718 0.885  0.940 0.664 0.871 0.932 0.492
0.500 0.023 0.107 0.205 0.238 0.519 0.690 0.192 0.484 0.670 0.731
-0.500 0.029 0.115 0.206 0.058 0.215 0.367 0.047 0.198 0.351 0.889
-0.800 0.023 0.095 0.181 0.053 0.196 0.343 0.043 0.188 0.333 0.922

-0.500  0.800 0.012 0.060 0.121 0.334 0537 0.638 0.451 0.681 0.790 0.206
0.500 0.035 0.134 0.232 0.052 0.158  0.262 0.078 0.248 0.385 0.584
-0.500 0.029 0.112 0.208 0.028 0.112 0.204 0.026 0.113 0.212 0.867
-0.800 0.022 0.096 0.186 0.027  0.107 0.202 0.026 0.109 0.208 0.903

-0.800  0.800 0.015 0.072 0.137 0.699 0.846 0.901 0.808 0.922 0.957 0.029
0.500 0.028 0.114 0.214 0.134 0.308 0.438 0.222 0.474 0.621 0.308
-0.500 0.028 0.111 0.201 0.029 0.113 0.216 0.028 0.118 0.231 0.679
-0.800 0.023 0.110 0.200 0.026 0.112 0.201 0.026 0.116 0.213 0.754
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Table 3. Tests for a Unit Root in the Extended Nelson-Plosser Series

Panel (a): 1930-1988

Variable AIC BIC STC Zy Zo CADF Covariate

Nominal GNP —2.113 —2.113  —3.245° —4.447* —30.338" —2.398"**  Employment 0.001
Industrial production —5.159* —5.159* —5.159* —2.716 —14.349 —0.063 Unemployment rate  0.012
GNP detator —2.021 —2.021 —4.072¢ —2.961 —12.254  —3.944°***  Real GNP 0.009
Consumer prices —3.346°  —1.280 —2.016 —2.646 —9.741 —2.289¢" Real GNP 0.084
Wages —3.977%  —2.236 —3.977% —4.304° —26.822°® —4.703%***  Unemployment rate 0.032
Money stock —2.717  —2.717  —2.717  —3.551° —23.166° —2.779°**  Unemployment rate  0.003
Velocity —2.466  —4.348* —2.925  —4.579* —35.449* —7.906**** Employment 0.002
Interest rate —3.411°  —3.411°* —2.496 —2.624 —7.227  —3.081%*** Employment 0.000
Common stock prices  —1.727 —1.727 —3.361° —4.214® —20.432° —3.187*"** Real GNP 0.011

Panel (b): 1930-1972

Variable AlC BIC STC Z Za CADF Covariate P

Industrial production —6.062* —6.062 —6.062* —3.057 —16.460 —4.703“*** Unemployment rate 0.045
Real wages —3.355¢  —3.355°¢ —-3.097 —3.203° —20.122° —6.603*"** Real per capita GNP 0.070

Panel (c):1930-1988

Covariate AIC BIC STC Zy Zo

Real GNP —5.253% —3.307° —3.547° —3.424° —22.870°

Real per capita GNP —6.557 —6.557% —6.557° —3.295° —21.230°

Employment —4.866% —3.161° —4.866% —3.802° —27.166°

Unemployment rate  —3.065° —3.065° —3.003® —2.692° —13.996°

Real wages —1.222 —1.222 —1.302 —1.337 —5.169
Note.

1. Columns 2-4 denote the ADF test results using the lag order selection criteria such as AIC, BIC, and
STC (the sequential test criterion).

2. The result for unemployment rate series is obtained without a time trend in the regression.

3. a, b, and c denote statistical signi..cance at the 1%, 5%, and 10% level, respectively.

4, ***** and * denote statistical signi..cance at the 1%, 5%, and 10% level, respectively, for the bootstrap
test.
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Table 4. Tests for a Unit Root in Real Exchange Rates

Panel (a)

Country AlC BIC STC Z Za CADF Covariate P
Australia —2.438 —2.438 —2.438 —3.349° —18.958° —1.965°**  France 0.024
Austria —3.494°  —3.494° —3.591° —3.169 —19.162° —2.590°*** Italy 0.005
Canada —2.394 —2394 —2535 —3.115 —21.247°* —3.145%*  Finland 0.042
Japan —3.159° —3.159° —2.698 —3.194° —22.783% —4.485%*** Spain 0.023
Belgium  —3.226° —3.226° —3.226° —3.167 —19.836° —1.560"  France 0.000
Germany  —2.985 —2.985 —2.985 —2.989 —17.804° —1.811" Netherlands  0.004
Panel (b)

Covariate AlIC BIC STC Z4 Za

France —3.416° —3.416° —3.416® —3.220° —19.492°

Finland —3.689° —3.689° —4.457% —3.525° —24.551°

Italy —3.308° —3.308° —3.712°® —3.258° —19.965°

Luxemburg —2.950° —2.950° —2.950° —2.863° —15.714°

Spain —3.612° —3.612° —3.787°% —3.470° —23.934%

United Kingdom —5.046° —5.046® —5.046° —3.737° —25.329°

Netherlands —2.420 —2420 —2.601 —2.445 —12.689

Norway —1.995 —1.995 —1.995 —2.148 —10.837

Note.

1. Columns 2-4 denote the ADF test results using the lag order selection criteria such as AIC, BIC, and
STC (the sequential test criterion).

2. The result for Luxemburg with the ADF test and those for Australia, Austria, and Belgium with the
CADF test are obtained without including a time trend function.

3. See Note in Table 3 for the de..nition of (a, b, ¢) and (***,***).
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