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Abstract

In this paper, we derive the asymptotic distributions of Augmented-
Dickey-Fuller (ADF) tests under very mild conditions. The tests were
originally proposed and investigated by Said and Dickey (1984) for test-
ing unit roots in …nite-order ARMA models with iid innovations, and are
based on a …nite AR process of order increasing with the sample size. Our
conditions are signi…cantly weaker than theirs. In particular, we allow
for general linear processes with martingale di¤erence innovations, pos-
sibly having conditional heteroskedasticities. The linear processes driven
by ARCH type innovations are thus permitted. The range for the per-
missible increasing rates for the AR approximation order is also much
wider. For the usual t-type test, we only require that it increase at order
o(n1=2) while they assume that it is of order o(n·) for some · satisfying
0 < · · 1=3.
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1. Introduction

The tests for unit roots in AR processes were …rst proposed and investigated by Dickey
and Fuller (1979, 1981). The tests by Dickey-Fuller (DF) are based on …nite-order AR
models, the orders of which are assumed to be known.2 They were later extended by
Said and Dickey (1984) to allow for …nite ARMA processes of unknown order. They
show that the tests, which are frequently referred to as Augmented-Dickey-Fuller
(ADF) tests have the same limiting distributions as DF tests for any …nite-order
ARMA processes with iid innovations, if we increase the order of the approximating
AR regression models appropriately as the sample size grows. It seems that ADF
tests are most commonly used by practitioners, along with the tests by Phillips (1987)
and Phillips and Perron (1988), which will be called PP tests in the paper.

It is widely conjectured that ADF tests are valid for a class of models broader than
those considered by Said and Dickey (1984). In particular, it is routinely assumed
that they have the same asymptotic distributions as DF tests, when the underlying
time series are generated by general linear processes having martingale di¤erence
innovations and satisfying mild coe¢cient summability conditions. In much of the
unit root literature, ADF tests are indeed considered under the same conditions as PP
tests, whose asymptotics have long been established under much weaker conditions.
To the best of our knowledge, however, it has not yet been shown rigorously that
ADF tests have the same asymptotically invariant distributions as DF tests for such
a wide class of data generating processes.

The range of the increasing rates for the AR approximation order required in Said
and Dickey (1984) is also believed to be unnecessarily stringent. They assume that it
increases at order o(n·), for some · satisfying 0 < · · 1=3, as the sample size n gets
large. In particular, the logarithmic rate of increase in the order of approximating
AR regressions is not permitted. This can be a serious limitation for the practical
applications of the tests. In practice, we often use the order selection rules such
as AIC and BIC, which set the AR order increasing at a logarithmic rate. Ng and
Perron (1995) indeed show that their results hold in the absence of the lower bound,
and thereby validate the use of such information criteria.

The purpose of this paper is to verify the validity of ADF tests under a set of
su¢cient conditions that are ‡exible enough to include most of the interesting mod-
els used in practical econometrics. Our conditions allow for general linear processes
driven by martingale di¤erence innovations, which may well have conditional het-
eroskedasticities as in ARCH processes. We only assume a very mild summability
condition on their coe¢cients. This contrasts with Said and Dickey (1984), who con-
sider linear processes with geometrically decreasing coe¢cients and iid innovations.
Moreover, a much wider range of the increasing rates for the AR approximation or-
der is permitted. For the usual t-type test, we require that the rate increase at order
o(n1=2) in contrast to o(n1=3) assumed in Said and Dickey (1984).

The plan of the paper is as follows. Section 2 introduces the model and assump-
2Pantula (1986, 1988) extended the tests to AR(1) models with martingale di¤erence errors and

to AR(p) models with ARCH errors.
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tions. The ADF tests and their asymptotic results are presented in Section 3. Section
4 concludes the paper, and Section 5 collect all mathematical proofs.

2. The Model and Assumptions

In this section, we present the model and assumptions. Let the time series (yt) be
given by

yt = ®yt¡1 + ut (1)

with (ut) generated as
ut = ¼(L)"t (2)

where "t) is white noise, L is the usual lag operator and

¼(z) =
1X

k=0
¼kzk

The test of the unit root null hypothesis ® = 1 will be considered for (yt) given as in
(1), against the alternative of stationarity j®j < 1. The initial value y0 of (yt) does
not a¤ect our subsequent asymptotics as long as y0 = Op(1), and therefore, we set
y0 = 0 for expositional brevity. We make the following assumptions.

Assumption 1 Let ("t;Ft) be a martingale di¤erence sequence, with some …ltration
(Ft), such that (a) E("2t ) = ¾2, (b) (1=n)

Pn
t=1 "2t !p ¾2 and (c) Ej"tjr < K with

r ¸ 4, where K is some constant depending only upon r.

Assumption 2 Let ¼(z) 6= 0 for all jzj · 1, and
P1
k=0 jkjsj¼kj < 1 for some s ¸ 1.

Our speci…cation in (2) with conditions in Assumptions 1 and 2 allows (ut) to
be generated as a quite general linear process. Assumption 1 sets the innovation
sequence ("t) to be martingale di¤erences. With the coe¢cient summability condition
in Assumption 2, condition (a) implies that (ut) is weakly stationary. Given condition
(a), condition (b) requires that the weak law of large numbers hold for the squared
innovations ("2t ), for which it su¢ces to assume suitable mixing conditions for them.
Under Assumption 2, we have due to the Marcinkiewicz-Zygmund inequality in, e.g.,
Stout (1974, Theorem 3.3.6), that the r-th moment of (ut) exists and is bounded
uniformly in t. Note that second order stationary ARCH and GARCH models satisfy
our conditions in Assumption 1.

The asymptotics developed in the literature for PP and other nonparametric tests
allow for unconditional, as well as conditional, heterogeneity. For these tests, we
commonly assume that (ut) in (2) is generated by martingale di¤erence innovations
("t) satisfying

1
n

nX

t=1
E("2t jFt¡1) !p ¾2 (3)
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and for some constant K
E("4t jFt¡1) < K a:s: (4)

which corresponds to our Assumption 1 (in addition to the coe¢cient summability
condition comparable to our Assumption 2) [see, e.g., Stock (1994)]. Conditions in
(3) and (4) imply condition (b) in Assumption 1 [see Hall and Heyde (1980, Theo-
rem 2.23)]. Of course, condition (4) alone also implies condition (c) in Assumption
1. Therefore, besides unconditional homogeneity in condition (a), Assumption 1 is
weaker than conditions (3) and (4) taken together.

In place of Assumption 1, we also consider

Assumption 10 Let ("t;Ft) be a martingale di¤erence sequence, with some …ltra-
tion (Ft), such that (a) E("2t jFt¡1) = ¾2 and (b) Ej"tjr < K with r ¸ 4, where K is
some constant depending only upon r.

Assumption 10 is stronger than Assumption 1. Condition (a) in Assumption 10 implies
condition (a) in Assumption 1. Given condition (b) in Assumption 10, condition (a)
in Assumption 10 also implies condition (b) in Assumption 1 [see again Hall and
Heyde (1980, Theorem 2.23)]. Obviously, condition (3) holds under condition (a) in
Assumption 10, and condition (4) implies condition (b) in Assumption 10. Therefore,
conditions (3) and (4) are neither necessary nor su¢cient for Assumption 10.

Remark 2.1: AR Approximation Under Assumptions 1 and 2, we may write

®(L)ut = "t

with

®(z) = 1 ¡
1X

k=1
®kzk

and approximate (ut) in r-th mean by a …nite order AR process

ut = ®1ut¡1 + ¢ ¢ ¢ + ®put¡p + "p;t

with

"p;t = "t +
1X

k=p+1
®kut¡k

It is well known [see, e.g., Brillinger (1975)] that condition in Assumption 2 implies
that

P1
k=1 jkjsj®kj < 1, and we have

P1
k=p+1 j®kj = o(p¡s). Therefore, given the

existence of the r-th moment of (ut) implied by Assumptions 1 and 2,

Ej"p;t ¡ "tjr · Ejutjr
0
@

1X

k=p+1
j®kj

1
A
r

= o(p¡rs)

The approximation error thus becomes small as p gets large. Later, we will rely on
the above AR approximation for (ut) with p increasing as the sample size. To make
it explicit that p is a function of sample size n, we will often write p = pn.
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Remark 2.2: Beveridge-Nelson Representation We may write (ut) as

ut = ¼(1)"t + (¹ut¡1 ¡ ¹ut) (5)

where

¹ut =
1X

k=0
¹¼k"t¡k; ¹¼k =

1X

i=k+1
¼i

Under our condition in Assumption 2, we have
P1
k=0 j¹¼kj < 1 [see Phillips and Solo

(1992)] and therefore (¹ut) is well de…ned both in a.s. and Lr sense [see Brockwell and
Davis (1991)].

Under the unit root hypothesis, we may now sum (5) on both sides getting

yt = ¼(1)wt + (¹u0 ¡ ¹ut) (6)

where wt =
Pt
k=1 "k. Consequently, (yt) behaves asymptotically as the constant ¼(1)

multiple of (wt). Note that (¹ut) is stochastically of smaller order of magnitude than
(wt). The representations in (5) and (6) were used originally by Beveridge and Nelson
(1981) to decompose aggregate economic time series into permanent and transitory
components. They are fully and rigorously developed in Phillips and Solo (1992),
and used to obtain asymptotics for linear processes.

Assumption 3 Let pn ! 1 and pn = o(n1=2) as n ! 1.

Conditions in Assumptions 2 and 3 are signi…cantly weaker than the ones used by
Said and Dickey (1984). They only consider (ut) generated by a …nite order ARMA
process and thus e¤ectively look at the case that (¼k) decays geometrically. Their
assumption corresponds to s = 1 in our Assumption 2. Also, they assume pn = cn·

for 0 < · · 1=3. Therefore, for instance, the logarithmic rate for p is not allowed in
their result. This may restrict the use of the tests in some practical applications.3

In addition to Assumption 3, we also consider

Assumption 30 Let pn ! 1 and pn = o((n= log n)1=2) as n ! 1.

Assumption 300 Let pn ! 1 and pn = o(n1=3) as n ! 1.

In Assumptions 30 and 300, we require p to increase at slower rates.

3. ADF Tests and Their Limiting Distributions

The test of the unit root hypothesis for the time series (yt) given by (1) and (2) can
be based on the regression

yt = ®yt¡1 +
pX

k=1
®k4yt¡k + "p;t (7)

3Some statistical packages like SPLUS set by default the maximum lag length to be 10 log10(n)
for the order selection criteria such as AIC and BIC.
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due to Remark 2.1 above. Note that under the null hypothesis we have ® = 1 and
4yt = ut. To introduce the test statistics, we de…ne

xp;t = (4yt¡1; : : : ;4yt¡p)0

and subsequently let

An =
nX

t=1
yt¡1"p;t ¡

Ã nX

t=1
yt¡1x0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;t"p;t

!
(8)

Bn =
nX

t=1
y2t¡1 ¡

Ã nX

t=1
yt¡1x0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;tyt¡1

!
(9)

Cn =
nX

t=1
"2p;t ¡

Ã nX

t=1
"p;tx0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;t"p;t

!
(10)

Now we have

®̂n ¡ 1 = AnB¡1
n

¾̂2
n = n¡1

³
Cn ¡ A2

nB
¡1
n

´

s(®̂n)2 = ¾̂2
nB

¡1
n

where ®̂n is the OLS estimator of ®, ¾̂2
n is the usual error variance estimator, and

s(®̂n) is the estimated standard error for ®̂n. We also let

®̂n(1) = 1 ¡
pX

k=1
®̂p;k (11)

where ®̂p;k’s are the OLS estimators of ®k’s in regression (7).
The statistics that we will consider in the paper are given by

Tn =
®̂n ¡ 1
s(®̂n)

(12)

Sn =
n(®̂n ¡ 1)

®̂n(1)
(13)

Note that Tn is the t-statistic for the unit root hypothesis, and Sn is a normalized
unit root regression coe¢cient. The tests based on Tn and Sn will be referred to
respectively as the t-test and the coe¢cient test. They are the ADF tests which are
extensions of the tests considered by Dickey and Fuller (1979, 1981) for the AR(1)
model. Said and Dickey (1984) looked at Tn only.

Now we derive the asymptotic null distributions of the statistics Tn and Sn de…ned
in (12) and (13). In what follows, we assume that ® = 1. Also, we use the notation
k ¢ k to signify the usual Euclidean norm. We de…ne kxk = (x21 + ¢ ¢ ¢ + x2p)1=2 for a
p-vector x = (xi), and let kAk = maxx kAxk=kxk for a p £ p matrix A.
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Lemma 3.1 Under Assumptions 1, 2 and 3, we have for large n

(a)
1
n

nX

t=1
yt¡1"p;t = ¼(1)

1
n

nX

t=1
wt¡1"t + op(1)

(b)
1
n2

nX

t=1
y2t¡1 = ¼(1)2

1
n2

nX

t=1
w2
t¡1 + op(1)

(c)
1
n

nX

t=1
"2p;t =

1
n

nX

t=1
"2t + op(p¡s)

Lemma 3.2 Under Assumptions 1, 2 and 3, we have for large n

(a)

°°°°°°

Ã
1
n

nX

t=1
xp;tx0p;t

!¡1°°°°°°
= Op(1)

(b)

°°°°°
nX

t=1
xp;tyt¡1

°°°°° = Op(np1=2)

(c)

°°°°°
nX

t=1
xp;t"p;t

°°°°° = op(np¡1=2)

The results in Lemma 3.1 are well expected from Remarks 2.1 and 2.2. If we let
An; Bn and Cn be de…ned as in (8)–(10), then it follows from Lemmas 3.1 and 3.2
that

n¡1An = ¼(1)
1
n

nX

t=1
wt¡1"t + op(1)

n¡2Bn = ¼(1)2
1
n2

nX

t=1
w2
t¡1 + op(1)

n¡1Cn =
1
n

nX

t=1
"2t + op(1)

since
¯̄
¯̄
¯̄

Ã nX

t=1
yt¡1x0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;t"p;t

!¯̄
¯̄
¯̄

·
°°°°°
nX

t=1
yt¡1x0p;t

°°°°°

°°°°°°

Ã nX

t=1
xp;tx0p;t

!¡1°°°°°°

°°°°°
nX

t=1
xp;t"p;t

°°°°° = op(n)

due to Lemma 3.2.
Under given assumptions, the parameter estimates ¾̂2

n and ®̂n(1) used to de…ne
the statistics Tn and Sn are consistent. Moreover, if we let

^̄
p = (®̂p;1; : : : ; ®̂p;p)0; ¯p = (®1; : : : ; ®p)0

then ^̄
p is also consistent for ¯p under suitable conditions.



7

Lemma 3.3 Under Assumptions 1, 2 and 3, we have ¾̂2
n !p ¾2 as n ! 1.

Lemma 3.4 Under Assumptions 1, 2 and 300, we have k^̄
p ¡ ¯pk = op(p¡1=2) and

®̂n(1) = ®(1) + op(1) for large n.

Lemma 3.5 Let Assumptions 10, 2 and 30 hold. We have

^̄
p = ¯p + Op((log n=n)1=2) + o(p¡s)

uniformly for large n. Moreover, it follows that

®̂n(1) = ®(1) + Op(p(log n=n)1=2) + o(p¡s)

for large n.

Consequently, we have under Assumptions 1, 2 and 3

Tn =

1
n

nX

t=1
wt¡1"t

¾

Ã
1
n2

nX

t=1
w2
t¡1

!1=2 + op(1)

Moreover, we have under Assumptions 1, 2 and 300 or under Assumptions 10, 2 and 30

Sn =

1
n

nX

t=1
wt¡1"t

1
n2

nX

t=1
w2
t¡1

+ op(1)

Note that ¼(1) = 1=®(1) and ®(1) 6= 0. Therefore, if we de…ne ¼̂n(1) = 1=®̂n(1), then
we have ¼̂n(1) !p ¼(1) if and only if ®̂n(1) !p ®(1).

The asymptotic null distributions of Tn and Sn can now be easily obtained using
the results in Phillips (1987) or Chan and Wei (1988). They are given in the following
theorem. Note that, under Assumption 1, the required invariance principle holds for
the partial sum process constructed from ("t). See Hall and Heyde (1980, Theorem
4.1). We let W be the standard Brownian motion.

Theorem 3.6 (Limiting Distributions of ADF Tests) Under Assumptions 1,
2 and 3, we have

Tn !d

Z 1

0
WtdWt

µZ 1

0
W 2
t dt

¶1=2
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as n ! 1. Moreover, under Assumptions 1, 2 and 300 or under Assumptions 10, 2
and 30, we have

Sn !d

Z 1

0
WtdWt

Z 1

0
W 2
t dt

as n ! 1.

The asymptotic null distributions of Tn and Sn are thus identical to those of the
corresponding statistics studied in Dickey and Fuller (1979, 1981). They are tabulated
in Fuller (1995).

Our result for Tn only requires that p = o(n1=2), contrastingly with the more strin-
gent condition p = o(n1=3) used in Berk (1974). This relaxation is possible, since Tn
does not involve any estimates of the coe¢cients (®k) of the lagged di¤erence terms.
Our condition p = o(n1=2) in Assumption 3 is not su¢cient for the consistency of
these estimates. This can be a serious limitation, since the lag length is often selected
using some hypothesis tests on these coe¢cients. To validate such procedures, we
must have slower increasing rates for p as we specify in Assumptions 30 or 300. The
rate p = o((n= log n)1=2) is su¢cient for the models with homogeneous martingale
di¤erence innovations, while we must have p = o(n1=3) as in Berk (1974) for more
general models with possibly heterogenous martingale di¤erence innovations. Indeed,
these are the conditions that we impose to get the asymptotics of Sn, which includes
the estimate of ®(1).

Remark 3.1: Models with Deterministic Trends The models with determin-
istic trends can be analyzed similarly. If the time series (zt) is given by

zt = ¹ + yt or zt = ¹ + ¿t + yt (14)

and (yt) is generated as in (1), the unit root hypothesis can be tested in regression (7)
using residuals obtained from the preliminary regression (14). Their distributions are
given similarly as those in Theorem 3.4, respectively with demeaned and detrended
Brownian motions

W¹
t = Wt ¡

Z 1

0
Wsds; W ¿

t = Wt + (6t¡4)
Z 1

0
Wsds ¡ (12t¡6)

Z 1

0
sWsds

in place of standard Brownian motion W . Though we do not report the details, our
results here can easily be extended to obtain the asymptotic theory for the unit root
tests in models involving deterministic trends.

Remark 3.2: Near Unit Root Models Asymptotics for the near unit root
models can also easily be obtained. If we use local-to-unity formulation for ® and let

® = 1 ¡ c
n
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with some constant c > 0, then the limiting distributions of ADF tests are given as
the same as those in Theorem 3.4 with the standard Brownian motion W replaced
by Ornstein-Uhlenbeck process Wc, which is given by

Wc(t) =
Z t

0
exp[¡c(t ¡ s)]dW (s)

This can also be shown similarly given our assumptions.

4. Conclusion

In this paper, we provide rigorous derivations of the asymptotics for ADF tests of
unit roots. The required conditions are ‡exible enough to include a wide class of unit
root models generated by very general time series models: linear processes driven
by martingale di¤erences with coe¢cients decaying at polynomial orders. Moreover,
our results are obtained under a minimal assumption on the increasing order for the
approximating autoregressions.

5. Mathematical Proofs

Proof of Lemma 3.1 For Part (a), write

nX

t=1
yt¡1"p;t =

nX

t=1
yt¡1"t +

nX

t=1
yt¡1("p;t ¡ "t)

We have
nX

t=1
yt¡1"t = ¼(1)

nX

t=1
wt¡1"t + ¹u0

nX

t=1
"t ¡

nX

t=1
¹ut¡1"t

= ¼(1)
nX

t=1
wt¡1"t + Op(n1=2)

It therefore su¢ces to show that
nX

t=1
yt¡1("p;t ¡ "t)

= ¼(1)
nX

t=1
wt¡1("p;t ¡ "t) + ¹u0

nX

t=1
("p;t ¡ "t) ¡

nX

t=1
¹ut¡1("p;t ¡ "t)

= R1n + R2n + R3n = op(n) (15)

to deduce the stated result.
To show (15), we …rst write

"p;t ¡ "t =
1X

k=p+1
®kut¡k =

1X

k=p+1
¼p;k"t¡k
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where 1X

k=p+1
¼2
p;k · c

1X

k=p+1
®2
k = o(p¡2s)

as in Berk (1974, Proof of Lemma 2, p492). Also, denote by ±ij the usual Kronecker
delta. To show that R1n = op(n), we write

nX

t=1
wt¡1("p;t ¡ "t) =

nX

t=1

t¡1X

i=1
"i

1X

j=p+1
¼p;j"t¡j

=
1X

j=p+1
¼p;j

nX

t=1

t¡1X

i=1
"t¡i"t¡j

= ¾2
n¡1X

k=p+1
(n ¡ k)¼p;k +

1X

j=p+1
¼p;j

nX

t=1

t¡1X

i=1
("t¡i"t¡j ¡ ¾2±ij)

We have ¯̄
¯̄
¯̄
n¡1X

k=p+1
(n ¡ k)¼p;k

¯̄
¯̄
¯̄ · n

1X

k=p+1
j¼p;kj = o(np¡s)

Moreover, we have
0
B@E

2
4

1X

j=p+1
¼p;j

nX

t=1

t¡1X

i=1
("t¡i"t¡j ¡ ¾2±ij)

3
5
2
1
CA

1=2

·
1X

j=p+1
j¼p;jj

0
@E

" nX

t=1

t¡1X

i=1
("t¡i"t¡j ¡ ¾2±ij)

#21
A

1=2

which is bounded by

c nK1=2

0
@

1X

j=p+1
j¼p;j j

1
A = o(np¡s)

for some constant c. It now follows immediately that R1n = op(n).
To deduce that R2n = op(n), we simply note that

nX

t=1
("p;t ¡ "t) =

1X

k=p+1
¼p;k

nX

t=1
"t¡k = op(n1=2p¡s)

which follows similarly as above. Finally, to show that R3n = op(n), we write
nX

t=1
¹ut¡1("p;t ¡ "t) =

1X

i=0

1X

j=p+1
¹¼i¼p;j

nX

t=1
"t¡i¡1"t¡j

= n¾2
1X

k=p+1
¹¼k¡1¼p;k

+
1X

i=0

1X

j=p+1
¹¼i¼p;j

nX

t=1
("t¡i¡1"t¡j ¡ ¾2±i+1;j)
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One may easily see that the …rst term is of order o(np¡s) and that the second term
is of order op(n1=2p¡s), using the same arguments as above.

The result in Part (b) follows immediately from Phillips and Solo (1992). More-
over, the result stated in Part (c) can easily be deduced from the inequality

¯̄
¯̄
¯̄

Ã
1
n

nX

t=1
"2p;t

!1=2

¡
Ã

1
n

nX

t=1
"2t

!1=2
¯̄
¯̄
¯̄ ·

"
1
n

nX

t=1
("p;t ¡ "t)2

#1=2

and the fact that

E

"
1
n

nX

t=1
("p;t ¡ "t)2

#
= E

2
64

1
n

nX

t=1

0
@

1X

k=p+1
¼p;k"t¡k

1
A

2
3
75

= ¾2
1X

k=p+1
¼2
p;k = o(p¡2s)

Note that (1=n)
Pn
t=1 "2t = Op(1).

Proof of Lemma 3.2 We use various results in Berk (1974) in the proof. Though
his results were derived under the iid assumption for ("t), the results cited here hold
under our conditions (a) and (c) in Assumption 1 and Assumption 2, which imply
second-order stationarity and uniform boundedness of the fourth moments for (ut)
and ("t).

To show the result in Part (a), we let ¡k = E(utut¡k) be the autocovariance
function of (ut), and de…ne

pp = (¡i¡j)
p
i;j=1

Then it follows from Berk (1974, Proof of Lemma 3, p493) that

E

°°°°°°

Ã
1
n

nX

t=1
xp;tx0p;t

!¡1
¡ ¡1pp

°°°°°°

2

· c n¡1p2

for some constant c. Therefore,
°°°°°°

Ã
1
n

nX

t=1
xp;tx0p;t

!¡1
¡ ¡1pp

°°°°°°
= Op(n¡1=2p)

Moreover, as is well known [see, e.g., Berk (1974, Equation(2.14), p493)],
°°°¡1pp

°°° = O(1)

for all p. The result stated in Part (a) now follows readily, since
¯̄
¯̄
¯̄

°°°°°°

Ã
1
n

nX

t=1
xp;tx0p;t

!¡1°°°°°°
¡

°°°¡1pp
°°°

¯̄
¯̄
¯̄ ·

°°°°°°

Ã
1
n

nX

t=1
xp;tx0p;t

!¡1
¡ ¡1pp

°°°°°°
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The proof for Part (a) is therefore complete.
To show the result in Part (b), we let (¡k) be the autocovariance function of (ut)

and use the fact

E

" nX

t=1
(ut¡iut¡j ¡ ¡i¡j)

#2
= O(n)

which holds uniformly in i and j. See, e.g., Berk (1974, Equations (2.10) and (2.11),
page 491). In what follows, we let yt = 0 for all t · 0 by convention.

Let 1 · j · p and write

nX

t=1
yt¡1ut¡j =

nX

t=1
yt¡1ut + Rn

where

Rn =
nX

t=1
yt¡1ut¡j ¡

nX

t=1
yt¡1ut

We will show that Rn = Op(n) uniformly in j, 1 · j · p. First note that we have
for each j = 1; : : : ; p

nX

t=1
yt¡1ut =

nX

t=1
yt¡j¡1ut¡j +

nX

t=n¡j+1
yt¡1ut

and we may rewrite Rn as

Rn =
nX

t=1
(yt¡1 ¡ yt¡j¡1)ut¡j ¡

nX

t=n¡j+1
yt¡1ut = R1n ¡ R2n

say.
We have

R1n =
nX

t=1

0
@
jX

i=1
ut¡i

1
Aut¡j

= n

0
@
jX

i=1
¡i¡j

1
A +

jX

i=1

" nX

t=1
(ut¡iut¡j ¡ ¡i¡j)

#

= O(n) + Op(n1=2p)

uniformly in j, 1 · j · p. Moreover, if we write

R2n =
nX

t=n¡j+1

Ãt¡1X

i=1
ut¡i

!
ut

=
nX

t=n¡j+1

n¡jX

i=1
utut¡i +

nX

i=n¡j+2

t¡1X

t=n¡j+1
utut¡i

= Ra2n + Rb2n



13

then it follows that

Ra2n = j

0
@
n¡jX

i=1
¡i

1
A +

nX

t=n¡j+1

2
4
n¡jX

i=1
(utut¡i ¡ ¡i)

3
5 = O(p) + Op(n1=2p)

and that

Rb2n = (j ¡ 1)
t¡1X

i=n¡j+1
¡i +

nX

t=n¡j+2

2
4

t¡1X

i=n¡j+1
(utut¡i ¡ ¡i)

3
5 = O(p) + Op(p3=2)

uniformly in j, 1 · j · p. The stated result follows immediately, since
Pn
t=1 yt¡1ut =

Op(n).
Part (c) readily follows from Berk (1974). Note that

°°°°°
nX

t=1
xp;t"p;t

°°°°° ·
°°°°°
nX

t=1
xp;t("p;t ¡ "t)

°°°°° +

°°°°°
nX

t=1
xp;t"t

°°°°°

It follows from Berk (1974, Equation (2.13), p492) that

E

°°°°°
nX

t=1
xp;t("p;t ¡ "t)

°°°°°

2

· cn2p

0
@

1X

k=p+1
®2
k

1
A = o(n2p1¡2s)

Moreover, due to Berk (1974, above Equation (2.17), p493), we have

E

°°°°°
nX

t=1
xp;t"t

°°°°°

2

= np¾2Eu2t = O(np)

To complete the proof, note that

n2p1¡2s; np = o(n2p¡1)

since p ! 1, p = o(n1=2) and s ¸ 1 under our assumptions.

Proof of Lemma 3.3 We have

¾̂2
n =

1
n

nX

t=1
"2t + op(1)

from Lemmas 3.1, 3.2 and the subsequent discussions, and the consistency of ¾̂2
n

follows directly from (b) in Assumption 1. This completes the proof.

Proof of Lemma 3.4 We write

^̄
p ¡ ¯p =

Ã nX

t=1
xp;tx0p;t

!¡1 nX

t=1
xp;t"p;t
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and the stated result for ^̄
p follows immediately from

°°°^̄
p ¡ ¯p

°°° ·
°°°°°°

Ã nX

t=1
xp;tx0p;t

!¡1°°°°°°

°°°°°
nX

t=1
xp;t"p;t

°°°°°

due to parts (a) and (c) of Lemma 3.2. To prove the result for ®̂n(1), we let ¶p be
the p-dimensional vector of ones. It follows that

®̂n(1) = 1 ¡ ¶0p ^̄p

Furthermore,

®(1) = 1 ¡
0
@¶0p¯p +

1X

k=p+1
®k

1
A =

³
1 ¡ ¶0p¯p

´
+ o(p¡s)

as we mentioned in Remark 2.1. Therefore,

j®̂n(1) ¡ ®(1)j ·
¯̄
¯¶0p ^̄p ¡ ¶0p¯p

¯̄
¯ + o(p¡s) · p1=2

°°°^̄
p ¡ ¯p

°°° + o(p¡s)

from which the stated result for ®̂n(1) follows immediately.

Proof of Lemma 3.5 We …rst write (ut) as

ut = ®p;1ut¡1 + ¢ ¢ ¢ + ®p;put¡p + ep;t

where the coe¢cients (®p;k) are de…ned so that (ep;t) are uncorrelated with (ut¡k)
for k = 1; : : : ; p. Moreover, we de…ne

ut = ~®p;1ut¡1 + ¢ ¢ ¢ + ~®p;put¡p + ~"p;t

It follows from Hannan and Kavalieris (1986, Theorem 2.1) and Bühlmann (1995,
Proof of Theorem 3.1) that

max
1·k·p

j~®p;k ¡ ®p;kj = O((log n=n)1=2) a:s: (16)

pX

k=1
j®p;k ¡ ®kj · c

1X

k=p+1
j®kj = o(p¡s) (17)

where c is some constant. Since

j~®p;k ¡ ®kj · j~®p;k ¡ ®p;kj + j®p;k ¡ ®kj

it follows that

max
1·k·p

j~®p;k ¡ ®kj = O((log n=n)1=2) + o(p¡s) a:s:
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and that

j~®n(1) ¡ ®(1)j ·
pX

k=1
j~®p;k ¡ ®p;kj +

pX

k=1
j®p;k ¡ ®kj +

1X

k=p+1
j®kj

= O(p(log n=n)1=2) + o(p¡s) a.s.

from (16) and (17).
However, from the application of simple least squares algebra, we have

0
B@

®̂p;1
...

®̂p;p

1
CA =

0
B@

~®p;1
...

~®p;p

1
CA ¡ (®̂n ¡ 1)

Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;tyt¡1

!

and we may easily deduce

®̂n(1) = ~®n(1) + Op(n¡1p)

Note that we have from parts (a) and (b) of Lemma 3.2 that
¯̄
¯̄
¯̄ ¶
0
p

Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;tyt¡1

!¯̄
¯̄
¯̄

· k ¶pk
°°°°°°

Ã nX

t=1
xp;tx0p;t

!¡1°°°°°°

°°°°°
nX

t=1
xp;tyt¡1

°°°°° = Op(p)

where ¶p is the p-vector of ones, and ®̂n¡1 = Op(n¡1). The stated results now follow
immediately.

Proof of Theorem 3.6 Obvious and omitted.
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