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In this addendum I include three proofs that are not intended for publication. The …rst

section proves that the simple optimal penal code is unique in the given game. The second

section proves that in two player games of pure coordination a folk theorem over the payo¤

space can be established. The third section shows that in the given game for the strategies

considered all payo¤s are weakly greater than the minmax in pure strategies.

1 The Uniqueness of the Simple Optimal Penal Code.

In this section I will prove that if ± = 1
2 then for i 2 fr; cg the following path

w (i) =

(
fMi;Mig if i deviated last period
fHi;Hig else

(1)

Is the worst equilibrium path for a player of role i in the stage game:

column
Hr Hc Mr Mc

Hr 4; 2 3; 3 0;¡2 1; 0
row Hc 0; 0 2; 4 0;¡1 0; 0

Mr 0; 0 0; 1 ¡4;¡1 0; 0
Mc ¡1; 0 ¡2; 0 ¡5;¡5 ¡1;¡4

(2)

Since

¼i (Mi;Mi) +
±

1¡ ±¼i (Hi;Hi) = ¡4 +
1
2

1¡ 1
2

4 = 0 (3)

and the individually rational payo¤ is zero, any other worst payo¤ must have the same

payo¤. Now if w (r) is the worst equilibrium path, the only equilibrium path that can be
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used as a punishment if a row player deviates while playing w (r) must be w (r). Focusing

on deviations in the …rst period this means that:

vr (w (r)) ¸ max
Ar2fMr ;Mc;Hr;Hcg

¼r (A
r; Ac) + ±vr (w (r)) (4)

0 ¸ max
Ar2fMr ;Mc;Hr;Hcg

¼r (A
r; Ac)

Thus Ac =Mr. Furthermore, fMc;Mrg is not tenable since the continuation payo¤ must
be …ve if fMc;Mrg is played in the …rst period, which is impossible. As well if either

fHc;Mrg or fHr;Mrg is played in the …rst period then the continuation payo¤ for the
column player must be …ve as well, since this is the amount they can increase their payo¤

by deviating today, and as previously mentioned this is not possible. Thus the …rst period

action pro…le must be fMr;Mrg and given this the continuation payo¤ must be fHr;Hrg
or the total discounted payo¤ will be negative. Thus the worst path must be the w (r)

given by 1.

2 The Folk Theorem in Two Player Coordination Games.

Here I will prove that in two player coordination games every payo¤ that is strictly indi-

vidually rational can be supported as an equilibrium.

Lemma 1 For all two role stage games if ¼¤ = ¼ (a) >> 0 for a 2 A then there exists a ±¤
such that if ± ¸ ±¤ then there is an equilibrium with a payo¤ ¼¤ each period.

Proof. De…ne a+ as the action that gives the highest payo¤, and m =
©
m21;m

1
2

ª
as the

mutual minmax. Let a¤ be the action where players play m with probability ½ and a+ with

probability 1¡ ½ such that ¼¤ = ¼ (a¤) = ½¼ (m) + (1¡ ½)¼ (a+). Let the social standard
of behavior be e¾t ³zti ; ztj´ =

(
m if zti = t¡ 1 or ztj = t¡ 1
a¤ else

(5)

then if ±¤ is such that for i 2 f1; 2g

¡¼i (m) · ±¤ [¼i (a¤)¡ ¼i (m)] (6)

for all ± ¸ ±¤ the players will cooperate. Notice that given the social standard of behavior,
if the player cooperates today the only future path is a¤ forever, if they deviate then they
will play m next period, thus the di¤erence on the right hand side above. For the left hand

side there are actually two cases but if they are playing a+ and the left hand side is zero.

If they are playing m then the left hand side is as given, and the proof is done.
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I point out, however, that this is much weaker than the folk theorem over the action

space. The usual folk theorem says that “anything is possible” here all that has been shown

is that the set of equilibria is the correlated combination of the static Nash equilibria and
m.

3 A Stage Game where all Constant Path Strategies have a Payo¤Greater
than the Minmax in Pure Strategies.

Consider the following stage game.

L R
U 0; 1 1; 1
M ¡1; 4 ¡1;¡4
D ¡1;¡4 ¡1; 4

(7)

A constant path strategy as one where given any history of play and
n
zt+s¹i ; z

t+s+1
¹i

o
that

are consistent with the strategy being an equilibrium:

#
³
sjs 2 f1; 2; 3; :::1g ; ¾i

³
zt+si ; zt+s¹i

´
6= ¾i

³
zt+s+1i ; zt+s+1¹i

´´
<1 (8)

this allows any actions in the next T periods but rules out strategies where the action pro…le

cycles. The limiting average payo¤ is lim±!1 (1¡ ±) vi. The proof can be requested from
the author.

However, the reader may be interested to know that except for this quali…cation the

author conjectures that the folk theorem does generalize for many stage games. This

would require substantially more di¢cult strategies than used to prove the folk theorem

above, as is best understood by example. De…ne a

This game is strategically simple, the minmax in pure strategies for the column player

is one, and in mixed strategies it is zero—when the row player mixes over M and D with

equal likelihood. Notice that in this game the row player has no static incentive to not

mix over the strategies M and D, all incentive problems we will face are from the a¤ect

of choosing M and D on the matching rule. Also note that in order for the row player’s

limiting average payo¤ to be strictly less than one either fM;Rg or fD;Lg must be played
with strictly positive probability.

Lemma 2 For the above game in all the constant action equilibria the limiting average
payo¤ for the column player is one.

Proof. The proof is by contradiction, thus assume there is such an equilibrium. All

other assumptions in this proof will be made without loss of generality. In this proof no
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row player will deviate, but a …nite number of column players will deviate once each. This

sequence of play will lead to a situation where maintaining the row player’s indi¤erence

between M and D will require that her continuation value will have to be strictly greater

than 1
1¡± , thus infeasible.

Assume that on the initial path the action played in…nitely often is played in every

period, and that fD;Lg is played with strictly positive probability. Also that the strategy
following any deviation by the row player is always the same, and that this sequence of

action pro…les is independent of who the deviator is matched with (if there are no more

deviations.)

Consider the equilibrium where the initial path gives column players’ their lowest lim-

iting average payo¤ of any equilibrium path, call this payo¤ ¼¤c . Since this is the column

player’s lowest initial path equilibrium payo¤, on all continuation path a payo¤ greater than

¼¤c must be played in…nitely often, assume ¼¤c is. Let T be the last period where the column
player does not get ¼¤c after a deviation, and let S be the number of periods in which the
row player must mix over M and D. Our …rst step is to show that S ¸ 2.

Call the equilibrium sequence of action pro…les used after a deviation
©
¾i
ª1
i=1 where ¾

i

is used i periods after the deviation, and de…ne ¼0c =
1
T§

T
i=1¼c

¡
¾i
¢
. Then one can establish

that the following conditions are necessary in any equilibrium with ¼¤c < 1.

max
a2fR;Lg

¼¤
³
a; ¾kr

´
< k¼¤c ¡§k¡1s=1¼c (¾

s) (9)

¼c (R;D)¡ ¼c (L;D) < T
¡
¼¤c ¡ ¼0c

¢
where ¾kr is the row player’s action in the k’th period after any deviation.

1 First the action

in the …rst period must be a mixed strategy, since maxa2fR;Lg ¼¤
³
a; ¾kr

´
< ¼¤c < 1 if and

only if the row player mixes over M and D. The constrained in…mum of ¼¤
³
a; ¾kr

´
is

¡1 in this case, therefore assume ¼c
¡
¾1
¢
= ¡1. In the second period, the constraint is

2¼¤c¡¼c
¡
¾1
¢
< 2+1, and solutions to this problem require either that the row player mixes

over M and D or that U is played with probability one. Since 1 > ¼¤c any …nite number
of periods playing U with probability one will not solve the problem. If you have T ¡ 1
periods of ¼c

¡
¾i
¢ ¸ ¼¤c , then T (¼¤c ¡ ¼0c) < 2 < ¼c (R;D) ¡ ¼c (L;D) : Thus we must at

least have one more period where the row player mixes over M and D, or S ¸ 2. Assume
S = 2 and in the …rst two periods after any deviation the row player mixes over M and D.

In the second step we will show that if j mixed over M and D in t¡ 1 and t, and then
is matched with a player in t + 1 with whom she must mix her discounted value must be

1These conditions are derived by taking the limit as ± ! 1 of maxa2fR;Lg ¼
¤ ¡a; ¾kr¢ · ±T+1 1¡±

k

1¡± ¼c ¡
§k¡1s=1 ±

s¼c
¡
¾t+s

¢
and ¼c (R;D)¡ ¼c (L;D) · ± 1¡±T1¡± ¼c ¡ §Ts=1±s¼c

¡
¾t+s

¢
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increased by one. Consider the following matching regime for a given row player j.

¹t+1j =

(
if possible with a player who deviated in t¡ 1 if j plays a in period t
otherwise someone at random.

(10)

where a 2 fM;Dg. In period t by straightforward player j can know if some player deviated
in t¡1. On the other hand, the strategy can not be a function of the matching rule. Thus
the only way to make j indi¤erent in t is if her payo¤ next period is the same independent

of who she is matched with. This is done by decreasing or increasing her discounted value,

and must be done in every period t+ 1 if she punished in t.

Assume that j plays M then she will be matched with someone who deviated in t¡ 1.
Assume that t is the …rst period in which j is matched with a deviator, and that if she is

not matched in t+ 1 with someone who must be minmaxed then her discounted value will

be decreased by ® ¸ 1.
While this will work if she is matched with someone who must be punished in t+2 then

her discounted value must be increased by ®. Assume not, then if she plays M today in

t+2 her discounted value will be decreased by ®, while if she plays D since she expects not

to mix in t + 1 or t + 2 and her discounted value will not change. Thus she will play D,

contradicting the claim.

Now assume that in period t¡1 two column players deviated and that in t j is matched
with one of them. Further assume that in periods t to t+ k ¡ 1 a column player deviates
in each period. Clearly there exists a k such that if j’s discounted value is increased by

® each period then j’s discounted value will be greater than 1
1¡± . Furthermore, there

exists a positive probability that j should play M each period. Thus given a …nite number

of deviations with positive probability there exists a sequence of play where j will not

randomize and the proposed strategy is not an equilibrium.
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