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Abstract

We propose a unit root test for panels with cross-sectional dependency. We allow general de-
pendency structure among the innovations that generate data for each of the cross-sectional units.
Each unit may have di)erent sample size, and therefore unbalanced panels are also permitted in
our framework. Yet, the test is asymptotically normal, and does not require any tabulation of the
critical values. Our test is based on nonlinear IV estimation of the usual augmented Dickey–Fuller
type regression for each cross-sectional unit, using as instruments nonlinear transformations of
the lagged levels. The actual test statistic is simply de2ned as a standardized sum of individual
IV t-ratios. We show in the paper that such a standardized sum of individual IV t-ratios has
limit normal distribution as long as the panels have large individual time series observations and
are asymptotically balanced in a very weak sense. We may have the number of cross-sectional
units arbitrarily small or large. In particular, the usual sequential asymptotics, upon which most
of the available asymptotic theories for panel unit root models heavily rely, are not required.
Finite sample performance of our test is examined via a set of simulations, and compared with
those of other commonly used panel unit root tests. Our test generally performs better than the
existing tests in terms of both 2nite sample sizes and powers. We apply our nonlinear IV method
to test for the purchasing power parity hypothesis in panels.
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1. Introduction

It is now widely perceived that the panel unit root test is important. The test helps
us to answer some of the important economic questions like growth convergence and
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divergence, and purchasing power parity (PPP), among many others. Moreover, it also
provides a means to improve the power of the unit root test, which is known to often
yield very low discriminatory power if performed on individual time series. A number
of unit root tests for panel data are now available in the literature. Examples include
the tests proposed by Levin et al. (1997), Im et al. (1997), Maddala and Wu (1999),
Choi (2001) and Chang (2000). The reader is referred to Banerjee (1999) for some
detailed discussions on the existing panel unit root tests and other related issues.
Rather unsatisfactorily, however, most existing panel unit root tests assume cross-

sectional independence, which is quite restrictive given the nature of economic panel
data. Such tests are, of course, likely to yield biased results if applied to the panels with
cross-sectional dependency. Maddala and Wu (1999) conduct a set of simulations to
evaluate the performances of the commonly used panel unit root tests that are developed
under the cross-sectional independence when in fact the panel is spatially dependent.
They, in particular, show that the panel unit root tests based on independence across
cross-sectional units, such as those considered in Levin et al. (1997) and Im et al.
(1997), perform poorly for cross-sectionally correlated panels.
The cross-sectional dependency is very hard to deal with in nonstationary panels. In

the presence of cross-sectional dependency, the usual Wald type unit root tests based
upon the OLS and GLS system estimators have limit distributions that are dependent in
a very complicated way upon various nuisance parameters de2ning correlations across
individual units. There does not exist any simple way to eliminate the nuisance para-
meters in such systems. This was shown in Chang (2000). None of the existing tests,
except for Chang (2000) which relies on the bootstrap method, successfully overcomes
the nuisance parameter problem in panels with cross-sectional dependence.
In this paper, we take the IV approach to solve the nuisance parameter problem

for the unit root test in panels with cross-sectional dependency. Our approach here is
based upon nonlinear IV estimation of the autoregressive coeHcient. We 2rst estimate
the AR coeHcient from the usual augmented Dickey–Fuller (ADF) regression for each
cross-sectional unit using the instruments generated by an integrable transformation
of the given time series. We then construct the t-ratio statistic for testing the unit
root based on the nonlinear IV estimator for the AR coeHcient. We show for each
cross-sectional unit that such nonlinear IV t-ratio statistic for testing the unit root has
limiting standard normal distribution under the null hypothesis, just as in the stationary
alternative cases. The asymptotic normality under the null indeed establishes continuity
of the limit theory for the t-statistic over the entire parameter space covering both null
and alternative hypotheses. This clearly makes a drastic contrast with the limit theory
of the standard t-statistic based on the ordinary least-squares estimator.
More importantly, we show that the individual IV t-ratio statistics are asymptoti-

cally independent even across dependent cross-sectional units. The cross-sectional in-
dependence of the individual IV t-ratio statistics follows readily from the asymptotic
orthogonality for the nonlinear transformations of integrated processes by an integrable
function, which is established in Chang et al. (2001). We are therefore led to consider
the average of these independent individual IV t-ratio statistics as a statistic for testing
joint unit root null hypothesis for the entire panel. The actual test statistic is simply
de2ned as a standardized sum of the individual IV t-ratios. We show in the paper that
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such a normalized sum of the individual IV t-ratios has standard normal limit distri-
bution as long as Tmin → ∞ and T 1=4

max log Tmax=T
3=4
min → 0, where Tmin and Tmax denote,

respectively, the minimum and maximum numbers of the time series observations Ti’s
for the cross-sectional units i=1; : : : ; N . The usual sequential asymptotics, upon which
most of the available asymptotic theories for panel unit root models heavily rely, are
therefore not required. We may thus allow the number of cross-sectional units to be
arbitrarily small or large. 1 Our test is applicable for all panels that have large num-
bers of individual time series observations and are asymptotically balanced in the sense
mentioned above.
Finite sample performance of our average IV t-ratio statistic, which we call SN

statistic, is examined via a set of simulations, and compared with that of the commonly
used average statistic t-bar by Im et al. (1997). Our test generally performs better than
the t-bar test in terms of both 2nite sample sizes and powers. The simulations conducted
indeed corroborate the standard normal limit theory we provide here. The 2nite sample
sizes of SN are computed using the standard normal critical values, and shown to very
well approximate the nominal sizes. This is quite contrary to the well-known 2nite
sample size distortions of the t-bar test, see Maddala and Wu (1999) for example.
The discriminatory powers of SN are yet noticeably higher than the t-bar test. We also
apply our nonlinear IV method to test for the PPP hypothesis using the data sets from
Papell (1997) and Oh (1996). Our test SN supports strongly the PPP relationships,
contrary to most of the previous empirical 2ndings which are usually inconclusive.
The rest of the paper is organized as follows. Section 2 introduces the model, as-

sumptions and background theory. Section 3 presents the nonlinear IV estimation of
the augmented autoregression and derives the limit theory for the nonlinear IV t-ratio
statistics for each cross-sectional unit. In Section 4, we introduce a nonlinear IV panel
unit root test and establish its limit theory. It is, in particular, shown that the test
is asymptotically standard normal. Section 5 extends our nonlinear IV methodology
to models with deterministic components such as constant and linear time trend. In
Section 6, we conduct simulations to investigate 2nite sample performance of the av-
erage IV t-ratio statistic. Section 7 provides empirical illustrations for testing the PPP
using our nonlinear panel IV unit root test. Section 8 concludes, and mathematical
proofs are provided in the Appendix.

2. Model, assumptions and background theory

We consider a panel model generated as the following 2rst-order autoregressive
regression:

yit = 
iyi; t−1 + uit ; i = 1; : : : ; N; t = 1; : : : ; Ti: (1)

As usual, the index i denotes individual cross-sectional units, such as individuals, house-
holds, industries or countries, and the index t denotes time periods. The number of
time series observations Ti for each individual i may di)er across cross-sectional units.

1 The asymptotics developed here are T -asymptotics. Throughout the paper, we assume that N is 2xed.
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Hence, unbalanced panels are allowed in our model. We are interested in testing the
unit root null hypothesis, 
i = 1 for all yit given as in (1), against the alternative,
|
i|¡ 1 for some yit ; i=1; : : : ; N . Thus, the null implies that all yit’s have unit roots,
and is rejected if any one of yit’s is stationary with |
i|¡ 1. The rejection of the
null therefore does not imply that the entire panel is stationary. The initial values
(y10; : : : ; yN0) of (y1t ; : : : ; yNt) do not a)ect our subsequent asymptotic analysis as long
as they are stochastically bounded, and therefore we set them at zero for expositional
brevity.
It is assumed that the error term uit in model (1) is given by an AR(pi) process

speci2ed as


i(L)uit = �it ; (2)

where L is the usual lag operator and


i(z) = 1−
pi∑
k=1


i;k zk

for i = 1; : : : ; N . Note that we let 
i(z) and pi (which is assumed to be 2xed) vary
across i, thereby allowing heterogeneity in individual serial correlation structures. We
assume:

Assumption 2.1. For i = 1; : : : ; N; 
i(z) �=0 for all |z|6 1.

Under Assumption 2.1, the AR(pi) process uit is invertible, and has a moving-
average representation

uit = �i(L)�it ;

where �i(z) = 
i(z)−1 and is given by

�i(z) =
∞∑
k=0

�i;k zk :

We allow for the cross-sectional dependency through the cross-correlation of the in-
novations �it ; i = 1; : : : ; N , that generate the errors uit’s. To de2ne the cross-sectional
dependency more explicitly, we de2ne (�t)Tt=1 by

�t = (�1t ; : : : ; �Nt)′ (3)

and denote by | · | the Euclidean norm: for a vector x = (xi); |x|2 =
∑

i x
2
i , and for a

matrix A= (aij); |A|=
∑

i; j a
2
ij. The data generating process for the innovations (�t) is

assumed to satisfy the following assumption.

Assumption 2.2. (�t) is an iid (0; �) sequence of random variables with E|�t |‘ ¡∞
for some ‘¿ 4; and its distribution is absolutely continuous with respect to Lebesgue
measure and has characteristic function ’ such that lim�→∞ |�|r’(�) = 0; for some
r ¿ 0.

Assumption 2.2 is strong, but is still satis2ed by a wide class of data generating
processes including all invertible Gaussian ARMA models. Note that here the errors are
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assumed to be iid across time periods. However, they are allowed to be cross-sectionally
dependent. The technical assumption on the characteristic function is required for our
subsequent asymptotics on nonlinear functions of integrated processes as used in Park
and Phillips (1999, 2001).
De2ne a stochastic processes UT for �t as

UT (r) = T−1=2
[Tr]∑
t=1

�t

on [0; 1], where [s] denotes the largest integer not exceeding s. The process UT (r)
takes values in D[0; 1]N , where D[0; 1] is the space of cadlag functions on [0; 1].
Under Assumption 2.2, an invariance principle holds for UT , viz.,

UT →d U (4)

as T → ∞, where U is an N -dimensional vector Brownian motion with covariance
matrix �. It is also convenient to de2ne BT (r) from ut = (u1t ; : : : ; uNt)′, similarly as
UT (r). Then we have BT →d B, where B = (B1; : : : ; BN )′ and Bi = �i(1)Ui. This is
shown in Phillips and Solo (1992).
Our theory relies heavily on the local time of Brownian motion as in Park and

Phillips (1999, 2001), Chang and Park (1999) and Chang et al. (2001). The reader is
referred to these papers and the references cited there for the concept of local time and
its use in the asymptotics for nonlinear models with integrated time series. To de2ne
local times that appear in our limit theory more precisely, we 2rst write the limit vector
Brownian motion given in (4) explicitly as U (r) = (U1(r); : : : ; UN (r))′. We denote by
Li the (scaled) local time of Ui, for i = 1; : : : ; N , which is de2ned by

Li(t; s) = lim
j→0

1
2j

∫ t

0
1{|Ui(r)− s|¡ j} dr:

The local time Li is therefore the time that the Brownian motion Ui spends in the
neighborhood of s, up to time t, measured in chronological units. 2 Then we may have
an important relationship∫ t

0
G(Ui(r)) dr =

∫ ∞

−∞
G(s)Li(t; s) ds (5)

which we refer to as the occupation times formula.
In addition to the Brownian motions U = (U1; : : : ; UN )′, we need to introduce an-

other set of standard Brownian motions W = (W1; : : : ; WN )′. Throughout the paper, the
Brownian motion W will be assumed to be standard vector Brownian motion that is
independent of U .
We now introduce the class of regularly integrable transformations in R, which

plays an important role in the subsequent development of our theory.

2 Usually, the local time is de2ned in units of quadratic variation time. Therefore, the local time LUi of Ui
de2ned in the usual manner is given by LUi = #2i Li in terms of our local time Li , where #2i is the variance
of Ui .
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De�nition 2.3. A transformation G on R is said to be regularly integrable if G is
a bounded integrable function such that for some constants c¿ 0 and k ¿ 6=(‘ − 2)
with ‘¿ 4 given in Assumption 2.2; |G(x) − G(y)|6 c|x − y|k on each piece Ai of
its support A=

⋃m
i=1 Ai ⊂ R.

The regularly integrable transformations are roughly integrable functions that are
reasonably smooth on each piece of their supports. The required smoothness depends
on the moment condition of the innovation sequence (�t). Let ‘ be the maximum order
of the existing moments. If ‘¿ 8, any piecewise Lipschitz continuous function is
allowed. For the indicator function on a compact interval to be regularly integrable, on
the other hand, it is suHcient to have ‘¿ 4. The de2nition of the regularly integrable
function in De2nition 2.3 is identical to the one introduced in Park and Phillips (1999,
2001).
The asymptotic behaviors of the nonlinear functions of an integrated time series are

analyzed by Park and Phillips (1999, 2001). For (yit) generated as in (1), they provide,
in particular, the asymptotic theories for the sample moments given by

∑Ti
t=1 G(yit)

and
∑Ti

t=1 G(yi; t−1) �it , which are referred to in their paper as the mean and covari-
ance asymptotics, respectively, for various types of function G. Our subsequent theory
is based upon the mean and covariance asymptotics for G regularly integrable. The
conditions in Assumption 2.2 are required to obtain the relevant asymptotics. They are
stronger than those required for the usual unit root asymptotics, because we need the
convergence and invariance of the sample local time, as well as those of the sample
Brownian motion, for the asymptotics of integrable transformations of integrated time
series.
We now obtain the Beveridge–Nelson representations for uit and yit . Let 
i(1)=1−∑pi
k=1 
i;k . Then it is indeed easy to get

uit =
1


i(1)
�it +

pi∑
k=1

∑pi
j=k 
i; j

i(1)

(ui; t−k − ui; t−k+1)

= �i(1)�it + (ũ i; t−1 − ũ it);

where �i(1) = 1=
i(1) and ũ it =
∑pi

k=1 
̃i; kui; t−k+1, with 
̃i; k = �i(1)
∑pi

j=k 
i; j. Under
our condition in Assumption 2.1, (ũ it) is well de2ned both in a.s. and Lr sense [see
Brockwell and Davis (1991, Proposition 3.1.1)]. Under the unit root hypothesis 
i=1,
we may now write

yit =
t∑

k=1

uik = �i(1)&it + (ũ i0 − ũ it); (6)

where &it =
∑t

k=1 �ik , for all i = 1; : : : ; N . Consequently, yit behaves asymptotically as
the constant �i(1) multiple of &it . Note that ũ it is stochastically of smaller order of
magnitude than &it , and therefore will not contribute to our limit theory.
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Using the speci2cation of the regression error uit given in (2), we write
model (1) as

yit = 
iyi; t−1 +
pi∑
k=1


i;kui; t−k + �it :

Since Oyit = uit under the unit root null hypothesis, the above regression may be
written as

yit = 
iyi; t−1 +
pi∑
k=1


i;kOyi; t−k + �it (7)

on which our unit root test will be based.

3. IV estimation and limit theory

In this section, we consider the IV estimation of the augmented autoregression (7).
To deal with the cross-sectional dependency, we use the instrument generated by a
nonlinear function F as

F(yi; t−1)

for the lagged level yi; t−1. For the lagged di)erences x′it=(Oyi; t−1; : : : ;Oyi; t−pi), we use
the variables themselves as the instruments. Hence for the entire regressors (yi; t−1; x′it)

′,
we use the instruments given by

(F(yi; t−1); x′it)
′ = (F(yi; t−1);Oyi; t−1; : : : ;Oyi; t−pi)

′: (8)

The transformation F will be called the instrument generating function (IGF)
throughout the paper. We assume that

Assumption 3.1. Let F be regularly integrable and satisfy
∫∞
−∞ xF(x) dx �=0.

Roughly speaking, the condition given in Assumption 3.1 requires that the instru-
ment F(yi; t−1) is correlated with the regressor yi; t−1. It is shown in Phillips et al.
(1999, Theorem 3.2(a)) that IV estimators become inconsistent when the instrument is
generated by a regularly integrable function F such that

∫∞
−∞ xF(x) dx=0. In this case,

the IGF F is orthogonal to the regression function, which is the identity in this case,
in the Hilbert space L2(R) of square integrable functions. In the standard stationary
regression, an instrument is invalid and the resulting IV estimator becomes inconsistent
if, in particular, it is uncorrelated with the regressor. Such an instrument failure also
arises in our nonstationary regression with an integrated regressor when the IGF is
orthogonal to the regression function.
Examples of the regularly integrable IGFs satisfying Assumption 3.1 include

1{|x|6K}, any indicator function on a compact interval de2ned by a truncation
parameter K , and its variates such as sgn(x)1{|x|¡K} and x1{|x|¡K}. Also in-
cluded are functions of the type xe−|x|. The IV estimator, for example, constructed
from the indicator function F(x) = 1{|x|6K} is simply the trimmed OLS estimator,
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i.e., the OLS estimator which uses only the observations taking values in the interval
[− K; K].
De2ne

yi =



yi;pi+1

...

yi;Ti


 ; y‘i =




yi;pi
...

yi;Ti−1


 ; Xi =



x′i;pi+1

...

x′i;Ti


 ; �i =



�i;pi+1

...

�i;Ti


 ;

where x′it = (Oyi; t−1; : : : ;Oyi; t−pi). Then the augmented autoregression (7) can be
written in matrix form as

yi = y‘i
i + Xi*i + �i = Yi,i + �i; (9)

where *i = (
i;1; : : : ; 
i;pi)
′; Yi = (y‘i; Xi), and ,i = (
i; *′i)

′. For the augmented auto-
regression (9), we consider the estimator ,̂i of ,i given by

,̂i =

(

̂i

*̂i

)
= (W ′

i Yi)
−1W ′

i yi =

(
F(y‘i)′y‘i F(y‘i)′Xi

X ′
i y‘i X ′

i Xi

)−1(
F(y‘i)′yi

X ′
i yi

)
; (10)

where Wi = (F(y‘i); Xi) with F(y‘i) = (F(yi;pi); : : : ; F(yi;Ti−1))′. The estimator ,̂i is
thus de2ned to be the IV estimator using the instruments Wi.
The IV estimator 
̂i for the AR coeHcient 
i corresponds to the 2rst element of ,̂i

given in (10). Under the null, we have


̂i − 1 = B−1
Ti ATi ; (11)

where

ATi = F(y‘i)′�i − F(y‘i)′Xi(X ′
i Xi)

−1X ′
i �i

=
Ti∑
t=1

F(yi; t−1)�it −
Ti∑
t=1

F(yi; t−1)x′it

(
Ti∑
t=1

xitx′it

)−1 Ti∑
t=1

xit�it

BTi = F(y‘i)′y‘i − F(y‘i)′Xi(X ′
i Xi)

−1X ′
i y‘i

=
Ti∑
t=1

F(yi; t−1)yi; t−1 −
Ti∑
t=1

F(yi; t−1)x′it

(
Ti∑
t=1

xitx′it

)−1 Ti∑
t=1

xityi; t−1

and the variance of ATi is given by

#2i ECTi

under Assumption 2.2, where

CTi = F(y‘i)′F(y‘i)− F(y‘i)′Xi(X ′
i Xi)

−1X ′
i F(y‘i)

=
Ti∑
t=1

F(yi; t−1)2 −
Ti∑
t=1

F(yi; t−1)x′it

(
Ti∑
t=1

xitx′it

)−1 Ti∑
t=1

xitF(yi; t−1):
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For testing the unit root hypothesis H0 : 
i=1 for each i=1; : : : ; N , we construct the
t-ratio statistic from the nonlinear IV estimator 
̂i de2ned in (11). More speci2cally,
we construct such an IV t-ratio statistic for testing for a unit root in (1) or (7) as

Zi =

̂i − 1
s(
̂i)

; (12)

where s(
̂i) is the standard error of the IV estimator 
̂i given by

s(
̂i)2 = #̂2i B
−2
Ti CTi : (13)

The #̂2i is the usual variance estimator given by T−1
i
∑Ti

t=1 �̂
2
it , where �̂it is the 2tted

residual from the augmented regression (7), viz.,

�̂it = yit − 
̂iyi; t−1 −
pi∑
k=1


̂i; kOyi; t−k = yit − 
̂iyi; t−1 − x′it *̂i :

It is natural in our context to use the IV estimate (
̂i; *̂i) given in (10) to get the 2tted
residual �̂it . However, we may obviously use any other estimator of (
i; *i) as long as
it yields a consistent estimate for the residual error variance.
To derive the limit null distribution of the IV t-ratio statistic Zi introduced in (12),

we need to obtain the asymptotics for various sample product moments appearing in
ATi ; BTi and CTi . For this, we need to introduce a set of independent standard Brownian
motions W1; : : : ; WN ; x which are independent of the Brownian motions U1; : : : ; UN . The
limit theories are presented in the following lemma.

Lemma 3.2. Under Assumptions 2.1; 2.2 and 3.1; we have

(a) T−1=4
i

∑Ti
t=1 F(yi; t−1) �it →d #i(
i(1)Li(1; 0)

∫∞
−∞ F(s)2 ds)1=2Wi(1);

(b) T−1=2
i

∑Ti
t=1 F(yi; t−1)2 →d 
i(1)Li(1; 0)

∫∞
−∞ F(s)2 ds;

(c) T−3=4
i

∑Ti
t=1 F(yi; t−1)Oyi; t−k →p 0; for k = 1; : : : ; pi

jointly as Ti → ∞; where 
i(1) = 1−∑pi
k=1 
i;k .

The results in Lemma 3.2 are simple extensions of the results in parts (c), (i) and (e)
of Lemma 5 in Chang and Park (1999). For the detailed discussion on the asymptotics
here, the reader is referred to Park and Phillips (1999, 2001) and Chang et al. (2001).
For the regularly integrable IGF F , the covariance asymptotics yields a mixed normal
limiting distribution with a mixing variate depending upon the local time Li of the
limit Brownian motion Ui, as well as the integral of the square of the transformation
function F .
It is very useful to note that

T−1=4
i

Ti∑
t=1

F(yi; t−1)�it ≈d
4
√
Ti

∫ 1

0
F(
√
TiBiTi) dUi;

T−1=2
i

Ti∑
t=1

F(yi; t−1)2 ≈d

√
Ti

∫ 1

0
F(
√
TiBiTi)

2
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from which we may easily deduce the results in parts (a) and (b) of Lemma 3.2 using
elementary martingale theory as in Park and Phillips (1999, 2001) and Chang et al.
(2001).
The limit null distribution of the IV t-ratio statistic Zi de2ned in (12) now follows

readily from the results in Lemma 3.2.

Theorem 3.3. Under Assumption 2.1; 2.2 and 3.1; we have

Zi →d Wi(1) ≡ N(0; 1)

as Ti → ∞ for all i = 1; : : : ; N .

The limiting distribution of the IV t-ratio Zi for testing 
i = 1 is standard normal if
a regularly integrable function is used as an IGF. Moreover, the limit standard normal
distributions, Wi(1)’s, are independent across cross-sectional units i = 1; : : : ; N , as we
show in the next section. Our limit theory here is thus fundamentally di)erent from
the usual unit root asymptotics. This is due to the local time asymptotics and mixed
normality of the results in Lemma 3.2. The nonlinearity of the IV is essential for our
Gaussian limit theory. The result in Theorem 3.3, and thereby any of the subsequent
result, is not applicable for the usual linear unit root tests such as those by Phillips
(1987) and Phillips and Perron (1988).
We now consider the limit behavior of our IV t-ratio statistic under the alternative

of stationarity to discuss the consistency of the test. Note that under the alternative,
i.e., 
i = 
i0¡ 1, our IV t-ratio Zi given in (12) can be expressed as

Zi = Zi(
i0) +
√
Ti(
i0 − 1)√
Tis(
̂i)

; (14)

where s(
̂i) is de2ned in (13) and

Zi(
i0) =

̂i − 
i0
s(
̂i)

(15)

which is the IV t-ratio statistic for testing 
i = 
i0¡ 1. Under the alternative, we may
expect that Zi(
i0) →d N(0; 1) if the usual mixing conditions for (yit) are assumed
to hold. Moreover, if we let Bi0 = plimTi→∞ T−1

i BTi and Ci0 = plimTi→∞ T−1
i CTi exist

under suitable mixing conditions for (yit), then the second term in the right-hand side
of Eq. (14) diverges to −∞ at the rate of

√
Ti. This is because√

Ti(
i0 − 1) → −∞ and
√
Ti s(
̂i) →p /i;

where /2i = #2i B
−2
i0 Ci0¿ 0. Hence, the IV t-ratio Zi diverges at the

√
Ti-rate under the

alternative of stationarity, just as in the case of the usual OLS-based t-type unit root
tests such as the augmented Dickey–Fuller test.
We also note that the IV t-ratios constructed with regularly integrable IGF are nor-

mally distributed asymptotically, for all |
i|6 1. The continuity of the distribution
across the values of 
i of the t-ratio Zi(
i) de2ned in (15) also allows us to con-
struct the con2dence intervals for 
i from the IV estimator. As we have noticed above,
Zi(
i) →d N(0; 1) for all values of 
i including unity, when the IGF F is a regularly
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integrable function. We may therefore construct 100(1 − �)% asymptotic con2dence
interval for 
i as

[
̂i − z�=2 s(
̂i); 
̂i + z�=2 s(
̂i)]

using the IV estimator generated by any integrable function F , where z�=2 is the (1−
�=2)-percentile from the standard normal distribution.
This is one important advantage of using the nonlinear IV method. The OLS-based

standard t-ratio has non-Gaussian asymptotic null distribution, called the Dickey–Fuller
distribution. It is asymmetric and skewed to the left, as tabulated in Fuller (1996).
Therefore, the con2dence interval which is valid for all |
i|6 1 cannot be constructed
from the OLS based t-ratio.

4. Panel nonlinear IV unit root test

The test statistic we propose here to test for the unit root hypothesis in a panel
is basically an average of t-ratio statistics for testing the unity of the AR coeHcient
computed individually from each cross-sectional unit. More speci2cally, we test for
the joint unit root null hypothesis H0: 
i = 1 for all i = 1; : : : ; N using an average
statistic based on the individual t-statistics for testing 
i = 1 in (7) constructed from
the nonlinear IV estimator 
̂i de2ned in (11). The average IV t-ratio statistic is thus
de2ned as

SN =
1√
N

N∑
i=1

Zi; (16)

where Zi is the individual nonlinear IV t-ratio statistic, de2ned in (12), for testing

i = 1 for the ith cross-sectional unit. For the average statistic SN , we allow each of
the cross-sectional units i = 1; : : : ; N to have a di)erent sample size Ti, and therefore
unbalanced panels are permitted in our framework. Our test is based on nonlinear IV
estimation of the usual ADF type regression for each cross-sectional unit, using as
instruments nonlinear transformations of the lagged levels yi; t−1’s.
In order to derive the limit theory for the statistic SN , we 2rst investigate how the

individual IV t-ratio statistics Zi’s interact in the limit. We have

T−1=4
i

Ti∑
t=1

F(yi; t−1)�it ≈d
4
√
Ti

∫ 1

0
F(
√
TiBiTi) dUi;

T−1=4
j

Tj∑
t=1

F(yj; t−1)�jt ≈d
4
√
Tj

∫ 1

0
F(
√
TjBjTj) dUj;

which become asymptotically independent if their quadratic covariation

#ij 4
√
TiTj

∫ 1

0
F(
√
TiBiTi(r))F(

√
TjBjTj (r)) dr
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converges a.s. to zero, where #ij denotes the covariance between Ui and Uj. This was
shown in Chang et al. (2001). Below we introduce a suHcient condition and establish
their asymptotic independence subsequently.
Let Tmin and Tmax, respectively, be the minimum and the maximum of Ti’s for

i = 1; : : : ; N .

Assumption 4.1. Assume

Tmin → ∞ and
T 1=4
max log Tmax

T 3=4
min

→ 0:

Then we have

Lemma 4.2. Under Assumptions 2.1; 2.2; 3.1 and 4.1; the following holds:

4
√
TiTj

∫ 1

0
F(
√
TiBiTi(r))F(

√
TjBjTj (r)) dr →p 0 (17)

and the results in Lemma 3.2 hold jointly for all i = 1; : : : ; N with independent Wi’s
across i = 1; : : : ; N .

The result in Lemma 4.2 is new, and shows that the product of the nonlinear instruments
F(yi; t−1) and F(yj; t−1) from di)erent cross-sectional units i and j are asymptotically
uncorrelated, even when the variables yi; t−1 and yj; t−1 generating the instruments are
correlated. This implies that the individual IV t-ratio statistics Zi and Zj constructed
from the nonlinear IV’s F(yi; t−1) and F(yj; t−1) are asymptotically independent. This
asymptotic orthogonality plays a crucial role in developing limit theory for our panel
unit root test SN de2ned above, as can be seen below.
The limit theory for SN follows immediately from Theorem 3.3 and Lemma 4.2, and

is provided in

Theorem 4.3. We have

SN →d N(0; 1)

under Assumptions 2.1; 2.2; 3.1 and 4.1.

The limit theory is derived using T -asymptotics only. It holds as long as all Ti’s go
to in2nity and Ti’s are asymptotically balanced in a very weak sense, as we specify in
Assumption 4.1. It should be noted that the usual sequential asymptotics is not used
here. 3 The factor N−1=2 in the de2nition of the test statistic SN in (16) is used just as a
normalization factor, since SN is based on the sum of N independent random variables.
Therefore, the dimension of the cross-sectional units N may take any value, small as
well as large. The above result implies that we can do simple inference based on the
standard normal distribution even for unbalanced panels with general cross-sectional
dependencies.

3 The usual sequential asymptotics is carried out by 2rst passing T to in2nity with N 2xed, and subse-
quently let N go to in2nity, usually under cross-sectional independence.
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The normal limit theory is also obtained for the existing panel unit root tests, but the
theory holds only under cross-sectional independence, and obtained only through se-
quential asymptotics. For example, the pooled OLS test by Levin et al. (1997) and the
group mean t-bar statistic by Im et al. (1997) have normal asymptotics. However, they
all presume cross-sectional independence and their normal limit theories are obtained
through sequential asymptotics. 4 The independence assumption was crucial for their
tests to have normal limiting distributions, since the individual t-statistics contribut-
ing to the average become independent only when the innovations �it generating the
individual units are independent. Moreover, the sequential asymptotics is an essential
tool to derive their results, and they do not provide joint asymptotics. Here we achieve
the asymptotic independence of individual t-statistics by establishing asymptotic or-
thogonalities of the nonlinear instruments used in the construction of the individual IV
t-ratio statistics without having to impose independence across cross-sectional units, or
relying on sequential asymptotics.

5. Nonlinear IV estimation for models with deterministic trends

The models with deterministic components can be analyzed similarly using properly
demeaned or detrended data. A proper demeaning or detrending scheme required here
must be able to successfully remove the nonzero mean and time trend, while main-
taining the martingale property of the errors and ultimately the Gaussian limit theory
for our nonlinear IV unit root tests. We now introduce our demeaning and detrending
schemes.
If the time series (zit) with a nonzero mean is given by

zit = 0i + yit ; (18)

where the stochastic component (yit) is generated as in (1), then we may test for the
presence of a unit root in (yit) from the augmented regression (7) de2ned with the
demeaned series y0it and y0i; t−1 of zit and zi; t−1, viz.,

y0it = 
iy
0
i; t−1 +

pi∑
k=1


i;kOy
0
i; t−k + eit ; (19)

where

y0it = zit − 1
t − 1

t−1∑
k=1

zik ; (20)

y0i; t−1 = zi; t−1 − 1
t − 1

t−1∑
k=1

zik ; (21)

Oy0i; t−k =Ozi; t−k ; k = 1; : : : ; pi (22)

and (eit) are regression errors.

4 They also consider the case N=T → k, where k is a 2xed constant, but the relevant asymptotics is not
rigorously developed. Moreover, they introduce common time e)ects to their model, and thereby allow for
limited cross-sectional dependency.
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The term (1=(t − 1))
∑t−1

k=1 zik is the least-squares estimator of 0i obtained from the
preliminary regression

zik = 0i + yik for k = 1; : : : ; t − 1:

We note that the parameter 0i is estimated from model (18) using the observations
up to time t − 1. That we use the data up to the period t − 1 only, instead of using
the full sample, for the estimation of the constant 0i leads to the demeaning based
on the partial sum of the data up to t − 1 as given in (20) and (21), which we call
adaptive demeaning. 5 Note from (20) that even for the tth observation zit , we use
(t− 1)-adaptive demeaning to maintain the martingale property. No further demeaning
is needed for the lagged di)erences Ozi; t−k ; i = 1; : : : ; pi, since the di)erencing has
already removed the mean.
We may then construct the nonlinear IV t-ratio statistic Z0i based on the nonlinear

IV estimator for 
i from regression (19), just as in (12). With the adaptive demeaning
the predictability of our nonlinear instrument F(y0i; t−1) is retained, and consequently
our previous results continue to apply, including the normal distribution theory for the
IV t-ratio statistic.
We may also test for a unit root in the models with more general deterministic time

trends. As in the cases with the models with nonzero means, we may derive nonlinear
IV unit root test Z2i in the same manner. More explicitly, consider the time series with
a linear time trend

zit = 0i + 3it + yit ; (23)

where (yit) is generated as in (1). Similarly, we may test for the unit root in (yit)
from regression (7) de2ned with the properly detrended series y2it ; y

2
i; t−1 and Oy2it−k

of zit ; zi; t−1 and Ozi;t−k ; k = 1; : : : ; pi as

y2it = 
iy2i; t−1 +
pi∑
k=1


i;kOy2i; t−k + eit ; (24)

where

y2it = zit +
2

t − 1

t−1∑
k=1

zik − 6
t(t − 1)

t−1∑
k=1

kzik − 1
Ti
ziTi ; (25)

y2i; t−1 = zi; t−1 +
2

t − 1

t−1∑
k=1

zik − 6
t(t − 1)

t−1∑
k=1

kzik ; (26)

Oy2i; t−k =Ozi; t−k − 1
Ti
ziTi ; k = 1; : : : ; pi (27)

and (eit) are regression errors.
The variables zit and zi; t−1 are detrended using the least-squares estimators of the

drift and trend coeHcients, 0i and 3i, from model (23) using again the observations

5 This method was formerly used by So and Shin (1999) to demean positively correlated stationary AR
processes. They found that the method reduces the biases of the parameter estimators.
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up to time t − 1 only, viz.,

zik = 0i + 3ik + yik for k = 1; : : : ; t − 1:

The term ziTi =Ti appearing in the de2nitions of y2it and Oy2i; t−k given in (25) and (27)

is the grand sample mean of Ozit ; 1
Ti

∑Ti
k=1 Ozik . The term is used in (25) to eliminate

the remaining drift term of zit + (2=(t − 1))
∑t−1

k=1 zik − (6=t(t − 1))
∑t−1

k=1 kzik , and in
(27) to remove the nonzero mean of Ozi; t−k , for k = 1; : : : ; pi.
The adaptive detrending of the data as given in (25) and (26) above preserves the

predictability of our instrument F(y2i; t−1). The nonlinear IV t-ratio statistic Z2i is then
de2ned as in (12) from the nonlinear IV estimator for 
i from the regression (24). 6

We may now derive the limit theories for the statistics Z0i and Z2i in the similar
manner as we did to establish the limit theory given in Theorem 3.3. In order to de2ne
the limit distributions properly, we 2rst introduce some notations. De2ne adaptively
demeaned Brownian motion by

U0
i (r) = Ui(r)− 1

r

∫ r

0
Ui(s) ds

for i = 1; : : : ; N , and denote its local time by L0i scaled as for Li. Similarly, we also
de2ne adaptively detrended Brownian motion as

U2
i (r) = Ui(r) +

2
r

∫ r

0
Ui(s) ds− 6

r2

∫ r

0
sUi(s) ds

and analogously denote its local time by L2i for i = 1; : : : ; N . If we let U0
i (0) = 0 and

U2
i (0) = 0, then both processes have well-de2ned continuous versions on [0;∞), as

shown in the proof of Corollary 5.1.
The limit theories given in Lemma 3.2 extend easily to the models with nonzero

means and deterministic trends if we replace the lagged level yi; t−1 with the lagged
detrended series y0i; t−1 and y2i; t−1 de2ned, respectively, in (21) and (26). They are
indeed given similarly with the local times L0i and L2i of the adaptively demeaned
and detrended Brownian motions U0

i and U2
i in the place of the local time Li of the

Brownian motion Ui. Then the limit theories for the nonlinear IV t-ratio statistics Z0i
and Z2i for the models with nonzero means and deterministic trends follow immediately,
and are given in

Corollary 5.1. Under Assumption 2.1; 2.2 and 3.1; we have

Z0i ; Z
2
i →d N(0; 1)

as Ti → ∞ for all i = 1; : : : ; N .

6 The adaptive demeaning and detrending, in particular, make our statistics independent of the starting
values. Note that the nonlinear instruments F(y0i; t−1) and F(y2i; t−1) are now generated, respectively, from
the adaptively demeaned and detrended series, (y0i; t−1) and (y2i; t−1), for t=2; : : : ; Ti , and that they are forced
to start at the origin, i.e., F(y0i1) = F(0) and F(y2i1) = F(0) a.s.



276 Yoosoon Chang / Journal of Econometrics 110 (2002) 261–292

The standard normal limit theory of the nonlinear IV t-ratio statistics continues to
hold for the models with deterministic components.

6. Simulations

We conduct a set of simulations to investigate the 2nite sample performance of the
average IV t-statistic SN based on integrable IGFs for testing the unit root null hy-
pothesis H0: 
i = 1 for all i = 1; : : : ; N against the stationarity alternative H1: |
i|¡ 1
for some i. In particular, we explore how close are the 2nite sample sizes of the
test SN in relation to the corresponding nominal test sizes, using the critical val-
ues from its limit N(0; 1) distribution, and compare its sizes and powers with those
of the commonly used average statistic t-bar proposed by Im et al.
(1997).
For the simulations, we consider the time series (zit) with a drift given by model

(18) with (yit) generated as in (1) and (uit) as AR(1) processes, viz.,

uit = 4iui; t−1 + �it : (28)

The innovations �t = (�1t ; : : : ; �Nt)′ that generate ut = (u1t ; : : : ; uNt)′ are drawn from an
N -dimensional multivariate normal distribution with mean zero and covariance matrix
�. The AR coeHcients, 4i’s, used in the generation of the errors (uit) are drawn
randomly from the uniform distribution, i.e., 4i ∼ Uniform[0:2; 0:4]. The parameter
values for the (N × N ) covariance matrix � = (#ij) are also randomly drawn, but
with particular attention. To ensure that � is a symmetric positive de2nite matrix and
to avoid the near singularity problem, we generate � following the steps outlined in
Chang (2000). The steps are presented here for convenience:

(1) Generate an (N × N ) matrix M from Uniform[0,1].
(2) Construct from M an orthogonal matrix H =M (M ′M)−1=2.
(3) Generate a set of N eigenvalues, �1; : : : ; �N . Let �1 = r ¿ 0 and �N = 1 and draw

�2; : : : ; �N−1 from Uniform[r; 1].
(4) Form a diagonal matrix 7 with (�1; : : : ; �N ) on the diagonal.
(5) Construct the covariance matrix � as a spectral representation �= H7H ′.

The covariance matrix constructed in this way will surely be symmetric and nonsingu-
lar with eigenvalues taking values from r to 1. We set the maximum eigenvalue at 1
since the scale does not matter. The ratio of the minimum eigenvalue to the maximum
is, therefore, determined by the same parameter r. We now have some control over the
size of the minimum eigenvalue and the ratio of the minimum to the maximum eigen-
values through the choice of r. The covariance matrix becomes singular as r tends
to zero, and becomes spherical as r approaches to 1. For the simulations, we set r
at 0:1.
For the estimation of the model (7) for i = 1; : : : ; N , we consider the IV estimator

,̂i de2ned in (10) which uses the instrument (F(yi; t−1);Oyi; t−1; : : : ;Oyi; t−pi)
′. The
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Fig. 1. IGF F(x) = xe−|x|.

instrument used for the lagged level yi; t−1 is generated by the integrable IGF

F(yi; t−1) = yi; t−1e−ci|yi; t−1|;

where the factor ci is inversely proportional to the sample standard error of Oyit = uit
and T 1=2

i . That is,

ci = KT−1=2
i s−1(Oyit) with s2(Oyit) = T−1

i

Ti∑
t=1

(Oyit)2;

where K is a constant. The value of K is 2xed at 3 for all i = 1; : : : ; N , and for all
combinations of N and T considered here. 7 We note that the factor ci in the de2nition
of the instrument generating function F is data-dependent through the sample standard
error of the di)erence of the data yit . Hence, the value of ci will be determined for
each cross-sectional unit i=1; : : : ; N . The shape of the integrable IV generating function
F is given in Fig. 1.
Our asymptotics requires the factor ci to be constant. For practical applications,

however, we found it desirable to make ci dependent upon Ti as suggested in the
previous equation. With the choice of larger (smaller) value of ci, we may have better
size (power) at the cost of power (size). This is well expected. Notice that the larger
the value of ci, the more integrable the IGF F becomes. Our asymptotics thus better
predicts 2nite sample behavior of the test. On the other hand, the test loses 2nite sample
powers as the factor ci gets larger. As is well known from the standard regression

7 The test SN constructed from the IGF F with a lager value of K tends to have smaller rejection
probabilities uniformly over all the choices of N and T . The IGF de2ned with K = 3 seems to work best
overally, and thus chosen for our simulations. For the cases where the time dimension is small T = 25, the
average nonlinear IV test SN slightly over-rejects the null. In such cases, one might use a little larger value
of K to correct the upward size distortion.
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theory, the optimal IGF is given by the identity F(x)= x, which reduces our nonlinear
IV estimator to the OLS estimator. As the IGF F tends to be more integrable, the
resulting nonlinear IV estimator becomes less eHcient, which may lead to the power
loss in our test.
To test the unit root hypothesis, we set 
i = 1 for all i = 1; : : : ; N , and investi-

gate the 2nite sample sizes in relation to the corresponding nominal test sizes. To
examine the rejection probabilities under the alternative, we generate 
i’s randomly
from Uniform[0.8,1]. The model is thus heterogeneous under the alternative. The
2nite sample performance of the average nonlinear IV t-ratio statistic SN is com-
pared with that of the t-bar statistic by Im et al. (1997), which is based on the
average of the individual t-tests computed from the sample ADF regressions (7)
with mean and variance modi2cations. More explicitly, the t-bar statistic is de2ned
as

t-bar =

√
N (RtN − N−1 ∑N

i=1 E(ti))√
N−1

∑N
i=1 var(ti)

;

where ti is the t-statistic for testing 
i =1 for the ith sample ADF regression (7), and
RtN = N−1 ∑N

i=1 ti. The values of the expectation and variance, E(ti) and var(ti), for
each individual ti depend on Ti and the lag-order pi, and computed via simulations
from independent normal samples. The number of time series observation Ti for each
i = 1; : : : ; N is required to be the same. 8

The panels with the cross-sectional dimensions N = 5; 15; 25; 50; 100 and the time
series dimensions T =25; 50; 100 are considered for the 1%, 5% and 10% size tests. 9

Since we are using randomly drawn parameter values, we simulate 20 times and re-
port the ranges of the 2nite sample performances of the average nonlinear IV t-ratio
statistic SN and the t-bar test. Each simulation run is carried out with 10,000 simu-
lation iterations. Tables 1, 2 and 3 report, respectively, the 2nite sample sizes, the
2nite sample rejection probabilities and the size adjusted 2nite sample powers of
the two tests. For each statistic, we report the minimum, mean, median and max-
imum of the rejection probabilities under the null and the alternative
hypotheses.
As can be seen from Table 1, the 2nite sample sizes of the test SN are quite close

to the corresponding nominal sizes. The sizes are calculated using the critical values
from the standard normal distribution, and therefore the simulation results corroborate
the asymptotic normal theory for SN . The limit theory seems to provide reasonably
good approximations even when the number of time series observation is relatively
small, i.e., when T = 25, for all of the cross-sectional dimensions considered. On
the other hand, the t-bar statistic exhibits noticeable size distortions, as reported, for

8 Table 2 in Im et al. (1997) tabulates the values of E(ti) and var(ti) for T =
5; 10; 15; 20; 25; 30; 40; 50; 60; 70; 100 and for pi = 0; : : : ; 8.

9 For simplicity we use the same T for all cross-sectional units in our simulations. However, our theory
does permit heterogeneity in the number Ti of time series observations. It is also true that the t-bar test
can be practically implemented for unbalanced panels, though Im et al. (1997) do not explicitly allow for
heterogeneous Ti’s in their theoretical developments.
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Table 1
Finite sample sizes

N T Tests 1% Test 5% Test 10% Test

Min Mean Med Max Min Mean Med Max Min Mean Med Max

5 25 t-bar 0.024 0.027 0.026 0.030 0.090 0.095 0.094 0.100 0.156 0.166 0.166 0.173
SN 0.018 0.021 0.021 0.024 0.065 0.071 0.071 0.075 0.117 0.124 0.124 0.130

15 25 t-bar 0.037 0.041 0.041 0.045 0.129 0.136 0.135 0.144 0.217 0.225 0.226 0.230
SN 0.017 0.020 0.020 0.022 0.063 0.071 0.071 0.076 0.114 0.124 0.124 0.131

25 25 t-bar 0.044 0.049 0.049 0.053 0.153 0.162 0.163 0.169 0.258 0.265 0.266 0.271
SN 0.015 0.017 0.018 0.020 0.057 0.066 0.067 0.071 0.108 0.118 0.118 0.125

50 25 t-bar 0.077 0.081 0.082 0.086 0.225 0.232 0.232 0.238 0.346 0.353 0.353 0.360
SN 0.015 0.017 0.017 0.019 0.058 0.063 0.063 0.068 0.106 0.115 0.115 0.121

100 25 t-bar 0.146 0.154 0.154 0.159 0.349 0.358 0.358 0.364 0.486 0.494 0.494 0.505
SN 0.015 0.017 0.018 0.019 0.058 0.063 0.064 0.066 0.109 0.114 0.115 0.118

5 50 t-bar 0.016 0.019 0.018 0.021 0.071 0.075 0.076 0.077 0.132 0.138 0.138 0.142
SN 0.016 0.018 0.018 0.021 0.059 0.065 0.066 0.072 0.109 0.116 0.116 0.123

15 50 t-bar 0.020 0.024 0.024 0.029 0.086 0.092 0.091 0.100 0.156 0.163 0.163 0.172
SN 0.014 0.016 0.017 0.017 0.059 0.062 0.062 0.065 0.104 0.111 0.111 0.120

25 50 t-bar 0.024 0.026 0.026 0.028 0.095 0.101 0.101 0.103 0.168 0.177 0.177 0.181
SN 0.010 0.014 0.014 0.016 0.050 0.055 0.056 0.060 0.096 0.102 0.101 0.109

50 50 t-bar 0.030 0.034 0.034 0.039 0.115 0.123 0.122 0.132 0.197 0.209 0.209 0.218
SN 0.010 0.012 0.012 0.013 0.045 0.050 0.050 0.053 0.087 0.093 0.094 0.098

100 50 t-bar 0.049 0.053 0.053 0.059 0.162 0.167 0.167 0.174 0.260 0.267 0.267 0.277
SN 0.009 0.011 0.011 0.014 0.040 0.045 0.045 0.048 0.079 0.085 0.085 0.089

5 100 t-bar 0.014 0.016 0.016 0.018 0.062 0.066 0.067 0.071 0.120 0.124 0.125 0.129
SN 0.014 0.017 0.017 0.019 0.060 0.063 0.064 0.068 0.109 0.115 0.115 0.120

15 100 t-bar 0.016 0.018 0.019 0.020 0.072 0.076 0.076 0.080 0.134 0.139 0.140 0.144
SN 0.013 0.015 0.015 0.017 0.052 0.059 0.059 0.063 0.100 0.107 0.107 0.112

25 100 t-bar 0.017 0.018 0.018 0.022 0.070 0.076 0.076 0.080 0.134 0.141 0.142 0.145
SN 0.011 0.013 0.013 0.015 0.049 0.052 0.052 0.056 0.091 0.098 0.098 0.102

50 100 t-bar 0.018 0.021 0.021 0.023 0.077 0.084 0.084 0.092 0.146 0.153 0.154 0.159
SN 0.010 0.011 0.011 0.013 0.042 0.046 0.047 0.050 0.083 0.087 0.087 0.092

100 100 t-bar 0.025 0.029 0.029 0.035 0.099 0.103 0.103 0.107 0.173 0.178 0.178 0.183
SN 0.007 0.010 0.009 0.012 0.038 0.041 0.040 0.045 0.073 0.078 0.078 0.084

instance, in the previous simulation work by Maddala and Wu (1999). The direc-
tion of the size distortions are upward in all cases for all 1%, 5% and 10% tests.
The t-bar statistic su)ers from severe size distortions especially when the number of
cross-sectional units is large relative to the number of time series observations. For ex-
ample, when N =100 and T =25, the average 2nite sample sizes of the t-bar statistics
for 1%, 5% and 10% tests are, respectively, 15%, 36% and 49%. The size distortions
become less serious as the time dimension gets large; however, they are still quite
noticeable.
The test SN is more powerful than the t-bar statistic for all 1%, 5% and 10%

tests and for all N and T combinations considered, as can be seen clearly from
the results on the 2nite sample rejection probabilities and the size adjusted powers,



280 Yoosoon Chang / Journal of Econometrics 110 (2002) 261–292

Table 2
Finite sample rejection probabilities

N T Tests 1% Test 5% Test 10% Test

Min Mean Med Max Min Mean Med Max Min Mean Med Max

5 25 t-bar 0.059 0.094 0.088 0.139 0.191 0.258 0.248 0.346 0.306 0.390 0.377 0.498
SN 0.073 0.132 0.119 0.225 0.207 0.316 0.297 0.465 0.319 0.445 0.428 0.607

15 25 t-bar 0.184 0.277 0.278 0.368 0.417 0.540 0.546 0.652 0.568 0.684 0.691 0.778
SN 0.223 0.364 0.364 0.526 0.449 0.617 0.625 0.767 0.590 0.741 0.750 0.862

25 25 t-bar 0.346 0.472 0.464 0.628 0.627 0.736 0.732 0.854 0.761 0.844 0.841 0.926
SN 0.397 0.577 0.575 0.780 0.655 0.804 0.808 0.928 0.778 0.887 0.892 0.968

50 25 t-bar 0.725 0.831 0.847 0.908 0.901 0.951 0.962 0.980 0.951 0.979 0.983 0.993
SN 0.780 0.901 0.917 0.969 0.930 0.975 0.980 0.995 0.965 0.990 0.992 0.998

100 25 t-bar 0.972 0.988 0.989 0.994 0.996 0.998 0.999 0.999 0.999 1.000 1.000 1.000
SN 0.987 0.996 0.997 0.999 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000

5 50 t-bar 0.081 0.194 0.163 0.372 0.246 0.438 0.404 0.672 0.385 0.591 0.563 0.809
SN 0.189 0.382 0.337 0.651 0.417 0.642 0.614 0.877 0.566 0.765 0.752 0.943

15 50 t-bar 0.341 0.601 0.611 0.817 0.626 0.834 0.849 0.953 0.760 0.911 0.925 0.980
SN 0.648 0.861 0.879 0.979 0.867 0.959 0.971 0.998 0.929 0.982 0.990 1.000

25 50 t-bar 0.675 0.854 0.855 0.979 0.887 0.962 0.967 0.997 0.945 0.985 0.988 0.999
SN 0.912 0.981 0.988 1.000 0.984 0.997 0.999 1.000 0.994 0.999 1.000 1.000

50 50 t-bar 0.979 0.996 0.998 1.000 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 50 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 100 t-bar 0.215 0.609 0.558 0.955 0.498 0.828 0.833 0.996 0.668 0.906 0.921 0.999
SN 0.530 0.830 0.843 0.998 0.791 0.946 0.964 1.000 0.883 0.975 0.987 1.000

15 100 t-bar 0.870 0.981 0.995 1.000 0.975 0.997 1.000 1.000 0.991 0.999 1.000 1.000
SN 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

25 100 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 100 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 100 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

reported, respectively, in Tables 2 and 3. The discriminatory power of SN is notice-
ably much higher than that of the t-bar statistic for the cases with smaller T and
N . For the 1% tests with the combinations (N; T ) = {(15; 25); (25; 25); (5; 50)}, the
power of the test SN is more than twice as large as that of the t-bar statistic. The SN
still performs much better than the t-bar even when T is large, if the cross-sectional
dimension is small. The performance of the t-bar statistic improves as both N and
T increase, though the improvement is more noticeable with the growth in T . The
di)erences in the 2nite sample powers of SN and t-bar vanish as both N and T
increase.
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Table 3
Finite sample powers

N T Tests 1% Test 5% Test 10% Test

Min Mean Med Max Min Mean Med Max Min Mean Med Max

5 25 t-bar 0.022 0.041 0.040 0.068 0.109 0.156 0.149 0.217 0.201 0.269 0.260 0.349
SN 0.034 0.077 0.069 0.143 0.157 0.250 0.236 0.393 0.271 0.392 0.379 0.554

15 25 t-bar 0.062 0.110 0.108 0.165 0.208 0.310 0.305 0.398 0.340 0.462 0.456 0.567
SN 0.150 0.257 0.245 0.390 0.367 0.540 0.543 0.692 0.529 0.693 0.695 0.827

25 25 t-bar 0.138 0.208 0.196 0.336 0.342 0.473 0.462 0.627 0.486 0.625 0.619 0.759
SN 0.344 0.484 0.464 0.714 0.607 0.761 0.760 0.901 0.748 0.866 0.867 0.957

50 25 t-bar 0.354 0.482 0.501 0.584 0.627 0.753 0.772 0.854 0.761 0.860 0.869 0.927
SN 0.707 0.858 0.879 0.944 0.911 0.966 0.973 0.993 0.958 0.987 0.990 0.998

100 25 t-bar 0.713 0.806 0.806 0.868 0.895 0.944 0.946 0.966 0.950 0.976 0.978 0.987
SN 0.980 0.993 0.994 0.998 0.997 1.000 1.000 1.000 0.999 1.000 1.000 1.000

5 50 t-bar 0.047 0.129 0.111 0.280 0.176 0.352 0.320 0.584 0.306 0.507 0.479 0.730
SN 0.128 0.293 0.251 0.537 0.353 0.586 0.548 0.845 0.526 0.733 0.713 0.926

15 50 t-bar 0.192 0.451 0.483 0.687 0.480 0.734 0.752 0.898 0.640 0.847 0.859 0.959
SN 0.569 0.813 0.826 0.963 0.842 0.949 0.958 0.996 0.922 0.979 0.986 1.000

25 50 t-bar 0.496 0.735 0.732 0.943 0.783 0.915 0.921 0.991 0.884 0.962 0.967 0.997
SN 0.891 0.974 0.984 1.000 0.978 0.997 0.999 1.000 0.994 0.999 1.000 1.000

50 50 t-bar 0.919 0.980 0.990 0.999 0.987 0.998 0.999 1.000 0.997 0.999 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 50 t-bar 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 100 t-bar 0.182 0.540 0.480 0.925 0.441 0.786 0.785 0.993 0.615 0.882 0.899 0.999
SN 0.432 0.774 0.771 0.993 0.753 0.929 0.950 1.000 0.864 0.970 0.984 1.000

15 100 t-bar 0.777 0.966 0.988 1.000 0.950 0.994 1.000 1.000 0.982 0.998 1.000 1.000
SN 0.986 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

25 100 t-bar 0.992 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 100 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 100 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7. Empirical illustrations

In this section, we apply the newly developed panel unit root test SN to test whether
the PPP hypothesis holds. The PPP hypothesis has been tested by many researchers
using various unit root tests, both in panel as well as in univariate models. Exam-
ples include MacDonald (1996), Frankel and Rose (1996), Oh (1996), Papell (1997),
O’Connell (1998), just to name a few. There have been, however, conSicting evidence,
and the issue does not seem to be completely settled.
We consider the data used in Papell (1997), which consists of the real exchange

rates for 20 countries computed from the IMF’s International Financial Statistics (IFS)
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Table 4
PPP tests for IFS data

t-bar SN

T = 50 T = 100 T = 50 T = 100

AR 2 −1:589b −1:183 −2:872a −2:554a

Order 4 −7:108a −4:525a −5:969a −5:119a

BIC 4 −2:740a −3:490a −3:719a −4:695a

Max order 8 −1:127 −2:646a −0:249 −3:937a

Note: The superscripts a, b and c denote, respectively, the statistical signi2cance at 1%, 5% and 10%
levels.

tape, covering the period 1973:1–1998:4. 10 We also consider the data from the Penn
World Table (PWT) analyzed in Oh (1996). 11 The empirical results are summarized in
Tables 4 and 5, respectively, for the results obtained from the data from Papell (1997)
and Oh (1996). We allow the models to have heterogeneous dynamic structures, i.e.,
the models may have di)erent AR orders for individual cross-sectional units. For each
cross-sectional unit the AR order is selected using the BIC criterion with the maximum
number of lags 4 or 8 for the quarterly IFS data, and with 2 or 4 for the annual PWT
data. To see how sensitive are the test results with respect to the speci2cations of
individual dynamics, we also look at the panels with homogeneous dynamics, where
we do not allow the AR order to vary across the individual units and 2x the AR order
for all cross-sectional units at 2 or 4 for the IFS data and at 1 or 2 for the PWT data.
For the analysis of the PWT data, we looked at four di)erent groups of countries.

For each group of countries, the numbers of the time series observations are di)erent,
varying from 30 to 41. 12 The IFS data have total 104 time series observations. To
examine the dependency on the sample size also for the test results from the IFS data
set, we considered two sub-samples of sizes 50 and 100. The sub-samples are obtained
by retaining the most recent observations.
For both data from Papell (1997) and Oh (1996), our test strongly rejects the unit

root hypothesis, which is used in the empirical studies as an indirect evidence for the
PPP relationship. As seen from Tables 4 and 5, our test rejects the presence of the

10 The quarterly data used in Papell (1997) covers the period 1973:1–1994:3, but the data used here is
extended to 1998:4. The countries considered include Austria, Belgium, Denmark, Finland, France, Germany,
Italy, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom, Ireland, Australia, Greece,
New Zealand, Portugal, and Canada. The real exchange rate rit for the ith country is computed using the
US dollar as the numeraire currency, and calculated as rit = log(eitp∗t =pit), where eit ; p∗t and pit denote,
respectively, the nominal spot exchange rate for the ith country, the US CPI, and the CPI for the ith country.
11 The data used in Oh (1996) are yearly observations from the Penn World Table, Mark 5.5. The data

are collected for 111 countries for the period 1960–1989, and extended to a longer period 1950–1990 for
a group of 51 countries. For the longer sample, the data are analyzed for two sub-samples, the 22 OECD
countries and G6 countries (Canada, France, Germany, Italy, Japan and United Kingdom).
12 For the group of 111 countries, there are 30 annual observations. But for the group of 51 countries

(including its sub-samples of 22 OECD countries and G6 countries), there are 41 time series observations.
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Table 5
PPP tests for PWT data

t-bar SN

G6 OECD 51Con 111Con G6 OECD 51Con 111Con

AR 1 −1:014 −1:997b −2:694a −6:111a −1:471c −3:217a −4:116a −8:066a

Order 2 −0:400 −0:669 −0:912 −3:420a −0:629 −1:528c −1:975b −5:033a

BIC 2 −1:014 −1:997b −2:066b −4:279a −1:471c −3:217a −3:841a −6:708a

Max order 4 −1:014 −1:723b −2:062b −3:899a −1:471c −3:103a −3:740a −6:002a

Note: The superscripts a, b and c denote, respectively, the statistical signi2cance at 1%, 5% and 10%
levels.

unit root in most of the cases considered here. 13 The values of the test statistic SN
of course vary for di)erent choices of the sample size T and the speci2cations of the
dynamic structures, but overall they provide strong evidence against the null hypothesis
of the unit root. Our test appears to be fairly robust with respect to the speci2cations
of model dynamics and the sizes of the samples.
In sharp contrast, the t-bar test by Im et al. (1997) produces the results that are

inconclusive. The test results are, in particular, quite sensitive to the speci2cations of
the individual dynamic structures, and to the dimensions of the cross-sectional and
time series observations. For the IFS data, we get contradictory results for each choice
of the number of time series observations and maximum order in the BIC criterion.
It appears that the test has the tendency to support the PPP when the sample size
is large. However, this tendency is not observed when we do not allow for hetero-
geneous dynamics across individual units. The results from the PWT data are also
inconclusive. The t-bar test supports or rejects the PPP depending upon how we select
the countries and the time series observations. The test fails to consistently reject the
presence of the unit root except for one case where we have largest number of total
observations.

8. Conclusions

This paper introduces an asymptotically normal unit root test for panels with cross-
sectional dependency. The test is based on nonlinear IV estimation of the autoregressive
coeHcient using the instruments generated by the class of regularly integrable func-
tions. The t-ratio statistic for the test of the unit root constructed from such nonlinear

13 Our test is not able to reject the absence of PPP for 20 OECD countries from the IFS data when
short-run dynamics is selected by the BIC with the larger maximum number of lags 8 and the smaller time
dimension T = 50. This might be due to the fact that the 50 quarterly time series observations (possibly
with upto 8 losses in data points for constructing lagged di)erences) amount to only about 12 years of time
span, which is too short for uncovering long-run properties of the underlying stochastic processes. Our test
also fails to reject the null for G6 countries based on the PWT data, when the dynamics is restricted at
AR(2). This indeed is the case with the smallest number of total observations, which may well have led to
the low power.
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IV estimator is shown to have standard normal limit distribution, for each individual
cross-sectional unit i=1; : : : ; N . The nonlinear IV t-ratio statistic has simple symmetric
con2dence intervals both under the unit root null as well as under the stationarity alter-
natives. Therefore, there are no more discontinuity problems in the con2dence intervals
in the transition from stationary to nonstationary cases. The same results extend to the
models with deterministic trends. More importantly, we show that the limit distribu-
tions of the nonlinear IV t-ratio statistics for testing for the unit root in individual
cross-sectional units are cross-sectionally independent.
The asymptotic orthogonalities among the individual nonlinear IV t-ratio statis-

tics naturally lead us to propose a standardized sum of the individual IV t-ratios
for the test of the unit root for panels with cross-sectional dependency. We show
that the limit theory of such standardized sum of individual nonlinear IV t-ratios,
which we call the SN statistic, is also standard normal. The limit theory is derived
via T -asymptotics, which is not followed by N -asymptotics. The spatial dimension
consequently is not required to be large, and therefore it may take any value, large
or small. Moreover, the number of time series observations is allowed to be dif-
ferent across cross-sectional units, and thus our panel nonlinear IV method permits
unbalanced panels. This implies that we can do simple inference based on the stan-
dard normal distribution even for unbalanced panels with general cross-sectional
dependency.
The simulation results seem to well support our theoretical 2ndings. The 2nite sam-

ple sizes of SN calculated from using the standard normal critical values quite closely
approximate the nominal test sizes. Moreover, the test SN has noticeably higher dis-
criminatory power than the commonly used average panel unit root test t-bar by Im
et al. (1997). The panel nonlinear IV unit root test seems to improve signi2cantly
upon the t-bar test under cross-sectional dependency, especially for the panels with
smaller time and spatial dimensions. The new statistic SN is applied to test whether
the PPP hypothesis holds, using the data sets from the International Financial Statis-
tics and the Penn World Table. Our test appears to be fairly robust to the speci2-
cations of the model dynamics and the sizes of the samples, and strongly supports
the PPP relationship, while the t-bar test by Im et al. (1997) produces inconclusive
results.
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Appendix: Mathematical proofs

Proof of Lemma 3.2. We have from the Beveridge–Nelson representation of yit given
in (6) that

T−1=2
i yi[Tir] = �i(1)T

−1=2
i

[Tir]∑
t=1

�it + op(1);

where �i(1) = 
i(1)−1. Then we have as Ti → ∞

T−1=2
i yi[Tir] = �i(1)UiTi(r) + op(1) →d �i(1)Ui(r); (A.1)

since UiTi →d Ui as Ti → ∞; due to the invariance principle in (4). Then it follows
from Lemma 5 (c) of Chang et al. (2001) that

T−1=4
i

Ti∑
t=1

F(yi; t−1) �it →d #i

(
Li(1; 0)

∫ ∞

−∞
F(�i(1) s)2 ds

)1=2
Wi(1)

= #i

(

i(1)Li(1; 0)

∫ ∞

−∞
F(s)2 ds

)1=2
Wi(1)

by a simple change of variables. This establishes the result in part (a).
The stated result in part (b) is obtained similarly using the result in Lemma 5 (i)

of Chang et al. (2001) as follows:

T−1=2
i

Ti∑
t=1

F(yi; t−1)2 →d Li(1; 0)
∫ ∞

−∞
F(�i(1) s)2 ds

= 
i(1)Li(1; 0)
∫ ∞

−∞
F(s)2 ds

again by a simple change of variables.
For part (c), just note that Oyi; t−1; : : : ;Oyi; t−pi are stationary regressors, and then

the proof follows directly from the asymptotic orthogonality between the integrable
transformations of integrated processes and stationary regressors established in part (e)
of Lemma 5 in Chang et al. (2001).

Proof of Theorem 3.3. We begin by investigating the limit behavior of ATi and CTi
de2ned below (11). Recall x′it = (Oyi; t−1; : : : ;Oyi; t−pi). Then it follows from Lemma
3.2 (c) that

Ti∑
t=1

F(yi; t−1)x′it = op(T
3=4
i );
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which gives∣∣∣∣∣∣
Ti∑
t=1

F(yi; t−1)x′it

(
Ti∑
t=1

xitx′it

)−1 Ti∑
t=1

xit�it

∣∣∣∣∣∣

6

∣∣∣∣∣
Ti∑
t=1

F(yi; t−1)x′it

∣∣∣∣∣
∣∣∣∣∣∣
(

Ti∑
t=1

xitx′it

)−1
∣∣∣∣∣∣
∣∣∣∣∣
Ti∑
t=1

xit�it

∣∣∣∣∣
=op(T

3=4
i )Op(T−1

i )Op(T
1=2
i )

=op(T
1=4
i )

and ∣∣∣∣∣∣
Ti∑
t=1

F(yi; t−1)x′it

(
Ti∑
t=1

xitx′it

)−1 Ti∑
t=1

xitF(yi; t−1)

∣∣∣∣∣∣

6

∣∣∣∣∣
Ti∑
t=1

F(yi; t−1)x′it

∣∣∣∣∣
∣∣∣∣∣∣
(

Ti∑
t=1

xitx′it

)−1
∣∣∣∣∣∣
∣∣∣∣∣
Ti∑
t=1

xitF(yi; t−1)

∣∣∣∣∣
=op(T

3=4
i )Op(T−1

i )op(T
3=4
i )

=op(T
1=2
i ):

Then we have

T−1=4
i ATi = T−1=4

i

Ti∑
t=1

F(yi; t−1)�it + op(1)

and

T−1=2
i CTi = T−1=2

i

Ti∑
t=1

F(yi; t−1)2 + op(1):

Next we write Zi de2ned in (12) as

Zi =

̂i − 1
s(
̂i)

=
B−1
Ti ATi

(#̂2i B
−2
Ti CTi)

1=2
=

ATi
#̂iC

1=2
Ti

using the results in (11) and (13). Then it follows immediately from Lemma 3.2 (a)
and (b) that

Zi =
T−1=4
i ATi

#̂i(T
−1=2
i CTi)1=2

=
T−1=4
i

∑Ti
t=1 F(yi; t−1)�it

#̂i(T
−1=2
i

∑Ti
t=1 F(yi; t−1)2)1=2

+ op(1)



Yoosoon Chang / Journal of Econometrics 110 (2002) 261–292 287

→d
#i(
i(1)Li(1; 0)

∫∞
−∞ F(s)2 ds)1=2Wi(1)

#i(
i(1)Li(1; 0)
∫∞
−∞ F(s)2 ds)1=2

≡ Wi(1)

as Ti → ∞; and this establishes the stated result.

Proof of Lemma 4.2. We may assume w.l.o.g. that F is monotonic decreasing; since
otherwise we may rede2ne F as such a function dominating the given F . Let Ti6Tj
for any 16 i; j6N . Then we have

4
√
TiTj

∫ 1

0
F(
√
TiBiTi(r))F(

√
TjBjTj (r)) dr

6 4
√
TiTj

∫ 1

0
F(
√
TiBiTi(r))F(

√
TiBjTj (r)) dr: (A.2)

However; due to the result in Kasahara and Kotani (1979); we have∫ 1

0
F(
√
TiBi(r))F(

√
TiBj(r)) dr =Op

(
log Ti
Ti

)
a:s: (A.3)

and as shown in Chang et al. (2001)

Ti
log Ti

∫ 1

0
F(
√
TiBiTi(r))F(

√
TiBjTj (r)) dr

=
Ti

log Ti

∫ 1

0
F(
√
TiBi(r))F(

√
TiBj(r)) dr + op(1): (A.4)

We now have from (A.2)–(A.4) that

4
√
TiTj

∫ 1

0
F(
√
TiBiTi(r))F(

√
TjBjTj (r)) dr

6 4
√
TiTj

∫ 1

0
F(
√
TiBiTi(r))F(

√
TiBjTj (r)) dr

= 4
√
TiTj

∫ 1

0
F(
√
TiBi(r))F(

√
TiBj(r)) dr + op

(
T 1=4
j log Ti

T 3=4
i

)

=Op

(
T 1=4
j log Ti

T 3=4
i

)
+ op

(
T 1=4
j log Ti

T 3=4
i

)

=Op

(
T 1=4
j log Ti

T 3=4
i

)

=Op

(
T 1=4
max log Tmax

T 3=4
min

)
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which is of order op(1) if

T 1=4
max log Tmax

T 3=4
min

→ 0

as is assumed in Assumption 4.1. This establishes the stated result in (17).
As shown in Chang et al. (2001), the result in (17) implies that

T−1=4
i

Ti∑
t=1

F(yi; t−1)�it

are asymptotically independent for all i=1; : : : ; N . It is clear that the results in Lemma
3.2 hold jointly, if Tmin → ∞, and thus the proof is complete.

Proof of Theorem 4.3. Under the given assumptions; the individual IV t-ratio statistics
Zi’s have the standard normal limit distributions as established in Theorem 3.3; and
Zi and Zj become asymptotically independent for all i �= j; as implied by Lemma 4.2.
This suHces to establish the stated result.

Proof of Corollary 5.1. From zit = 0i + yit and (21); it follows that

y0i; t−1 = zi; t−1 − 1
t − 1

t−1∑
k=1

zik

= (0i + yi; t−1)− 1
t − 1

t−1∑
k=1

(0i + yik)

= yi; t−1 − 1
t − 1

t−1∑
k=1

yik :

We have yit = yi; t−1 + uit under the unit root null; and this implies zit = zi; t−1 + uit .
Then we have from (20)

y0it = zit − 1
t − 1

t−1∑
k=1

zik

=

(
zi; t−1 − 1

t − 1

t−1∑
k=1

zik

)
+ uit

= y0i; t−1 +
pi∑
k=1


i;kui; t−k + �it

since uit =
∑pi

k=1 
i;kui; t−k + �it as speci2ed in (2). Now regression (19); which is used
for testing the unit root in the stochastic component yit of the series zit with nonzero
mean; follows directly from the previous equation; since ui; t−k=Oyi; t−k under the null
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and

Oyi; t−k =Ozi; t−k =Oy0i; t−k

for k = 1; : : : ; pi; using the notation de2ned in (22). Note that eit = �it under the null.
To examine the limit behavior of y0i; t−1, we may write it as

y0i[Tir] = yi[Tir] −
1

[Tir]

[Tir]∑
k=1

yik

for r ∈ [0; 1] such that [Tir] = t − 1. Then it follows from (A.1) and the invariance
principle given in (4) that

T−1=2
i y0i[Tir] = T−1=2

i yi[Tir] −
1

[Tir]
Ti
Ti

[Tir]∑
k=1

T−1=2
i yik

= �i(1)UiTi(r)−
1
r

∫ r

0
�i(1)UiTi(s) ds+ op(1)

→d �i(1)U
0
i (r)

as Ti → ∞, where

U0
i = Ui(r)− 1

r

∫ r

0
Ui(s) ds: (A.5)

We now turn to detrending the time series zit = 0i + 3it + yit with linear time trend.
We begin by writing the detrended series y2i; t−1 of the lagged level zi; t−1 de2ned in
(26) more explicitly as

y2i; t−1 = zi; t−1 +
2

t − 1

t−1∑
k=1

zik − 6
t(t − 1)

t−1∑
k=1

kzik

= yi; t−1 +
2

t − 1

t−1∑
k=1

yik − 6
t(t − 1)

t−1∑
k=1

kyik : (A.6)

Note that zit = 3i + zi; t−1 + uit since yit = yi; t−1 + uit under the null, and that ziTi =∑Ti
k=1 Ozik . Then we use these to rewrite the detrended series y2it of zit de2ned in (25)

as

y2it = zit − 1
Ti
ziTi +

2
t − 1

t−1∑
k=1

zik − 6
t(t − 1)

t−1∑
k=1

kzik

= zi; t−1 +
2

t − 1

t−1∑
k=1

zik − 6
t(t − 1)

t−1∑
k=1

kzik + uit −
(

1
Ti

Ti∑
t=1

Ozit − 3i

)

= yi; t−1 +
2

t − 1

t−1∑
k=1

yik − 6
t(t − 1)

t−1∑
k=1

kyik + uit − 1
Ti

Ti∑
t=1

uit (A.7)



290 Yoosoon Chang / Journal of Econometrics 110 (2002) 261–292

as Oyit = uit under the null. Therefore, the suggested detrending indeed e)ectively
remove all the deterministic components in both zit and zi; t−1.

Next we note from the de2nitions of the detrended lagged di)erences Oy2i; t−k ; k =
1; : : : ; pi, given in (27) that

Oy2i; t−k =Ozi; t−k − 1
Ti
ziTi =Ozi; t−k − 1

Ti

Ti∑
s=1

Ozis = ui; t−k − 1
Ti

Ti∑
s=1

uis

since Ozik = 3i + uik . Then it follows that

uit =
pi∑
k=1


i;kui; t−k + �it

=
pi∑
k=1


i;k

(
Oy2i; t−k +

1
Ti

Ti∑
t=1

uit

)
+ �it

=
pi∑
k=1


i;kOy2i; t−k + �it +
pi∑
k=1


i;k

(
1
Ti

Ti∑
t=1

uit

)
: (A.8)

Then we may deduce from (A.6)–(A.8) that

y2it = y2i; t−1 +
pi∑
k=1


i;k Oy2i; t−k + �it +

( pi∑
k=1


i;k − 1

)(
1
Ti

Ti∑
t=1

uit

)

under the null, and this justi2es regression (24) used in testing for the unit root in the
stochastic component yit in the time series zit with linear time trend de2ned in (23),
if we let

eit = �it +

( pi∑
k=1


i;k − 1

)(
1
Ti

Ti∑
t=1

uit

)
:

To develop asymptotics for the adaptively detrended series, we consider

y2i[Tir] = yi[Tir] +
2

[Tir]

[Tir]∑
k=1

yik − 6
[Tir]([Tir] + 1)

[Tir]∑
k=1

kyik

for r ∈ [0; 1] such that [Tir] = t − 1, and this gives

T−1=2
i y2i[Tir] = T−1=2

i yi[Tir] +
2Ti
[Tir]

1
Ti

[Tir]∑
k=1

T−1=2
i yik

− 6T 2
i

[Tir]([Tir] + 1)
1
Ti

[Tir]∑
k=1

k
Ti
T−1=2
i yik

= �i(1)UiTi(r)+
2
r

∫ r

0
�i(1)UiTi(s) ds−

6
r2

∫ r

0
s�i(1)UiTi(s) ds+op(1)

→d �i(1)U2
i (r)
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as Ti → ∞ due to (A.1) and (4), where

U2
i (r) = Ui(r) +

2
r

∫ r

0
Ui(s) ds− 6

r2

∫ r

0
sUi(s) ds: (A.9)

The processes U0
i and U2

i introduced in (A.5) and (A.9) are not de2ned at the
origin. However, due to the well-known Brownian law of iterated logarithm [see, for
instance, Revuz and Yor (1994, p. 53)], we have

Ui(r) = O(r1=2(log log(1=r))1=2) a:s:

and therefore,∫ r

0
Ui(s) ds=O(r3=2(log log(1=r))1=2) a:s:

and ∫ r

0
sUi(s) ds=O(r5=2(log log(1=r))1=2) a:s:

It then follows that
1
r

∫ r

0
Ui(s) ds;

1
r2

∫ r

0
sUi(s) ds → 0 as r → 0:

Hence, if we let U0
i (0) = U2

i (0) = 0, then both U0
i (r) and U2

i (r) become continuous
stochastic processes de2ned on [0;∞).

Now the limit theories given in Lemma 3.2 for the sample moments from the models
with no deterministic trend easily extend to the sample moments from the models with
deterministic trends. The limit theories in fact have the identical expressions with the
local times of the adaptively demeaned and detrended Brownian motions U0

i and U2
i

in the place of the original Brownian motion Ui. Using these modi2ed limit theories,
we may then easily derive the limit distributions of the nonlinear IV t-ratio statistics
Z0i and Z2i for the models with nonzero means and deterministic trends. The proof for
the models with nonzero mean is trivial. For the models with linear trend, de2ne

viTi =
1
Ti

Ti∑
t=1

uit :

For the stated results in this case, it suHces to show that

RiTi =
1

4
√
Ti

Ti∑
t=1

F(y2i; t−1)viTi

is negligible in the limit, and dominated by the leading term

1
4
√
Ti

Ti∑
t=1

F(y2i; t−1)�it

which follows immediately from

RiTi =
1

4
√
Ti
(
√
TiviTi)

(
1√
Ti

Ti∑
t=1

F(y2i; t−1)

)
=Op(T

−1=4
i ):
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