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Abstract

In this paper, we consider a sieve bootstrap for the test of a unit root in
models driven by general linear processes. The given model is …rst ap-
proximated by a …nite autoregressive integrated process of order increas-
ing with the sample size, and then the method of bootstrap is applied
for the approximated autoregression to obtain the critical values for the
usual unit root tests. The resulting tests, which may simply be viewed as
the bootstrapped versions of Augmented-Dickey-Fuller (ADF) unit root
tests by Said and Dickey (1984), are shown to be consistent under very
general conditions. The asymptotic validity of the bootstrap ADF unit
root tests is thus established. Our conditions are signi…cantly weaker than
those used by Said and Dickey. Simulations show that bootstrap provides
substantial improvements on …nite sample sizes of the tests.
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1. Introduction

The unit root hypothesis has drawn much attention for the past two decades especially
in economics and other related …elds. The hypothesis has an important implication
on, in particular, whether or not the shocks to an economic system have a permanent
e¤ect on the future path of the economy. Naturally, the research on the subject has
been extremely active in both theoretical and empirical domains. Various unit root
tests have been proposed and applied to the real data. Although there are some
disagreements over how strong and far-reaching is the empirical evidence for the unit
root, it seems to be widely agreed that many of important economic and …nancial
time series display unit root characteristics.

For the test of a unit root in a parametric framework, the tests by Dickey and
Fuller (1979, 1981) are most commonly used. They are based on …nite-order autore-
gressions, the orders of which are assumed to be known. In general, however, it is
considered to be undesirable to test for the unit root within a speci…c parametric
family, since if misspeci…ed it could lead us to incorrect inference. There are two ap-
proaches to testing for a unit root nonparametrically. The one by Phillips (1987) and
Phillips and Perron (1988) relies on the nonparametric modi…cations of DF (Dickey-
Fuller) tests. The other is to base the tests on autoregressions augmented with lagged
di¤erences. Indeed, Said and Dickey (1984) have shown that such ADF (Augmented
Dickey-Fuller) tests are valid for all …nite ARMA processes of unknown order, if we
increase the number of included lagged di¤erences appropriately as the sample size
gets large.

The tests by Said-Dickey and Phillips-Perron are often preferred to the Dickey-
Fuller tests in practical applications, since they do not require any particular para-
metric speci…cation and yet are applicable for a wide class of unit root models. How-
ever, the tests are known to have considerable size distortions in …nite samples. It
has indeed been found by several authors that they may have serious size distortions,
especially when the model has moving average components. See Leybourne and New-
bold (1999) and the references cited there. Therefore, it seems natural to investigate
whether the bootstrap method can improve their …nite sample performance.

In this paper, we look at the sieve bootstrap for the unit root tests when the
underlying model is driven by general linear processes. The sieve bootstrap approxi-
mates the general linear process by a …nite autoregressive process of order increasing
with the sample size, and resampling from the approximated autoregressions. It is
called as such by Bühlmann (1997), since the method is based on an approximation of
an in…nite dimensional and nonparametric model by a sequence of …nite dimensional
parametric models. Clearly, it is the most natural bootstrap procedure for the tests.
The sieve bootstrap has been studied by Kreiss (1992), Bühlmann (1997) and Bickel
and Bühlmann (1999). It has now become a standard tool for the bootstrap from
time series, together with the block bootstrap by Künsch (1989).

The bootstrap for the unit root models have previously been studied by several
authors. Basawa et al. (1991a, 1991b) consider the bootstrap procedure for the …rst-
order autoregressive unit root models. They have shown, in particular, that the unit
root must be imposed for the generation of bootstrap samples to get consistency for
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the bootstrap unit root tests. Ferretti and Romo (1996) also establish consistency of
the tests based on bootstrap critical values for …rst-order autoregressive models. See
Datta (1996) for the subsampling procedure in estimating the …rst-order autoregres-
sive unit root models.

The rest of the paper is organized as follows. Section 2 introduces ADF tests and
present their asymptotic theories. In Section 3, the sieve bootstrap for ADF tests are
considered, and the asymptotics for the sieve bootstrap ADF tests are developed. In
Section 4, various issues arising in practical implementation of the sieve bootstrap
are addressed along with the simulation results for the …nite sample performance of
the sieve bootstrap ADF tests. Section 5 concludes, and mathematical proofs are
collected in Section 6.

2. ADF Tests and Their Limiting Distributions

In this section, we introduce ADF tests and their asymptotic distributions. We let
the time series (yt) be given by

yt = ®yt¡1 + ut (1)

with (ut) generated as
ut = ¼(L)"t (2)

where L is the usual lag operator and ¼(z) =
P1
k=0 ¼kzk. The test of the unit root null

hypothesis ® = 1 will be considered for (yt) given as in (1), against the alternative of
stationarity j®j < 1.2 To implement the test, the in…nite moving average process (ut)
will be approximated by a …nite autoregression, i.e., ut = ®1ut¡1+ ¢ ¢ ¢+®put¡p+"p;t,
the order p of which is assumed to increase as the sample size n grows. We write pn
instead of p in what follows, when it needs to be emphasized that p is a function of
n.

We make the following assumptions.

Assumption A1 Let ("t; Ft) be a martingale di¤erence sequence, with some …l-
tration (Ft), such that E("2t jFt¡1) = ¾2 and Ej"tjr < K for r ¸ 4 and some constant
K > 0.

Assumption A2 Let ¼(z) 6= 0 for all jzj · 1, and
P1
k=0 jkjsj¼kj < 1 for some

s ¸ 1.

Assumption A3 Let pn ! 1 and pn = o((n log n)1=2) as n ! 1.

Our speci…cation in (2) with the conditions in Assumptions A1 and A2 allows
(ut) to be generated by a quite general linear process. Under Assumptions A1 and
A2, in particular, (ut) becomes a weakly stationary process with uniformly bounded

2The initial value y0 of (yt) does not a¤ect our subsequent asymptotics, and therefore, we let y0
be any random variable which is stochastically bounded.
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fourth moment. The conditions in Assumptions A1 – A3 are signi…cantly weaker
than the ones used by Said and Dickey (1984). They assume that the innovations
("t) are iid. Moreover, they only consider (ut) generated by a …nite order ARMA
process and thus e¤ectively look at the case where (¼k) decays geometrically. Their
assumption correponds to s = 1 in our Assumption A2. Also, they assume pn = cn·

for 0 < · · 1=3. Therefore, for instance, the logarithmic rate for pn is not allowed in
their result.

The test of the unit root hypothesis for the time series (yt) given by (1) and (2)
can now be based on the regression

yt = ®yt¡1 +
pX

k=1
®k4yt¡k + "p;t (3)

Note that under the null hypothesis we have ® = 1 and 4yt = ut. To introduce the
test statistics, we de…ne

xp;t = (4yt¡1; : : : ;4yt¡p)0

and subsequently let

An =
nX

t=1
yt¡1"p;t ¡

Ã nX

t=1
yt¡1x0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;t"p;t

!
(4)

Bn =
nX

t=1
y2t¡1 ¡

Ã nX

t=1
yt¡1x0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;tyt¡1

!
(5)

Cn =
nX

t=1
"2p;t ¡

Ã nX

t=1
"p;tx0p;t

! Ã nX

t=1
xp;tx0p;t

!¡1 Ã nX

t=1
xp;t"p;t

!
(6)

Now we have

®̂n ¡ 1 = AnB¡1
n

¾̂2
n = n¡1

³
Cn ¡ A2

nB
¡1
n

´

s(®̂n)2 = ¾̂2
nB

¡1
n

where ®̂n is the OLS estimator of ®, ¾̂2
n is the usual error variance estimator, and

s(®̂n) is the estimated standard error for ®̂n. We also let

®̂n(1) = 1 ¡
pX

k=1
®̂p;k (7)

where ®̂p;k’s are the OLS estimators of ®k’s in regression (3).
The statistics that we will consider in the paper are given by

Sn =
n(®̂n ¡ 1)

®̂n(1)
(8)

Tn =
®̂n ¡ 1
s(®̂n)

(9)
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Note that Sn is a normalized unit root regression coe¢cient, and Tn is the t-statistic
for the unit root hypothesis. The tests based on Sn and Tn will be referred to
respectively as the coe¢cient test and the t-test. They are extensions of the tests
considered by Dickey and Fuller (1979, 1981) for the AR(1) model.

It is shown in Chang and Park (2001) that

Theorem 2.4 (Limiting Distributions of ADF Tests) Under Assumptions A1,
A2 and A3, we have

Sn !d

Z 1

0
WtdWt

Z 1

0
W 2
t dt

; Tn !d

Z 1

0
WtdWt

µZ 1

0
W 2
t dt

¶1=2

as n ! 1, where W is the standard Brownian motion.

The asymptotic null distributions of Sn and Tn are thus identical to those of the
corresponding statistics studied in Dickey and Fuller (1979, 1981). They are tabulated
in Fuller (1996).

The models with deterministic trends can be analyzed similarly. If the time series
(zt) is given by

zt = ¹ + yt or zt = ¹ + ¿t + yt (10)

and (yt) is generated as in (1), the unit root hypothesis can be tested in regression (3)
run by the …tted values of (yt) obtained from the preliminary regression (10). Their
distributions are given similarly as those in Theorem 2.4, respectively with demeaned
and detrended Brownian motions

W¹
t = Wt ¡

Z 1

0
Wsds; W ¿

t = Wt + (6t¡4)
Z 1

0
Wsds ¡ (12t¡6)

Z 1

0
sWsds

in place of standard Brownian motion W . Though we do not report the details, our
results here can be easily extended to obtain the asymptotic theory for the unit root
tests in models with deterministic trends.

3. Asymptotics for the Bootstrap ADF Tests

We now consider the sieve bootstraps for the ADF tests. In this section, we establish
the bootstrap consistency of the tests and show that they are asymptotically valid.
The results presented here are mainly theoretical. Various problems arising in practi-
cal implementation of the sieve bootstrap methodology are fully addressed in the next
section. To concentrate on the theoretical aspects of the bootstrap ADF tests, the
discussions on any empirical issues will be kept minimal in this section. Throughout
the paper, the notation ¤ is used as usual to signify the bootstrap samples. Moreover,
we use P¤ and E¤ respectively to denote the probability and expection conditional
on the realization of original sample.
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To obtain bootstrap samples, we …rst let ut = 4yt and …t the approximated
autoregression

ut = ®1ut¡1 + ¢ ¢ ¢ + ®put¡p + "p;t (11)

by the usual OLS regression. We denote by ~®p;k’s the OLS estimators of ®k’s, and
by (~"p;t) the OLS residuals in regression (11). It is important to base the bootstrap
sampling on regression (11) with the restriction ® = 1. As shown in Basawa et al.
(1991a), the samples generated by regression (3) without the unit root restriction do
not behave like unit root processes, and make the subsequent bootstrap procedures
inconsistent. We may prefer, especially in small samples, to use the Yule-Walker
method to estimate (11) since it always yields an autoregression that is invertible.
Our subsequent results are applicable also for the Yule-Walker method, since it is
asymptotically equivalent to the OLS method.

Now we construct the bootstrap sample for ("¤t ), (u¤t ) and (y¤t ) as follows. First,
resample ("¤t ) from the centered …tted residuals from the approximated AR (11), i.e.,
obtain iid samples ("¤t ) from the empirical distribution of

(~"p;t ¡ ¹"p;n)nt=1

where ¹"p;n = (1=n)
Pn
t=1 ~"p;t. Next, generate (u¤t ) from ("¤t ) using the …tted autore-

gression given by
u¤t = ~®p;1u¤t¡1 + ¢ ¢ ¢ + ~®p;pu¤t¡p + "¤t (12)

with appropriately chosen p-initial values of (u¤t ). Finally, obtain (y¤t ) by taking
partial sumes of (u¤t ), i.e.,

y¤t = y¤0 +
tX

k=1
u¤k (13)

with some initial value y¤0. The choice of the initial value y¤0 for (y¤t ) does not a¤ect
the asymptotics as long as it is stochastically bounded, and we thus simply set it equal
to zero for the subsequent development of our theory in this section. See discussions
in the next section on the initializations of (u¤t ) and (y¤t ) in (12) and (13).

For the bootstrap ADF tests, we consider

y¤t = ®y¤t¡1 +
pX

k=1
®k4y¤t¡k + "¤t (14)

and test for the unit root hypothesis ® = 1. Similarly as before, we denote by ®̂¤n and
s(®̂¤n) respectively the OLS estimator for ® and the standard error for ®̂¤n obtained
using the bootstrap samples. To de…ne them more explicitly, we let

x¤p;t = (4y¤t¡1; : : : ;4y¤t¡p)
0

and subsequently de…ne

A¤
n =

nX

t=1
y¤t¡1"

¤
t ¡

Ã nX

t=1
y¤t¡1x

¤0
p;t

! Ã nX

t=1
x¤p;tx

¤0
p;t

!¡1 Ã nX

t=1
x¤p;t"

¤
t

!

B¤
n =

nX

t=1
y¤2t¡1 ¡

Ã nX

t=1
y¤t¡1x

¤0
p;t

! Ã nX

t=1
x¤p;tx

¤0
p;t

!¡1 Ã nX

t=1
x¤p;ty

¤
t¡1

!
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and the variance of the bootstrap sample ("¤t ), which is given by

~¾2
n =

1
n

nX

t=1
(~"p;t ¡ ¹"p;n)2 (15)

Then we may write

®̂¤n ¡ 1 = A¤
nB

¤¡1
n

s(®̂¤n)
2 = ~¾2

nB
¤¡1
n

We also de…ne

~®n(1) = 1 ¡
pX

k=1
~®p;k (16)

accordingly as ®̂n(1) introduced in (7) before.
Now we consider the statistics

S¤n =
n(®̂¤n ¡ 1)

~®n(1)
(17)

T ¤n =
®̂¤n ¡ 1
s(®̂¤n)

(18)

corresponding to Sn and Tn introduced in (8) and (9) of the previous section. It is
also possible to use ®̂¤n(1) and ¾̂2¤

n , the bootstrap counterparts to ®̂n(1) and ¾̂2
n, in

place of ~®n(1) and ~¾2
n for the construction of the bootstrap test statistics S¤n and T ¤n .

They can be obtained from regression (14) in the same way that their counterparts
are computed from regression (3). We may indeed show without di¢culty that such
replacements do not a¤ect the limiting distributions of the statistics. For the theo-
retical analysis in the paper, however, we only consider S¤n and T ¤n de…ned in (17)
and (18). This is mainly for the expositional brevity. We have indeed investigated
both versions of the statistics for the simulations reported in the next section.

To implement the bootstrap ADF tests, we repeat the bootstrap sampling for the
given original sample and obtain an(¸) and bn(¸) such that

P¤ fS¤n · an(¸)g = P¤ fT ¤n · bn(¸)g = ¸ (19)

for any prescribed size level ¸. The bootstrap ADF tests reject the null hypothesis
of a unit root if

Sn · an(¸); Tn · bn(¸)

It will now be shown under appropriate conditions that the tests are asymptotically
valid, i.e., they have asymptotic size ¸. We do not analyze in the paper the ran-
domness associated with the bootstrap sampling in computing the bootstrap critical
values an(¸) and bn(¸). We simply assume that enough number of bootstrap itera-
tions is done to make it disappear or at least negligible. See Andrews and Buchinsky
(1999) for a study on the number of bootstrap iterations to achieve the desired level
of bootstrap sampling accuracy.

For the subsequent results in this section, we assume
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Assumption B1 Let ("t) be a sequence of iid random variables such that E"t = 0,
E"2t = ¾2 and Ej"tjr < 1 for some r ¸ 4.

Assumption B2 Let ¼(z) 6= 0 for all jzj · 1, and
P1
k=0 jkjsj¼kj < 1 for some

s ¸ 1.

Assumption B3a Let pn ! 1 and pn = o(n·) with · < 1=2 as n ! 1.

Assumption B3b Let pn = cn· for some constant c and 1=rs < · < 1=2.

Assumptions B1, B2 and B3a together will be refered to as Assumption (W), with
‘W’ standing for weak, and the set of Assumptions B1, B2 and B3b will be called as
Assumption (S), with ‘S’ for strong.

The iid assumption in Assumption B1, instead of the martingale di¤erence condi-
tion in Assumption A1, is made to make the usual bootstrap procedure meaningful.
Assumption B2 is identical to Assumption A2. In the place of Assumption A3 for
the expansion rate of AR order p, we impose either Assumption B3a or B3b. Both
Assumptions B3a and B3b are stronger than Assumption A3. We will impose the
condition in Assumption B3a to prove the consistency of the bootstrap ADF tests in
the weak form, i.e., the convergence of conditional bootstrap distributions in prob-
ability. To establish the strong consistency or the a.s. convergence of conditional
bootstrap distributions, we need a stronger condition in Assumption B3b. Notice
that we only require 0 < · < 1=2, for the Gaussian model with r = 1 or the …nite
order ARMA model with s = 1. The condition is therefore not very stringent.

Remark 3.1: Bootstrap Stochastic Order Symbols It is convenient to intro-
duce the symbols o¤p and O¤

p for our development of bootstrap sample asymptotics,
which correspond to op and Op for the original sample asymptotics. Here we just
de…ne o¤p(1) and O¤

p(1). The extension of our de…nition to o¤p(cn) and O¤
p(cn) for

some nonconstant numerical sequence (cn), however, should be obvious. Let (X¤
n) be

a sequence of bootstrapped statistics. We de…ne X¤
n = o¤p(1) a.s. and in P to imply

respectively that
P¤fjX¤

nj > ²g ! 0 a.s. and in P

for any ² > 0. Moreover, if for every ² > 0 given there exists a constant M > 0 such
that for all large n

P¤fjX¤
nj > Mg < ²

we write X¤
n = O¤

p(1) a.s. or in P depending upon whether the condition holds a.s.
(with probability one), or holds in P (with probability arbitrarily close to one).

As might well be expected, the bootstrap stochastic orders o¤p and O¤
p of the

bootstrapped statistics (X¤
n) can be obtained directly from the sample stochastic

order of E¤jX¤
nj (or E¤jX¤

njr for some r > 0) using Markov inequality. It is indeed
easy to see that, if E¤jX¤

nj ! 0 a.s. (or in P), then X¤
n = o¤p(1) a.s. (or in P). One

may likewise readily show that, if E¤jX¤
nj = O(1) a.s. (or in P, i.e., Op(1)), then

X¤
n = O¤

p(1) a.s. (or in P).
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Many of the well known results for op and Op naturally extend to o¤p and O¤
p. Here

we list some of them as a lemma.

Lemma 3.1 Let o¤p and O¤
p be de…ned as in Remark 3.1 above. Then we have

(a) O¤
p(1)o¤p(1) = o¤p(1)

(b) O¤
p(1)O¤

p(1) = O¤
p(1)

(c) O(1)o¤p(1) = o(1)O¤
p(1) = o¤p(1)

for orders o¤p; O¤
p; o and O de…ned in both a.s. and in P senses.

The following lemmas are needed for the derivation of the limit distributions for
the bootstrap ADF tests. Let

~¼n(1) = ~®n(1)¡1 (20)

where ~®n(1) is de…ned in (16).

Lemma 3.2 Under Assumption (W), we have

(a)
1
n

nX

t=1
y¤t¡1"

¤
t = ~¼n(1)

1
n

nX

t=1
w¤
t¡1"

¤
t + o¤p(1) a.s.

(b)
1
n2

nX

t=1
y¤2t¡1 = ~¼n(1)2

1
n2

nX

t=1
w¤2
t¡1 + o¤p(1) a.s.

Lemma 3.3 We have

(a)

°°°°°°

Ã
1
n

nX

t=1
x¤p;tx

¤0
p;t

!¡1°°°°°°
= O¤

p(1) a:s: (or in P) under Assumption (S) (or (W))

(b)

°°°°°
nX

t=1
x¤p;ty

¤
t¡1

°°°°° = O¤
p(np1=2) a:s: under Assumption (W)

(c)

°°°°°
nX

t=1
x¤p;t"

¤
t

°°°°° = O¤
p(n

1=2p1=2) a:s: under Assumption (W)

Now we have from Lemmas 3.1 and 3.3¯̄
¯̄
¯̄

Ã nX

t=1
y¤t¡1x

¤0
p;t

! Ã nX

t=1
x¤p;tx

¤0
p;t

!¡1 Ã nX

t=1
x¤p;t"

¤
t

!¯̄
¯̄
¯̄

·
°°°°°
nX

t=1
y¤t¡1x

¤0
p;t

°°°°°

°°°°°°

Ã nX

t=1
x¤p;tx

¤0
p;t

!¡1°°°°°°

°°°°°
nX

t=1
x¤p;t"

¤
t

°°°°° = O¤
p(n

1=2p)

which, together with Lemma 3.2, implies that

n¡1A¤
n = ~¼n(1)

1
n

nX

t=1
w¤
t¡1"

¤
t + o¤p(1) a.s. (or in P)

n¡2B¤
n = ~¼n(1)2

1
n2

nX

t=1
w¤2
t¡1 + o¤p(1) a.s. (or in P)
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under Assumption (S) (or (W)).

Remark 3.2: Notation for Bootstrap Asymptotics For a sequence of boot-
strapped statistics (X¤

n), we write

X¤
n !d¤ X a.s. (or in P)

if the conditional distribution of (X¤
n) weakly converges to that of X a.s. (or in P).

Here it is assumed that the limiting random variable X has distribution independent
of the original sample realization. We may therefore simply write P and E for the
probability and expection associated with X. Let PX = PX¡1 be the distribution of
X. Then it follows that X¤

n !d¤ X a.s. if and only if E¤f(X¤
n) !a.s. Ef(X) for every

f bounded and uniformly continuous PX a.s. [see, e.g., Parthasarathy (1967, Theorem
6.6)]. Similarly, we have X¤

n !d¤ X in P if and only if E¤f(X¤
n) !p Ef(X) for every f

bounded and uniformly continuous PX a.s. For a sequence of bootstrapped statistics
(X¤
n) which weakly converges a.s. (or in P), we may easily show that X¤

n = O¤
p(1) a.s.

(or in P). Moreover, if X¤
n !d¤ X a.s. (or in P), then X¤

n + Y ¤
n !d¤ X a.s. (or in P)

for any (Y ¤
n ) such that Y ¤

n = o¤p(1) a.s. (or in P).

Under Assumption (W), the parameter estimates ~¾2
n and ~¼n(1) de…ned in (15)

and (20) are strongly consistent.

Lemma 3.4 Under Assumption (W), we have ~¾2
n !a:s: ¾2 and ~¼n(1) !a:s: ¼(1) as

n ! 1.

Moreover, as shown in Park (1999), we have n¡1
Pn
t=1 w¤

t¡1"¤t ; n¡2
Pn
t=1 w¤2

t¡1 = O¤
p(1)

a.s. under Assumption (W). Therefore, it can be deduced that

S¤n =

1
n

nX

t=1
w¤
t¡1"

¤
t

1
n2

nX

t=1
w¤2
t¡1

+ o¤p(1); T ¤n =

1
n

nX

t=1
w¤
t¡1"

¤
t

¾

Ã
1
n2

nX

t=1
w¤2
t¡1

!1=2 + o¤p(1) a.s. (or in P)

under Assumption (S) (or (W)). The limiting distributions of the bootstrap ADF
tests may now be easily obtained using the result in Park (1999).

Theorem 3.5 (Limiting Distributions of Bootstrap ADF Tests) We have
respectively under Assumptions (S) and (W)

S¤n !d¤

Z 1

0
WtdWt

Z 1

0
W 2
t dt

; T ¤n !d¤

Z 1

0
WtdWt

µZ 1

0
W 2
t dt

¶1=2 a.s. and in P

as n ! 1, where W is the standard Brownian motion.
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Theorem 3.4 shows that the bootstrap statistics S¤n and T ¤n have the same limiting
distributions as the corresponding sample statistics Sn and Tn. It implies, in partic-
ular, that the bootstrap ADF tests are asymptotically valid. This will be explained
below.

Denote by S and T the weak limits of Sn and Tn respectively, and de…ne a(¸)
and b(¸) to be the asymptotic critical values of the size ¸ tests based on Sn and Tn,
i.e.,

PfS · a(¸)g = PfT · b(¸)g = ¸

Since the distribution of S and T are absolutely continuous with respect to Lebesque
measure, we have from Theorem 3.4

P¤fS¤n · a(¸)g; P¤fT ¤n · b(¸)g ! ¸ a.s. (or in P) (21)

under Assumption (S) (or (W)), and the results in (21) imply

(an(¸); bn(¸)) ! (a(¸); b(¸)) a.s. (or in P)

where an(¸) and bn(¸) are the size ¸ bootstrap critical values de…ned in (19). Con-
sequently, we have under Assumption (W)

PfSn · an(¸)g; PfTn · bn(¸)g ! ¸

which proves that the bootstrap ADF tests have size ¸ asymptotically.
Our bootstrap theory here easily extends to the tests for a unit root in mod-

els with deterministic trends, such as those introduced in (10). It is indeed quite
straightforward to establish the bootstrap consistency for the ADF tests applied to
the demeaned and detrended time series, using the results obtained in this section.
The bootstrap ADF tests are therefore valid and applicable also for the models with
deterministic trends.

4. Practical Issues and Simulation Results

There are several practical issues on the actual bootstrap procedures for the tests
proposed in the paper. They are listed and addressed below.

(a) We may rely on various selection criteria such as AIC and BIC to …x the or-
ders of the approximated autoregressions (3) and (11). If it is known that the true
model is generated by a …nite order autoregression, the order selection based on BIC
is consistent, and therefore, it might be preferred. Such a case, however, is rare in
practical applications. True model is unknown, and not likely to be given exactly by
a …nite order autoregression. We may thus use AIC, in favor of BIC, since it leads
to an symptotically e¢cient choice of the optimal order for a class of in…nite order
autoregressive processes [see Brockwell and Davis (1991)]. The order selection for
regression (3) has previously been addressed by many authors including Stock (1994)
and Ng and Perron (2000).
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(b) We may use other methods to estimate the approximated autoregression (11).
In particular, the Yule-Walker method may be preferred to the OLS method in small
samples, since it always yields an invertible autoregression [see, e.g., Brockwell and
Davis (1991, Sections 8.1 and 8.2)]. As the sample size increases, however, the prob-
lem of noninvertibility for the latter vanishes a.s., and the two methods become
equivalent.
(c) It is necessary to initialize the autoregression in (12) to obtain bootstrap sam-
ples for (u¤t ). We may use the …rst p-values of (ut) and generate the samples (u¤t )
conditional on them. Strictly speacking, however, this would not produce stationary
autoregressive processes. To get bootstrap samples that are stationary, we may gen-
erate large number of values for (u¤t ) and throw the …rst generated values away. If
the bootstrap samples are generated as such, the initialization becomes unimportant
and we may start from zeros.
(d) To generate the bootstrap samples (y¤t ), we also need initialization in (13). An
obvious choice would be to use the initial value y0 of (yt), and generate the bootstrap
samples conditional on y0. The e¤ect of the initial value becomes negligible asymp-
totically, as mentioned earler in the previous section. However, it may a¤ect …nite
sample performance of the bootstrap. If the mean or linear time trend is maintained
as in (10) and the unit root test is performed using the demeaned or detrended data,
then the e¤ect of the initial value y¤0 of the bootstrap sample would disappear. We
may therefore just set y¤0 = 0.
(e) The bootstrap statistics S¤n and T ¤n de…ned in (17) and (18) involve ~®n(1) and ~¾2

n.
These are the population parameters for the bootstrap samples ("¤t ) and (u¤t ), corre-
sponding to ®(1) and ¾2 for the original samples ("t) and (ut). Obviously, we may
use the bootstrap estimates ®̂¤n and ¾̂2¤

n , say, for each bootstrap iteration to construct
the statistics S¤n and T ¤n . It is indeed straightforward to show that two versions of the
bootstrap tests are asymptotically equivalent. However, they may behave di¤erently
in …nite samples.

We conduct a set of simulations to investigate these and other related issues, along
with the general …nite sample performances of the bootstrap ADF tests considered
in the paper. The issues listed above will be given a particular attention in the
subsequent discussions on our simulation results.

For the simulation, we consider (yt) given by the model (1) with (ut) generated
by

ut = "t + ¯"t¡1 (22)

where ("t) are iid N(0; ¾2). The test statistics are invariant with respect to the value
of ¾2, and therefore, we set ¾2 = 1 in our simulation. The parameter values for the
moving average coe¢cient ¯ in (22) are chosen to be ¯ = ¡0:8;¡0:4; 0; 0:4; 0:8. To
examine the …nite sample size, we set ® = 1. For the …nite sample power comparisons,
we look at the values ® = 0:95 and 0:90. Three di¤erent size tests, 1%, 5% and 10%,
are examined, and the samples of sizes n = 50 and 100 are considered. The reported
results are based on 5,000 simulation iterations with the bootstrap critical values
computed using 5,000 bootstrap repetitions.



12

We use the AIC criterion to select the orders of the approximated autoregressions
(3) and (11).3 As explained earlier, AIC may be considered to be more appropriate
than BIC when, as is in our case, the true model is not generated by any …nite order
autoregression. The maximum lag length is set to be 10 log10(n), the default value
for SPLUS, which yields 16.99, and 20.00 respectively for the samples of size 50 and
100. Using BIC instead of AIC generally gives higher rejection probabilities under
both the null and alternative hypotheses. A reversed tendancy has been observed
when we increase the number of maximum lag length. The use of AIC with no
restriction on the maximum lag length yields the lowest rejection probabilities. The
highest rejection probabilities are observed with the application of BIC with smallest
maximum lag length. However, the choice of the selection criteria and the maximum
lag length do not seem to a¤ect the discriminatory powers of the tests. Their e¤ects
are rather uniform regardless of the presence or absence of the unit root.

We also evaluate the procedure by Ng and Perron (2000) to select the order of
autoregression (3). Their procedure lowers the rejection rates drastically for models
with large negative moving average coe¢cients. It, however, leads to somewhat
severe under-rejection of the unit root hypothesis when the moving average coe¢cient
becomes large positive. The application of bootstrap seems to improve the …nite
sample performance of the tests also in this context, but such tendency still persists.
The resulting bootstrap tests make the rejection rates even lower substantially for
moving average innovations with large negative coe¢cients, but the under-rejection
for those with large positive coe¢cients become slightly worse.

For the reported simulation results, we use the OLS method to estimate the
approximated autoregression (11). Our unreported simulations, however, show that
the results based on the Yule-Walker estimation of regression (11) are not much
di¤erent even for samples of size 50 or smaller. To initialize the bootstrap sample (u¤t ),
we use the p-initial values of (ut). We have also tried to generate (u¤t ) twice the size of
the required samples and discard the …rst half of the observations. This was to obtain
samples which look more likely to be drawn from a stationary process. The simulation
results, however, were not signi…cantly di¤erent. For the initialization of (y¤t ), we
simply set y¤0 = 0. Finally, we considered two versions of the bootstrap ADF tests: one
with ~®n(1) and ~¾2

n, and the other with ®̂¤n(1) and ¾̂2¤
n . Their relative performances are

somewhat dependent upon the values of the moving average coe¢cient ¯. However,
we …nd that the latter with the bootstrapped parameter estimates generally perform
slightly better.

Our simulation results are summarized in Tables 1 and 2. The reported results are
for the tests with demeaned (yt).4 Tables 1 and 2 present, respectively, the rejection
probabilities for the 1%, 5% and 10% tests. The bootstrap ADF tests S¤n and T ¤n
are compared with the corresponding usual ADF tests Sn and Tn. In general, the
bootstrap procedure seems to improve the …nite sample sizes of the ADF tests, at no

3The orders of regressions (3) and (11) are therefore di¤erent in general, though both are denoted
by p and assumed for expositional simplicity to be identical in the text.

4The GLS demeaning suggested by Elliott, Rothenberg and Stock (1996) is also considered though
the detailed results are not reported. In general, it increases the powers of the tests, but does neither
improve nor disimprove the …nite sample size corrections of bootstraps.



13

cost in terms of powers. The empirical sizes of tests based on S¤n and T ¤n are relatively
much closer to the nominal sizes than the usual tests relying on Sn and Tn, even for
samples as small as n = 50. In particular, the size corrections by bootstrap appear
to be drastic, when the moving average coe¢cient takes large negative values. It is
well known that the ADF tests have large size distortions in such cases.

The size performance of the coe¢cient test Sn improves more noticeably when we
use the bootstrapped critical values and consider S¤n. The bootstrap improvement
for the t-test, i.e., T ¤n over Tn is relatively smaller in most cases. It appears that the
coe¢cient test has more room for improvement using bootstrap methodology. On the
other hand, once corrected for sizes using bootstraps, the coe¢cient test S¤n o¤ers
more power than the t-test T ¤n , except for the case that we have large negative moving
average coe¢cients. All our results reported here apply to the detrended case, as well
as the demeaned case, at least qualitatively. The results for the tests with detrended
(yt) are therefore not reported in detail.

5. Conclusion

We consider in this paper the bootstrap procedures for the ADF tests for a unit root.
We establish the bootstrap consistency of the tests, and show that the bootstrap
ADF tests are asymptotically valid. The …nite sample performances of the bootstrap
ADF tests are investigated and compared with the usual ADF tests through simu-
lations. The bootstrap tests are found to have …nite sample sizes that are generally
much closer to their nominal values, especially for models with large negative moving
average coe¢cients. The bootstrap theory developed in the paper is also directly ap-
plicable for other types of unit root tests arising in many di¤erent contexts, including
panel unit root models with cross-sectional dependencies and unit root tests using
covariates. The extension of our theory to more general nonstationary model is also
possible, and appears to be useful to analyze models such as cointegrating regressions
and error correction models. Such extensions and applications are under way by the
authors.

6. Mathematical Proofs

Proof of Lemma 3.1 The proofs are essentially identical to those for their sample
analogues such as Op(1)op(1) = op(1) and Op(1)Op(1) = Op(1). The details are
therefore omitted.

For the proofs for the bootstrap asymptotics given in Lemmas 3.2 and 3.3, we
…rst prove some useful lemmas.

Lemma A1 Let Assumption (W) hold, and de…ne

E¤j"¤t j2 = ¾2
¤ and E¤ju¤t j2 = ¡¤0

Then we have ¾2
¤ !a:s: ¾2 and ¡¤0 !a:s: ¡0 as n ! 1.
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Proof of Lemma A1 See Proof of Lemma 4.1 in Park (1999).

Lemma A2 Let Assumption (W) hold. If we denote respectively by f and f¤ the
spectral densities of (ut) and (u¤t ), then we have

sup
¸

jf¤(¸) ¡ f(¸)j = o(1) a:s:

for large n. Moreover, if we let (¡k) and (¡¤k) respectively be the autocovariance
functions of (ut) and (u¤t ), then

1X

k=¡1
¡¤k =

1X

k=¡1
¡k + o(1) a:s:

for large n.

Proof of Lemma A2 Note that

f¤(¸) =
¾2
¤

2¼

¯̄
¯̄
¯1 ¡

pX

k=1
~®p;keik¸

¯̄
¯̄
¯

¡2

and as shown in Park (1999, Proofs of Lemmas 3.2 and 4.1)

¾2
¤ =

1
n

nX

t=1

Ã
~"p;t ¡

1
n

nX

t=1
~"p;t

!2

=
1
n

nX

t=1
~"2p;t + op(1)

The stated result in the …rst part now follows from An, Chen and Hannan (1982,
Theorem 5, p928). To deduce the result in the second part, we just note that

1X

k=¡1
¡k = 2¼f(0) and

1X

k=¡1
¡¤k = 2¼f¤(0)

The proof is therefore complete.

Lemma A3 We have

E¤j"¤t j4 = Op(1) or O(1) a:s:

under Assumption (W) or (S) respectively.

Proof of Lemma A3 The stated results follow directly from Park (1999). We use
his notation in the proof of Lemma 3.2. Applying his result with r = 4, we have

E¤j"¤t j4 · c (An + Bn + Cn + Dn)

where c is some constant. As they have shown, An = O(1) a.s., EBn = o(p¡rs),
Cn · 2r¡1(C1n + C2n) with C1n = o(1) a.s. and EC2n = o(p¡rs) and Dn = o(1) a.s.
Now note that Bn = o(1) a.s. and C2n = o(1) a.s. under our condition in Assumption
B3b, since o(p¡rs) = o(n¡1¡±) for some ± > 0.
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Lemma A4 De…ne

M¤
n(i; j) = E¤

" nX

t=1
(u¤t¡iu

¤
t¡j ¡ ¡¤i¡j)

#2

Then we have
M¤
n(i; j) = Op(n) or O(n) a:s:

uniformly in i and j, under Assumption (W) or (S) respectively.

Proof of Lemma A4 From Berk (1974, Equations (2.10) and (2.11), p491), we
have

M¤
n(i; j) · n

2
42

1X

k=¡1
¡¤k + jK¤

4 j
Ã 1X

k=0
~¼2
p;k

!2
3
5

for all i and j, where K¤
4 is the fourth cumulant of ("¤t ). The stated results now follow

from Lemmas A2 and A3.

We now prove the results for the bootstrap sample asymptotics stated in Lemmas
3.1, 3.2 and 3.3. Let ~®n(1) and ~¼n(1) be de…ned as in (16) and (20). Then we may
easily deduce from regression (12) that

u¤t =
1

~®n(1)
"¤t +

1
~®n(1)

pX

k=1

Ã pX

i=k
~®p;i

!
(u¤t¡k ¡ u¤t¡k+1)

= ~¼n(1)"¤t + (¹u¤t¡1 ¡ ¹u¤t )

where ¹u¤t = ~¼n(1)
Pp
k=1(

Pp
i=k ~®p;i)u¤t¡k+1 and therefore,

y¤t =
tX

k=1
u¤k = ~¼n(1)w¤

t + (¹u¤0 ¡ ¹u¤t )

where w¤
t =

Pt
k=1 "¤k.

Proof of Lemma 3.2 For Part (a), we write
nX

t=1
y¤t¡1"

¤
t = ~¼n(1)

nX

t=1
w¤
t¡1"

¤
t + ~u¤0

nX

t=1
"¤t ¡

nX

t=1
~u¤t¡1"

¤
t

and notice that

E¤
Ã nX

t=1
"¤t

!2

= n¾2
¤ = O(n) a:s:

E¤
Ã nX

t=1
~u¤t¡1"

¤
t

!2

= n¾2
¤~¡

¤
0 = O(n) a:s:

where ~¡¤0 = E¤~u¤2t and other notation was de…ned earlier. The stated result now
follows immediately. For Part (b), see Park (1999, Theorem 3.3).
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Proof of Lemma 3.3 We will show that

(a) E¤

°°°°°°

Ã
1
n

nX

t=1
x¤p;tx

¤0
p;t

!¡1°°°°°°
= Op(1) or O(1) a:s: under Assumptions (W) and (S),

respectively.

(b) E¤
°°°°°
nX

t=1
x¤p;ty

¤
t¡1

°°°°° = O(np1=2) a:s: under Assumption (W).

(c) E¤
°°°°°
nX

t=1
x¤p;t"

¤
t

°°°°° = O(n1=2p1=2) a:s: under Assumptions (W).

from which the stated results follow immediately.
We …rst prove Part (a). If we let ¤pp = (¡¤i¡j)

p
i;j=1, then it follows directly from

Lemma A4 that

E¤
°°°°°
1
n

nX

t=1
x¤p;tx

¤0
p;t ¡ ¤pp

°°°°°

2

= Op(n¡1p2) or O(n¡1p2) a:s:

under Assumption (W) or (S) respectively. Moreover, we have
°°°¤¡1pp

°°° ·
·
2¼

µ
inf
¸

f¤(¸)
¶¸¡1

= O(1) a:s:

under Assumption (W), due to Lemma A3. The stated result can now be easily
obtained from the inequality

¯̄
¯̄
¯̄E

¤

°°°°°°

Ã
1
n

nX

t=1
x¤p;tx

¤0
p;t

!¡1°°°°°°
¡

°°°¤¡1pp
°°°

¯̄
¯̄
¯̄ · E¤

°°°°°°

Ã
1
n

nX

t=1
x¤p;tx

¤0
p;t

!¡1
¡ ¤¡1pp

°°°°°°

Note that E¤k¤¡1pp k = k¤¡1pp k.
The proof for Part (b) is entirely analogous to that for Part (b) of Lemma 3.2 in

Chang and Park (2001), given the results in Lemmas A2 and A4. Using the same
notation (with * for the bootstrapped quantities) as in the proof of Part (b) of Lemma
3.2 in Chang and Park (2001), we may show

R¤
1n; R

¤
2n = O(n) + O¤

p(n
1=2p) in P or a.s.

under Assumption (W) or (S). Note that
1X

k=¡1
¡¤k = O(1) a:s:

under Assumption (W).
For Part (c), note that we have for all k, 1 · k · p,

E¤
Ã nX

t=1
u¤t¡k"

¤
t

!2

= n¾2
¤¡

¤
0

and therefore

E¤
°°°°°
nX

t=1
x¤p;t"

¤
t

°°°°°

2

= np¾2
¤¡

¤
0

The stated result now follows immediately from Lemma A1.
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Proof of Lemma 3.4 The stated results follow from Lemma 3.1 in Park (1999).

Proof of Theorem 3.5 Given the results following Lemma 3.4, the limiting distri-
butions of the bootstrapped statistics S¤n and T ¤n can be obtained directly from Park
(1999). Note that we have from Lemma 3.2 of Park (1999)

1
n

nX

t=1
w¤
t¡1"

¤
t !d¤

Z 1

0
WtdWt a:s:;

1
n2

nX

t=1
w¤2
t¡1 !d¤

Z 1

0
W 2
t dt a:s:

under Assumption (W).
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Table 1A: Finite sample sizes and rejection probabilities
coe¢cient tests Sn and S¤n for n=50

1% test 5% test 10% test

¯ ® Sn S¤n Sn S¤n Sn S¤n

1.00 0.349 0.013 0.442 0.070 0.489 0.140
¡0.8 0.95 0.422 0.016 0.503 0.088 0.543 0.163

0.90 0.467 0.019 0.530 0.097 0.556 0.180

1.00 0.107 0.010 0.177 0.049 0.229 0.095
¡0.4 0.95 0.143 0.013 0.244 0.059 0.314 0.126

0.90 0.183 0.016 0.310 0.079 0.388 0.155

1.00 0.085 0.007 0.141 0.039 0.189 0.081
0.0 0.95 0.120 0.009 0.194 0.057 0.253 0.112

0.90 0.148 0.013 0.241 0.074 0.314 0.143

1.00 0.089 0.008 0.146 0.041 0.185 0.082
0.4 0.95 0.126 0.010 0.210 0.055 0.266 0.111

0.90 0.154 0.012 0.258 0.072 0.328 0.140

1.00 0.115 0.008 0.167 0.044 0.211 0.076
0.8 0.95 0.152 0.011 0.229 0.050 0.280 0.103

0.90 0.189 0.013 0.271 0.063 0.321 0.121
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Table 1B: Finite sample sizes and rejection probabilities
t-tests Tn and T ¤n for n=50

1% test 5% test 10% test

¯ ® Tn T ¤n Tn T ¤n Tn T ¤n

1.00 0.273 0.013 0.392 0.090 0.462 0.176
¡0.8 0.95 0.345 0.020 0.475 0.118 0.554 0.223

0.90 0.416 0.026 0.549 0.144 0.615 0.257

1.00 0.078 0.015 0.165 0.074 0.239 0.138
¡0.4 0.95 0.111 0.019 0.244 0.100 0.341 0.189

0.90 0.137 0.023 0.301 0.127 0.407 0.219

1.00 0.073 0.017 0.154 0.073 0.224 0.141
0.0 0.95 0.100 0.020 0.220 0.104 0.305 0.186

0.90 0.114 0.024 0.246 0.111 0.340 0.206

1.00 0.084 0.017 0.182 0.089 0.245 0.152
0.4 0.95 0.097 0.019 0.224 0.091 0.318 0.179

0.90 0.119 0.024 0.266 0.116 0.363 0.208

1.00 0.083 0.013 0.178 0.073 0.249 0.143
0.8 0.95 0.112 0.019 0.235 0.101 0.319 0.185

0.90 0.121 0.023 0.247 0.105 0.348 0.197
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Table 2A: Finite sample sizes and rejection probabilities
coe¢cient tests Sn and S¤n for n=100

1% test 5% test 10% test

¯ ® Sn S¤n Sn S¤n Sn S¤n

1.00 0.360 0.017 0.474 0.101 0.535 0.190
¡0.8 0.95 0.626 0.047 0.735 0.202 0.782 0.339

0.90 0.775 0.070 0.824 0.267 0.849 0.421

1.00 0.091 0.013 0.174 0.055 0.236 0.111
¡0.4 0.95 0.207 0.027 0.386 0.148 0.504 0.271

0.90 0.392 0.066 0.619 0.271 0.716 0.416

1.00 0.069 0.011 0.129 0.045 0.188 0.087
0.0 0.95 0.152 0.031 0.300 0.133 0.412 0.242

0.90 0.270 0.059 0.491 0.241 0.627 0.406

1.00 0.080 0.008 0.146 0.045 0.207 0.096
0.4 0.95 0.186 0.028 0.329 0.131 0.431 0.236

0.90 0.301 0.054 0.512 0.225 0.628 0.379

1.00 0.126 0.010 0.204 0.048 0.260 0.091
0.8 0.95 0.240 0.023 0.377 0.107 0.460 0.202

0.90 0.345 0.035 0.502 0.163 0.587 0.285
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Table 2B: Finite sample sizes and rejection probabilities
t-tests Tn and T ¤n for n=100

1% test 5% test 10% test

¯ ® Tn T ¤n Tn T ¤n Tn T ¤n

1.00 0.253 0.023 0.362 0.110 0.434 0.198
¡0.8 0.95 0.486 0.050 0.619 0.211 0.698 0.362

0.90 0.671 0.088 0.775 0.301 0.829 0.467

1.00 0.042 0.016 0.112 0.063 0.186 0.131
¡0.4 0.95 0.101 0.034 0.254 0.135 0.369 0.247

0.90 0.241 0.061 0.471 0.242 0.614 0.410

1.00 0.026 0.015 0.082 0.062 0.139 0.110
0.0 0.95 0.069 0.033 0.182 0.116 0.291 0.216

0.90 0.138 0.056 0.342 0.211 0.487 0.358

1.00 0.029 0.015 0.089 0.059 0.156 0.117
0.4 0.95 0.076 0.032 0.198 0.121 0.307 0.223

0.90 0.150 0.050 0.354 0.204 0.500 0.352

1.00 0.031 0.013 0.091 0.061 0.153 0.119
0.8 0.95 0.068 0.030 0.189 0.117 0.285 0.204

0.90 0.114 0.045 0.283 0.172 0.414 0.300


