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Abstract

We examine asset market equilibrium in an intertemporal economic model with indi-
vidual and aggregate uncertainty and where the asset market is incomplete.
Modigliani-Miller leverage irrelevance holds, even when consumers face borrowing
constraints, because individual firms cannot alter the equilibrium portfolio of securi-
ties available to consumers. We show that households demand less risky portfolios as
their financial wealth increases because a given asymmetry in asset holdings imparts
more variability to income when wealth is high. Finally, we confirm previous results
that endogenous rates of time preference, uninsurable idiosyncratic risk and house-
hold borrowing constraints produce a very low risk-free real interest rate.
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Asset Demands of Heterogeneous Consumers with Uninsurable Idiosyncratic Risk

Models used to analyze household saving and portfolio allocation, corporate financial policy and equi-

librium asset prices within an intertemporal setting often assume that there is no production, no

uncertainty or that optimizing agents are identical (for example, see Uzawa (1968), Becker (1980)

and Lucas and Stokey (1982)). There is considerable doubt, however, whether representative agent

models can account for the evidence on consumption and saving, asset prices and portfolio allocations

(for example, see Deaton (1991), Cochrane and Hansen (1992) and Aiyagari (1994)).

Some authors have argued that uninsurable income risk and household borrowing constraints might

enable the models to account for some of the evidence. Since these modifications make asset markets

incomplete for investors, however, their effects have usually been examined in endowment economies.

We examine the effects of uninsurable income risk and household borrowing constraints within a

general equilibrium production economy. Even though the capital market is incomplete for investors,

Modigliani-Miller leverage irrelevance holds in our model. Although household choices result in a

unique aggregate debt-equity ratio, the financial policies of individual firms do not affect their market

values because no single firm can alter the set of securities available to households.1

The uninsurable income shocks lead to differences in household wealth. Since we assume all house-

holds have the same constant relative risk averse utility function, we might expect households to

choose portfolios with a level of risk that was independent of wealth. We find, however, that house-

holds desire less risky portfolios as their financial wealth increases. Household behavior depends on total

wealth, which includes the (state independent) capitalized value of expected labor income. As financial

wealth increases, it becomes a larger proportion of total wealth. Households with an indirect utility of

total wealth function that has the same concavity as their utility of consumption function would

make the proportionate changes in consumption and total wealth the same. They therefore would

reduce the riskiness of their portfolios of financial assets as financial wealth increases.

We nevertheless find that even the wealthiest households choose end of period financial wealth that is

more variable across aggregate states than is consumption. The capitalized value of expected labor income

is constant across states. A given proportional variation in total wealth across states therefore requires

more than a proportional variation in financial wealth.

We confirm the findings of Heaton and Lucas (1992) that households use financial assets to self-

insure against income shocks. They smooth consumption by saving when there is a good shock to

their income and dissaving when there is a bad shock to it.2 In fact, households smooth consumption

more against idiosyncratic risk than against aggregate uncertainty. Since idiosyncratic risk is fully

1. This is the basis for Fisher separation holding in our model. When firms face short-selling constraints, the capital mar-
ket may be incomplete for both households and firms, and Fisher separation can fail. The objective function of the firm 
then depends on the intertemporal consumption preferences of its shareholders.

2. Household saving thus mitigates the welfare effects of the lack of formal insurance. Dixit (1987, 1989) argues that 
asymmetric information is likely to restrict the availability of private insurance against individual risk. The same prob-
lems do not arise for aggregate uncertainty because it can be observed. 
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diversifiable across households, changes in wealth to insure against idiosyncratic risk are offsetting in

aggregate. In contrast, the attempt to save against aggregate income shocks affects net saving and

therefore alters the equilibrium asset prices in a way that tends to discourage self-insurance.

Our results also have implications for the equity premium puzzle (Mehra and Prescott (1985)). We

confirm evidence in previous studies that uninsured idiosyncratic income risk in the presence of credit

or borrowing constraints (Aiyagari (1994), Aiyagari and Gertler (1991) and Hartley (1994)), and

non-separable utility (Constantinides3 (1990) and Ferson and Constantinides (1991)) reduce the

risk-free interest rate. For plausible values of risk aversion and income uncertainty, however, they do

not greatly increase the risk premium on equity.4

There are other reasons for relaxing the assumption of time separability in the utility function. Becker

(1980) argues that when households have additive utility with different constant rates of time prefer-

ence, in a long-run steady state all the capital will be owned by the household with the lowest rate of

time preference. If more than one household shares this low rate of time preference then the distribu-

tion of capital across these households will be indeterminate. We confirm this result in our model.

Household borrowing constraints can eliminate this problem (Heaton and Lucas (1992), Aiyagari

(1994) and Hartley (1994)). Another approach, however, is to allow time-interdependencies in

household utility functions while retaining a constant rate of time preference (Ryder and Heal (1973),

and Constantinides (1990)). Alternatively, the rate of time preference can be endogenized (Uzawa

(1968), Epstein (1987), Epstein and Hynes (1991) and Shi and Epstein (1993)).5

We assume consumers become more impatient as wealth increases. This approach draws directly from

Epstein and Hynes (1983), who consider a class of utility functions (in continuous time) where the

rate of time preference depends positively on an index of future consumption. These functions are

weakly additively separable because the marginal rates of substitution depend only on current and

future, but not past, consumption. We use wealth as the index of future consumption because it

greatly simplifies calculation of the household value function.

The indirect utility of wealth function becomes more concave when the rate of time preference is an

increasing function of wealth. The increased concavity helps produce an equilibrium cross-sectional

wealth distribution when households do not face borrowing constraints. The increased concavity also

3. Constantinides relaxes time separability by introducing habit persistence. Other modifications to time discounting have 
also been proposed as explanations for the asset pricing puzzles. For example, Benninga and Protopapadakis (1990) 
allow the household discount rate to exceed unity. Kocherlakota (1990) shows that, if consumption grows, positive 
interest rates may exist in infinite horizon growth economies where individuals have discount factors larger than one.

4. The results in Hartley (1994) suggest that including banks in the economy might yield different results.

5. Shi and Epstein (1993) compare the effects of habit formation when it enters the utility function directly versus when 
it makes the rate of time preference endogenous.
2
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affects equilibrium asset prices. As we noted above, however, for the parameterization we examine, the

quantitative magnitude of the effect is not large.

Finally, our model has implications for the literature on corporate financial policy. Auerbach and King

(1983) and Dammon (1988) examine the financing decisions of firms in general equilibrium models

where consumers face short-selling constraints and where there are corporate and personal taxes on

security returns. They find that risk preferences move consumers away from the strict tax clienteles of

the Miller (1977) certainty equilibrium. In their two period models, risk averse consumers hold more

risky portfolios when they have higher wealth. High wealth consumers therefore prefer equity as a

result of both tax and risk considerations. In our model, however, risk averse consumers hold less risky

portfolios at higher wealth levels. Attitudes to risk in the two period models of Auerbach and King

and Dammon depend on the concavity of the utility of consumption function. By contrast, in our

multi-period model, they depend on the concavity of the indirect utility of wealth function. Our

results suggest that the conflict between tax and risk preferences is likely to be more pronounced in a

multi-period model with endogenous rates of time preference.

1. Model structure

The fundamentals in the economy are household preferences, the production technology, the ‘finan-

cial technology’ (the structure of the asset market used to transfer savings from households to firms

and return the proceeds to investors) and the structure of shocks to the economy.

We assume there is a single undiversifiable aggregate shock to firm productivity that affects both labor

income and the return to capital. The positive correlation between the aggregate component of labor

income and the return to capital makes equities a risky investment for households.

Household incomes also are affected by serially independent6 idiosyncratic shocks. The idiosyncratic

shocks are uncorrelated across households, and the number of households is large enough that the

aggregate of the idiosyncratic shocks equals the mean shock of zero in each period. To rule out market

insurance of the idiosyncratic income shocks, we assume the value of these shocks cannot be verified.

Since asset markets are incomplete, the equilibrium is not Pareto optimal. Thus, we have to solve for

the equilibrium explicitly rather than solving an equivalent “planning problem.”

1.1  The household utility function

As noted in the introduction, we relax the assumption of time separability of household preferences.

Ryder and Heal (1973) introduced habit persistence by including an index of past consumption in

6. The results obtained by Aiyagari (1994) suggest that the effect of borrowing constraints on the equilibrium riskless 
interest rate could be enhanced by making the idiosyncratic income shocks serially correlated.
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the utility function. Uzawa (1968) made the rate of time preference a function of current and future

consumption, while Shi and Epstein (1993) include past, current and future consumption in the rate

of time preference.7 Epstein and Hynes (1991) examine recursive utility where the rate of time prefer-

ence is an increasing function of future consumption. We adopt a similar approach by making the rate

of time preference an increasing function of wealth.8 Specifically, we assume household utility is

(1)

where the time discount factor β(Wt-1) ∈  (0,1) is a function of household wealth at the beginning of

the period and U(c) is the utility of current consumption. Since all households face the same distribu-

tion of labor income, differences in financial wealth capture differences in expected future consump-

tion opportunities. Making the discount factor a function of wealth rather than some other index of

future (or past) consumption simplifies the numerical analysis by allowing us to use one state variable

to describe the consumer’s maximization problem.

1.2  Production

Let K be the capital stock, and L0 and L1 the employment by the representative firm in states ε = ε0

and ε = ε1 respectively where the values taken by ε in each period:

(2)

are common to all firms and where ε1 > ε0 and the mean of ε is equal to 1.0. Use w0 and w1 to denote

the real wages in states ε = ε0 and ε = ε1. Assume the cash flows of the firm in each state are:

(3)

(4)

The first order conditions for employment in each state yield

(5)

(6)

7. Shi and Epstein show how the dynamics implied by each of these specifications differ and, in particular, how their 
approach can result in cyclical wealth accumulation.

8. The appendix discusses a recursive utility formulation due to Epstein and Zin (1989) and Epstein (1992). While this 
specification is theoretically superior, it proved to be much harder to work with numerically.

β Wt 1–( )tU ct( )
t 1=

∞

∑

ε
ε0 with probability π

ε1 with probability 1 π–






=

S0 ε0KαL0
1 α– 1 δ–( )K w0L0–+=

S1 ε1KαL1
1 α– 1 δ–( )K w1L1–+=

1 α–( )ε0KαL0
α– w0=

1 α–( )ε1KαL1
α– w1=
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In equilibrium, per capita labor demand has to equal the fixed per capita labor supply of 1 so

(7)

(8)

where k is the per capita capital stock of the representative firm and y0 and y1 are per capita labor

incomes in the aggregate states 0 and 1. The revenues of the representative firm in the two aggregate

states, net of labor costs, can be expressed in per capita terms as:

(9)

(10)

1.3  Asset markets

Security market traders, who face nothing more than a zero net wealth constraint, can issue derivative

securities based on the assets issued by firms. Since firms experience two states, the aggregate state

space of asset payoffs available to security market traders can be spanned using any two linearly inde-

pendent securities. If households are unconstrained in their asset trades over the aggregate state space,

they also can span the aggregate state space with two linearly independent securities.

We also examine constraints that prevent households from shorting equities or holding assets with

negative returns in any state.9 Since such constraints prohibit households from making future contri-

butions to firms, they can be thought of as solvency constraints. When households are constrained,

their asset holdings cannot span the aggregate state space. We show that firms and security market

traders can minimize the impact of the constraints by supplying a full set of primitive securities.

1.3.1 Spanning of the State-Space by Firms and Security Traders

The formal analysis allows for S aggregate states. The examples apply the results where S = 2.

Assumption 1: There are no barriers to entry into the capital market. Security traders have “equal

access” in the sense that each of them can issue any derivative security based on the assets issued by

firms. Therefore, all derivative securities must be priced independently of the trader.

Lemma 1: The capital market can offer any pattern of returns if the N securities issued by firms, with 

returns defined over the S states, have an (S×N) state-contingent payout matrix R with rank = S.

Proof: By constructing a portfolio τ, traders can create derivative securities D where:

9.  More generally, we could allow households to borrow no more than some fraction of their minimum labor income. 
We may also want to restrict households to borrowing at an interest rate that exceeds the rate paid by firms.

y0 w0 1 α–( )ε0kα= =

y1 w1 1 α–( )ε1kα= =

x0 ε0kα 1 δ–( )k y0–+=

x1 ε1kα 1 δ–( )k y1–+=
5
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(11)

When rank(R) = S, and each τn can be positive or negative, security traders can create a full set of

primitive securities, and therefore a security with any pattern of returns over the S states.

Example: Suppose there are 2 states, s = 0 and 1, and two securities, κ1 and κ2, with payout matrix:

(12)

(so that rank(R ) = N = S = 2). To create the primitive security D0, which pays only in state 0, τ1 = 1

and τ2 = −1. The primitive security D1, which pays only in state 1 already exists as security 2, so τ1 = 0

and τ2 = 1. Thus, traders can create a full set of primitive securities.

By assumption 1, every security issued by firms or traders has a perfect substitute. Firms and security

traders therefore are price-takers in the capital market. This leads directly to:

Lemma 2: (No-Arbitrage Condition) If the state-contingent payout matrix for firm securities has 

rank(R ) = S, then the riskless bond price pB and the primitive securities prices ps satisfy:

(13)

Proof: This follows from assumption 1 and lemma 1. A unit of the riskless bond is a perfect substitute

for a portfolio combining one unit of each primitive security. Since there are no-arbitrage profits in a

competitive equilibrium, the riskless bond must sell at the sum of the prices of the primitive securities.

Comment: For the 2 state example, the price pB of a riskless bond with identical returns in each state,

and the prices p0 and p1 of the pure state-contingent claims (D0 and D1 above) satisfy p0+p1 = pB.

1.3.2 Spanning of the State-Space by Consumers

When consumers have equal access and are unconstrained in their security trades, and when the state-

contingent payout matrix for firm securities has rank(R ) = S, consumers can span the aggregate state

space.10 Short-selling constraints, however, limit the set of derivative securities D consumers can hold.

Rτ

R11 … R1N

! " !

RS1 … RSN

τ1

!

τN

D1

!

DS

D≡=

S N× N 1× S 1×

≡

R
1 0

1 1

S N×

≡

ps
s 1=

S

∑ pB=
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They cannot hold negative quantities of any security issued by firms or offered by traders. Further-

more, each security available to them must have non-negative returns in every state. This leads to:

Lemma 3: Consumers facing short-selling constraints cannot span the state space of asset returns even 

though the state-contingent payout matrix for firm securities has rank(R ) = S.

Proof: Suppose there are M derivative securities {D(m) = R τ(m), m = 1,…, M} that are available to 

consumers and let D = [Dsm ] = [D(1) D(2) … D(M)] denote the S×M matrix of state-contingent pay-

outs on these derivative securities. As a result of the short-selling constraints, the elements of D must 

satisfy Dsm ≥ 0. The set of portfolios available to consumers then consists of all assets Q that satisfy:

Dσ = Q

subject to σm ≥ 0 for all m

and Dsm ≥ 0 for all s ∈  S and all m.

The returns on all portfolios Q must therefore form a proper subset of the state space. Thus, consum-

ers cannot span the state space even if the set of securities issued by firms has rank S.

Two State Example

To see how short-selling constraints restrict consumers in the 2 state case, consider the payout matrix:

(14)

with σ1 ≥ 0, σ2 ≥ 0, 1 ≥ d0 ≥ 0 and 1 ≥ d1 ≥ 0. The values of the state-contingent returns, d0 and d1,

determine the size of the state space consumers can span. If d0d1 < 1, at least one derivative security

available to households is risky. The matrix D has full rank and the vector of asset demands is equal to:

. (15)

The requirement σ ≥ 0 implies d0 ≤ Q0/Q1 ≤ 1/d1. Consider the following three cases for different

values of d0 and d1, that is, for different degrees of riskiness in the derivative securities.

(1) Riskless Debt and One Risky Security

The returns to the riskless bond are measured along the 45° line κB, while the returns to the risky

securities are measured along the lines κ2 and κ1 in the left and right hand panels of Figure 1.

10.The proof of this is identical to the proof of Lemma 1 for firms.

Dσ
d0 1

1 d1

σ1

σ2

≡ Q=

σ1

σ2

1
d0d1 1–
------------------

d1Q0 Q1–

d0Q1 Q0–
=
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The shaded regions of the diagrams are the returns to household portfolios composed of positive

amounts of the two derivative assets. The shaded region in the left panel of Figure 1 measures the

attainable returns when security 1 is riskless (with d0 = 1) and security 2 is risky (with 0 ≤ d1 < 1). The

shaded region in the right panel measures the attainable returns when security 1 is risky (with 0 ≤ d0 <

1) and security 2 is riskless (with d1 = 1). Both these regions satisfy the short-selling constraints.

(2) Two Risky Securities with Positive Returns in Both States

The left panel of Figure 2 is the combination of the two shaded regions in Figure 1. It illustrates the

FIGURE 1. Attainable Returns with Riskless Debt

FIGURE 2. Attainable Returns with Two Risky Securities

κ
1=B

κ
2
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s 0
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1
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1 0

κ1κ2 κ1κ2
8



Asset Demands in Incomplete Markets
attainable returns when there is no riskless bond and both derivative securities have positive returns in

each state (0 ≤ d0 < 1 and 0 ≤ d1 < 1). As d0 and d1 approach zero, the set of attainable returns increases

as the line segments rotate toward the s0 and s1 axes, respectively.

(3) Two Primitive Securities

In the limit d0 = d1 = 0, the two derivative securities are primitive securities and the attainable returns

are the entire positive state space, illustrated in the right panel of Figure 2. The following lemma justi-

fies a focus on this case later in the paper.

Lemma 4: In the two-state case (14) with 1 ≥ d0 ≥ 0 and 1 ≥ d1 ≥ 0, the short-selling constraints 

σ1 ≥ 0, σ2 ≥ 0, affect consumers as little as possible when d0 = d1 = 0.

Proof: Consumers with access to the returns in the right panel of Figure 2 could limit their choices to 

the left panel of Figure 2. Expanding their choice set cannot make them worse off. Any set of returns 

that strictly contains the set in the right panel of Figure 2 will violate the short-selling constraints.

Comment. In a competitive capital market with no transactions costs, security traders have an incen-

tive to provide assets that minimize the effect of the constraints. Note that when consumers hold both

securities in amounts σ1 and σ2 they effectively hold min(σ1,σ2) of riskless debt.

2. Firm maximization

When firms and security traders have equal access to a competitive capital market there is always a

perfect substitute for every security they offer. This leads to:

Theorem 1: (Modigliani-Miller Leverage Irrelevance) For the structure of production in section 1, if 

the capital market is competitive the value of the firm is independent of the level of debt financing.

Proof. The firm has cash flows of x0 in state 0 and x1 in state 1. Since ε1 > ε0, x1 > x0 and the firm can 

pay x0 in both states and an additional x1 − x0 in state 1. Alternatively, the firm (or security traders) 

could “unbundle” the x0 units of debt into λx0 units of debt and (1−λ)x0 units of each state claim.11 

The combined equity security would have returns (1−λ)x0 in state 0, x1 − λx0 in state 1 and value:

(16)

But the no-arbitrage condition in lemma 2 implies (1−λ)x0p0 + (1−λ)x0p1 = (1−λ)x0pB. Hence the

market value of the cash flows is independent of λ:

(17)

11.Note that, since firms or security traders can short assets, we do not require 0 ≤ λ ≤ 1.

λx0pB 1 λ–( )x0p0 x1 λx0–( )p1+ + x0pB 1 λ–( )x0pB– 1 λ–( )x0p0 x1 x0–( )p1 1 λ–( )x0p1+ + +=

x0pB x1 x0–( )p1+ x0p0 x1p1+=
9
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Comment. This result holds whether or not consumers face short-selling constraints. Consumers will

demand a unique aggregate asset portfolio to satisfy risk and intertemporal consumption preferences.

If one firm changes its financial structure, other firms will be induced by incipient movements in asset

prices to take the offsetting position.12 Aivazian and Callen (1987) observe this adjustment process in

an endowment economy with a Miller (1977) tax structure. We conjecture that the result will also

hold in our production economy augmented by their tax structure.

Financial policy irrelevance, and the absence of any leverage related costs in a common information

setting, implies that firms will maximize profits (that is, Fisher Separation holds).

Theorem 2: For the structure of production in section 1, the optimal capital stock is given by

(18)

where r is the riskless rate of interest.

Proof. The net value of the firm is

(19)

The firm chooses k to maximize (19), leading to a first order condition

(20)

But from (13)

(21)

Substituting (21) into (20) and rearranging we obtain (18).

When firms are price takers in the capital market the right hand side of (18) is unaffected by the value

of the capital stock chosen by any one firm.

Comment. If there is no uncertainty with  then (18) will reduce to

(22)

The left side of (22) is the marginal product of capital, while the right side is the risk-free user cost of

capital. Both sides of the equation are independent of the debt-capital ratio.

When ε1 > ε0, firms must pay financiers a risk premium. The premium is embodied in the state-con-

12.In the absence of transactions costs, offsetting changes by other firms (or security traders) take place instantly.

k
α 1– 1 pB 1 δ–( )–

α p0ε0 p1ε1+( )
---------------------------------

δ r+
α p0ε0 p1ε1+( ) 1 r+( )
------------------------------------------------≡=

x0p0 x1p1 k–+ p0 ε0k
α

1 δ–( )k y0–+( ) p1 ε1k
α

1 δ–( )k y1–+( ) k–+=

p0ε0 p1ε1+( )αk
α 1–

1 δ–( ) p0 p1+( ) 1–+ 0=

p0 p1+ pB
1

1 r+
---------= =

ε0 ε1 ε= =

εαk
α 1– δ r+=
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tingent prices that make the right side of (18) greater than r + δ. If we now let  denote the mean of

the productivity shock ε, we can define an implicit risk premium Φ by

that is

(23)

and (18) becomes

(24)

3. Household budget constraint and household maximization

Household labor income is given by:

(25)

where y0 = ε0(1−α)kα and y1 = ε1(1−α)kα are the aggregate components of labor income (common

across households). Each household also draws an idiosyncratic shock to labor income z with z1 > z0.

The number of households is large enough that the sample mean of z each period equals the popula-

tion mean of the distribution, θz0 + (1−θ)z1, which, for convenience, is taken to be zero. The distri-

bution of z is independent of the distribution of ε. The value of ε and the values of z for each

household are revealed after households have chosen assets for t. Households then receive interest, div-

idend payments and labor income, and choose their consumption for period t. Wealth available at the

end of the period is allocated to financial assets in preparation for next period’s consumption. Con-

sumption and end of period wealth in the state ε = εi and z = zj, i, j = 0, 1 are denoted by cij and Wij.

Applying lemma 4 we can, without loss of generality, assume households can hold only pure state

contingent claims. Use p0 and p1 for the prices of these state contingent securities. Let κ0(W ) and

κ1(W ) be the number of claims to consumption in states 0 and 1 purchased by a representative

household with wealth W. When choosing assets, a household with wealth W faces a budget constraint

. (26)

ε

p0ε0 p1ε1+
ε

1 r+( )
--------------

δ r+
δ r Φ+ +
------------------- 

 ≡

Φ δ r+( ) ε
1 r+( ) p0ε0 p1ε1+( )

-------------------------------------------- 1–=

εαk
α 1– δ r Φ+ +=

y

y0 z0+ with probability πθ

y0 z1+ with probability π 1 θ–( )

y1 z0+ with probability 1 π–( )θ

y1 z1+ with probability 1 π–( ) 1 θ–( )










=

p0κ0 W( ) p1κ1 W( )+ W=
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Define the fraction ρ(W ) of returns in period t+1 that accrue in state 0 by

(27)

so that 1−ρ(W ) the fraction that accrue in state 1. We then have:

Lemma 5: For a portfolio allocation ρ(Wt–1) of financial wealth Wt–1, financial wealth in period t is

(28)

Proof: Solve equations (26) and (27) for κ0(W ) and κ1(W ).

Comment. The denominator in (28) represents the current price of a security that pays off ρ units of

consumption in state 0 and (1−ρ) units of consumption in state 1. The number of such securities

owned by a household investing wealth Wt will be Wt /(ρp0+(1−ρ)p1).

Lemma 6: The short-selling constraints can be written as

0 ≤ ρ(W ) ≤ 1 for all W > 0, (29)

(30)

(31)

(32)

(33)

Proof: The short-selling constraints restrict the asset and goods market trades of households to ensure

that households are holding non-negative financial wealth at all times and in all states of the world. In

particular, financial wealth W ≥ 0 in all periods, while the budget constraint (26) together with (21)
imply κ0(W )/W and κ1(W )/W must lie in the unit interval. Furthermore, if κ0(W ) = 0 then

κ1(W ) > 0 and conversely.

ρ W( )
κ0 W( )

κ0 W( ) κ1 W( )+
------------------------------------=

Wt

κ0 Wt 1–( )= 
ρ Wt 1–( )Wt 1–

ρ Wt 1–( )p0 1 ρ Wt 1–( )–( )p1+
------------------------------------------------------------------- in state 0

κ1 Wt 1–( )= 
1 ρ Wt 1–( )–( )Wt 1–

ρ Wt 1–( )p0 1 ρ Wt 1–( )–( )p1+
------------------------------------------------------------------- in state 1











=

W00 y0 z0
ρW

ρp0 1 ρ–( )p1+
--------------------------------- c00–+ + 0≥=

W01 y0 z1
ρW

ρp0 1 ρ–( )p1+
--------------------------------- c01–+ + 0≥=

W10 y1 z0
1 ρ–( )W

ρp0 1 ρ–( )p1+
--------------------------------- c10–+ + 0≥=

W11 y1 z1
1 ρ–( )W

ρp0 1 ρ–( )p1+
--------------------------------- c11–+ + 0≥=
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4. Risk Neutral Households

We show that when households are risk neutral the state-contingent asset prices p0 and p1 are constant

and can be treated simply as parameters. When households are risk averse, asset prices become func-

tions of the current aggregate state of the economy.

Definition: When p0 and p1 are constant, the household value function V (W ) is the solution to the

functional equation:13

(34)

where the maximizations are constrained by (29)–(33). We shall use ϕij for the Lagrange multiplier on

the constraint in state ε = εi and z = zj, i, j = 0, 1 in (30)–(33), and µ0 and µ1 for the multipliers for the

constraints ρ ≥ 0 and ρ ≤ 1.

Theorem 3: Household portfolio allocation over the two pure state contingent claims, ρ(W ), and 

maximizing consumptions and end of period assets satisfy (29)–(33) together with:

(35)

(36)

(37)

(38)

(39)

(40)

Proof: For a given ρ, the first order conditions for the maximizing choices of consumptions and end

13.We assume sufficient conditions are placed on U(c) and β(W ) to guarantee there is a unique solution to (34). In the 
discussion below we calculate solutions for V (W ) for specific functional forms of U(c) and β(W ).

V W( ) β W( ) πθ U c00( ) V W00( )+[ ] π 1 θ–( ) U c01( ) V W01( )+[ ]

1 π–( )θ U c10( ) V W10( )+[ ] 1 π–( ) 1 θ–( ) U c11( ) V W11( )+[ ]
c11 W11,

max+
c10 W10,

max+

c01 W01,
max+

c00 W00,
max













ρ
max=

U ′ c00( ) V ′ W00( ) ϕ00 with ϕ00 y0 z0
ρW

ρp0 1 ρ–( )p1+
--------------------------------- c00–+ + 

 + 0= =

U ′ c01( ) V ′ W01( ) ϕ01 with ϕ01 y0 z1
ρW

ρp0 1 ρ–( )p1+
--------------------------------- c01–+ + 

 + 0= =

U ′ c10( ) V ′ W10( ) ϕ10 with ϕ10 y1 z0
1 ρ–( )W

ρp0 1 ρ–( )p1+
--------------------------------- c10–+ + 

 + 0= =

U ′ c11( ) V ′ W11( ) ϕ11 with ϕ11 y1 z1
1 ρ–( )W

ρp0 1 ρ–( )p1+
--------------------------------- c11–+ + 

 + 0= =

β W( )p0p1W( )

ρp0 1 ρ–( )p1+( )2
----------------------------------------

π θU′ c00( ) 1 θ–( )U′ c01( )+[ ]
p0

------------------------------------------------------------------
1 π–( ) θU′ c10( ) 1 θ–( )U′ c11( )+[ ]

p1
-----------------------------------------------------------------------------–

 
 
  µ1 µ0–=

µ0ρ 0 µ1 1 ρ–( ), 0 µ0 0 ρ 0 µ1 0 1 ρ≥,≥,≥,≥,= =
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Asset Demands in Incomplete Markets
of period wealth levels subject to the constraints (30)–(33) are given by (30)–(33) and (35)–(38).

Now let M00, M01, M10 and M11 denote the solutions to these maximization problems in each of the

states. Then the maximization problem for the choice of ρ can be written:

(41)

Now observe that if ϕij = 0 then U ′(cij) = V ′(Wij) and

(42)

(43)

while if ϕij > 0, cij is determined by the budget constraints (30)–(33) and Mij = U(cij) + V (0) so that

again the derivatives of Mij are given by (42)–(43). Hence, the first order condition for the choice of ρ
subject to the constraints (29) is given by (39) and (40).

Theorem 4: If U(c) = c, and there are no short-selling constraints, equilibrium asset prices are

(44)

while the maximizing consumptions and end of period wealth levels satisfy

. (45)

Proof: If there are no short-selling constraints, ρ is not constrained to lie in the unit interval and,

from (40), µ0 = µ1 = 0. Equation (39) for the optimal value of ρ then implies

(46)

But from (21),

(47)

where r is the riskless interest rate. From (46) and (47), the prices of a claim to a unit of consumption

in states 0 and 1 are given by (44). In the absence of short-selling constraints, (30)–(33) also are irrel-

evant so ϕij = 0 and the first order conditions for the optimal consumption (35)–(38) become (45).

Comment. By re-scaling consumption, we can ensure U ′ = 1 for any risk neutral household.

Corollary 1: If U(c) = c, there are no short-selling constraints, and V ′(W ) is monotonic, then

β W( ) πθM 00 π 1 θ–( )M 01 1 π–( )θM 10 1 π–( ) 1 θ–( )M 11+ + +[ ]
ρ

max µ0ρ µ1 1 ρ–( )+ +

ρd

dM 0j p1U ′ c0j( )W

ρp0 1 ρ–( )p1+( )2
----------------------------------------=

ρd

dM 1j p0U ′ c1j( )W

ρp0 1 ρ–( )p1+( )2
----------------------------------------–=

p0
π

1 r+
---------  and  p1

1 π–
1 r+
----------= =

1 U ′ cij( ) V ′ Wij( )= =

π
p0
-----

1 π–
p1

----------=

p0 p1+
1

1 r+
---------=
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Asset Demands in Incomplete Markets
Wij = W * for all i and j, c01 - c00 = c11 - c10 = z1 - z0, so the difference in consumption when only idio-

syncratic income varies matches the difference in income, and expected consumption equals:

(48)

Proof: When V ′(W ) is monotonic, (45) implies Wij is constant across states. The remaining results

follow from (44) and the budget constraints (30)–(33).

Corollary 2: If U(c) = c, and there are no short-selling constraints the equilibrium k satisfies (22).

Proof: Substituting (44) into (18) we obtain:

(49)

which can be re-arranged into (22) where ε is interpreted as the mean of ε.

Theorem 5: If U(c) = c, there are no short-selling constraints, and β is independent of W then the 

equilibrium riskless real rate of interest is given by

(50)

and the household value function is given by

(51)

that is, financial wealth plus the discounted expected value of labor income.

Proof: Applying the envelope theorem to the functional equation (34),

(52)

Substituting (45) into (52) we obtain

(53)

Substituting the state contingent asset prices (44) into (53) and using (45) we conclude that

(54)

It is easy to verify that when asset prices satisfy (44) and (50), V (W ) given by (51) solves (34).

Comment. Theorem 5 implies that, when households are risk neutral and have an identical constant

π θc00 1 θ–( )c01+( ) 1 π–( ) θc10 1 θ–( )c11+( )+ W 1 r+( ) W ∗– πy0 1 π–( )y1 θz0 1 θ–( )z1+ + +{ }+=

kα 1– δ r+
α πε0 1 π–( )ε1+( )
------------------------------------------=

β 1 r+( ) 1=

V W( ) W
β

1 β–
---------- πy0 1 π–( )y1 θz0 1 θ–( )z1+ + +{ }+=

V ′ W( ) β
ρp0 1 ρ–( )p1+
--------------------------------- ρ πθV ′ W00( ) π 1 θ–( )V ′ W01( )+[ ]

1 ρ–( ) 1 π–( )θV ′ W10( ) 1 π–( ) 1 θ–( )V ′ W11( )+[ ]

+{

}

=

V ′ W( ) β
ρp0 1 ρ–( )p1+
--------------------------------- ρπ 1 ρ–( ) 1 π–( )+{ }=

1 V ′ W( ) β 1 r+( )= =
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rate of time preference, equilibrium asset prices are determined by household behavior. The riskless

real rate of interest r equals the household rate of time preference and the price of consumption in

state i is the probability of state i discounted at the rate r. The supply of savings is perfectly elastic at

these rates of return and average household wealth and the per capita capital stock are determined by

the demand for loans from firms, (22). While aggregate household wealth is given by the demand for

loans from firms, the distribution of that wealth across households is indeterminate. Households are

indifferent between consuming in different periods or states when asset prices satisfy (44) and (50).

As noted in the introduction, we can avoid this indeterminacy result by assuming households have a

non-constant rate of time preference:

Theorem 6: If U(c) = c, there are no short-selling constraints, and β is a differentiable function of W 

with a functional form that ensures V (W ) is increasing in W  but strictly concave, then Wij = W * for 

all i and j and the household value function is given by

(55)

where A and W * jointly solve

(56)

. (57)

Proof: Apply the envelope theorem to functional equation (34) when β depends on W to get

(58)

Now use (44) and (45) from Theorem 4 to conclude

(59)

Equation (59) has a solution for V (W ) of the form (55) for a constant A. When V (W ) is concave, V ′
is monotonic and the corollary to Theorem 4 implies Wij = W * for all i and j and the expected utility

of current consumption is given by (48). Substituting (48) and (55) into (34) we conclude that the

indirect utility of wealth V (W ) will be given by (55) if A and W * jointly solve (56) and (57).

Comment. Since asset prices satisfy (44) and households are risk neutral, the distribution of state

claims across households is indeterminate. Now, however, the distribution of wealth is determinate.

V W( ) A W 1 r+( )+[ ]β W( )=

A
πy0 1 π–( )y1 θz0 1 θ–( )z1 W ∗ 1 β W ∗( ) 1 r+( )–[ ]–+ + +

1 β W ∗( )–
---------------------------------------------------------------------------------------------------------------------------------=

β W ∗( ) 1 r+( ) A W ∗ 1 r+( )+[ ]β′ W ∗( )+ 1=

V ′ W( ) β W( )
ρp0 1 ρ–( )p1+
--------------------------------- ρ πθV ′ W00( ) π 1 θ–( )V ′ W01( )+[ ]

1 ρ–( ) 1 π–( )θV ′ W10( ) 1 π–( ) 1 θ–( )V ′ W11( )+[ ]

+{

} β ′ W( )
β W( )
---------------V W( )+

=

V ′ W( ) β W( ) 1 r+( ) β ′ W( )
β W( )
---------------V W( )+=
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Households adjust consumption to compensate for differences in their initial wealth W and choose

the same final wealth W *. The riskless real interest rate r and household wealth W * are jointly deter-

mined in equilibrium so per capita demand for loans from firms, (22), equals per capita supply of

loans from households W *. Once k has been determined, the supply of state contingent claims also will

be determined and this will have to equal the aggregate per capita demand from households.

Numerical solution for a particular β(W )

It will be useful to compare the solution to this model to the solutions of models with risk averse

households in the next section of the paper. We now assume that β(W ) has the form

(60)

Then V ′(W ) > 0 for Aψ < (1+r)(1+ξ), in which case V ″(W ) < 0. For the parameter values in Table 1,

the approximate solution is A = 18.530052, W * = k = 2.213988 and r = 0.107739. The approximate

equilibrium incomes in the two aggregate states are y0 = 0.777632 and y1 = 1.006347. The indirect

utility of wealth function V (W ), together with its first and second derivatives, is given for 1.5 ≤ W ≤ 3

in Table 2. It is interesting to note that the equilibrium riskless real interest rate is considerably larger

than (1-β)/β for typical values of W. This follows from (57) and the fact that β′(W ) < 0.

5. Risk averse households

Now suppose households have a constant relative risk averse utility of consumption function

. (61)

TABLE 1. Parameter values for the risk neutral model

Parameter ψ ξ π θ z0 z1 ε0 ε1 α δ
Value 0.0025 0.05/0.95 0.4 0.2 -0.1 0.025 0.85 1.1 0.25 0.03

TABLE 2. Equilibrium discount factor, value function and derivatives

W β(W ) W ) V ′(W ) V ″(W )

1.50 0.946628 19.113985 1.003382 -0.004749

1.75 0.946068 19.364682 1.002196 -0.004746

2.00 0.945509 19.615083 1.001012 -0.004744

2.25 0.944950 19.865188 0.999830 -0.004741

2.50 0.944393 20.114998 0.998650 -0.004738

2.75 0.943836 20.364513 0.997472 -0.004735

3.00 0.943279 20.613734 0.996296 -0.004732

β W( ) 1
1 ξ ψW+ +
-------------------------=

U c( ) c1 γ–

1 γ–
----------=
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If the time discount factor β, income and asset prices were all constant, when there are no short-sell-

ing constraints the functional equation (34) would have a solution of the form (for A constant)

(62)

When β is a function of W, and income varies, V (W ) must be approximated numerically. The follow-

ing solutions are for γ = 1.75, the remaining parameter values in Table 1 and β(W ) given by (60).

Unlike the risk neutral case, where consumption immediately adjusts to allow wealth to achieve the

targetW *, households with decreasing marginal utility of consumption adjust their wealth gradually.

The budget constraints (30)–(33) now produce four stochastic difference equations. The per capita

capital stock held by firms also adjusts according to a stochastic difference equation. The result will be

a stationary distribution of k not a stationary value for the capital stock.

Since the ε shock affects all households simultaneously, the cross-sectional wealth distribution, Ω, will

vary with the sequence of realizations for ε. In effect, Ω becomes another multi-dimensional “state

variable.” Household indirect utility becomes a function of Ω. Furthermore, when solving their maxi-

mization problems, rational households would forecast the evolution of Ω as a function of the possi-

ble realizations for future values of ε. It is, however, impossible to make Ω a “state variable” for the

maximization problem. It may also be quite unreasonable to assume households know Ω or how it

evolves in response to aggregate shocks.

We consider a simpler “bounded rationality” model. Specifically, we assume that, when forming

expectations, households characterize the aggregate state of the economy by the per capita capital

stock (or per capita household wealth) and use linear approximations to the state transition equations

for k in the two possible aggregate states, ε0 and ε1:

 and (63)

For this reason, and also because the aggregate components of labor income, given by (7) and (8), will

now also be functions of kt–1, the household value function will also become a function of the current

per capita capital stock kt–1. In place of (34), the household value function will now satisfy:

(64)

V W( ) A
y
r
-- W+

1 γ–
=

kt0 Ak0 Bk0kt 1–+= kt1 Ak1 Bk1kt 1–+=

V Wt 1– kt 1–,( ) β Wt 1–( ) πθ U c00( ) V W00 Ak0 Bk0kt 1–+,( )+[ ]

π 1 θ–( ) U c01( ) V W01 Ak0 Bk0kt 1–+,( )+[ ] 1 π–( )θ U c10( ) V W10 Ak1 Bk1kt 1–+,( )+[ ]

1 π–( ) 1 θ–( ) U c11( ) V W11 Ak1 Bk1kt 1–+,( )+[ ]
c11 W11,

max

+
c10 W10,

max+
c01 W01,

max

+
c00 W00,

max












ρ
max=
18



Asset Demands in Incomplete Markets
The choice variables cij, Wij and ρ satisfying the first order conditions (35)–(40) will also be functions

of kt-1 and Wt-1. Capital market equilibrium will require:

(65)

(66)

where κ0(Wt–1,kt–1) and κ1(Wt–1,kt–1) are given in (28) and where Ω(Wt–1,kt–1) is the current actual

cross-sectional distribution of wealth. The representative firm’s choice of capital at the end of period

t–1 will also satisfy (18):

(67)

One could, in principle, solve this system for any constants in (63) and any initial kt–1. Households

could only be said to be “boundedly rational”, however, when the functions in (63) approximate the

non-linear relationships between kt–1 and kt around a “representative” value of k. We use a two-step

numerical procedure to find an approximate solution to the model when kt–1 = k*, the mean of the

stationary distribution of per capita capital.

First, we solve the model numerically assuming k is constant, and is expected to remain constant, at

some value k. At k, we require the corresponding cross-sectional wealth distribution Ω to satisfy, for

any subset of wealth levels A:

(68)

and

(69)

while the asset prices p0 and p1 also ensure that (65) and (66) are valid for k and Ω.

In the second set of iterations, we linearly approximate the difference equations for the evolution of

mean wealth to obtain starting expressions for (63). Using these linear approximations, and the solu-

tions for the (constant) asset prices in the “static expectations” model, we solve for a two-dimensional

value function (64) defined on a grid of W and k values. In the process, we obtain corresponding func-

tions for Wij(W ,k). Using these functions, we perform a Monte Carlo simulation to arrive at an equi-

librium distribution of k, with mean k*. Finally, we examine the value function and the choice

variables as a function of W evaluated at k = k*.

x0 αε0kt 1–
α 1 δ–( )kt 1–+ κ0 W t 1– kt 1–,( ) Ω W t 1– kt 1–,( )d∫= =

x1 αε1kt 1–
α 1 δ–( )kt 1–+ κ1 W t 1– kt 1–,( ) Ω W t 1– kt 1–,( )d∫= =

kt 1–
α 1–

1 p0t 1– p1t 1–+( ) 1 δ–( )–

α p0t 1– ε0 p1t 1– ε1+( )
--------------------------------------------------------=

Pr W A∈( ) Ωd
A
∫ πθ Ωd

W00 W( ) A∈
∫ π 1 θ–( ) Ωd

W01 W( ) A∈
∫ 1 π–( )θ Ωd

W10 W( ) A∈
∫ 1 π–( ) 1 θ–( ) Ωd

W11 W( ) A∈
∫+ + += =

k W Ωd∫=
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5.1  No short-selling constraints

For small values of ψ, we expect V (W ) to have a functional form close to (62). Hence, we approxi-

mated log(−V (W )) by a spline function in log(B + W) for a constant B that was determined itera-

tively. The algorithm we use is related to the algorithms discussed in more detail in Hartley (1994,

1995) and Judd (1992). In brief, it involves the steps:

1. Choose a grid of values for W at which V (W ) will be evaluated. In the results reported below, we

used 160 values for W spread evenly between -20 and 20.

2. Choose an initial approximation V0(W ) for V (W ).14

3. Guess the equilibrium asset prices p0 and p1.15

4. Solve the firm’s first order condition (18) for k using the asset prices p0 and p1.

5. Calculate the aggregate component of per capita labor income y0 and y1 using (7) and (8).

6. Using the functional approximation for V ′(W ), and noting that the multipliers ϕij, µ1 and µ2 are

all zero when there are no short-selling constraints, solve the first order conditions (35)–(38) and (39)

for c00(W ), c01(W ), c10(W ), c11(W ) and ρ(W ) on the grid of values for W.16

7. Substitute the maximizing c00(W ), c01(W ), c10(W ), c11(W ) and ρ(W ) into the right hand side of

(34) to obtain a new set of values V1(W ) for V (W ). Fit a spline approximation

, n = 0, 1, …, 9 (70)

to the values for log(−V1(W )) for a constant B that was initially set at y/r. There were nine interior

breakpoints ζ1,…,ζ9 in the spline approximation, with

(71)

for i = 0,…,9 and ζ0 =−20 and ζ10 = 20. The approximation was constrained so that the second deriv-

ative was continuous across the interior breakpoints.17

8. Use the spline approximation to evaluate the inverse of the coefficient of absolute risk aversion

 = –V ′(W )/V ″(W ). Regress  against 1 and W to obtain a new estimate of B, and

then re-calculate the spline approximation. Use the new approximation to V (W ) to re-evaluate the

right hand side of (34) for the same maximizing c00(W ), c01(W ), c10(W ), c11(W ) and ρ(W ). Fit a

14.We used (62) with income equal to its expected value and r equal to the household discount rate when W=0.

15.We started with p0 and p1 given by (44).

16.The equations are solved using the MatLab Optimization Toolbox routine fsolve.

17.We used the least squares spline approximation routine spap2 in the MatLab Spline Toolbox. Other routines in the 
MatLab Spline Toolbox were used to differentiate and evaluate the spline approximation to V (W ).

a n j,( ) W B+( ) ζn–log[ ] 6 j–

j 0=

6

∑

30 ζ+ i 1+( ) 30 ζ i+( )log–log
50( ) 10( )log–log[ ]

10
--------------------------------------------=

CA
1– W( ) CA

1– W( )
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new spline approximation V2(W ) to the resulting values for V (W ).

9. If the change in V (W ), ||V2(W )−V0(W )|| > 10-6, return to step 6. Otherwise, go to step 10.

10. Substitute the maximizing cij(W ) and ρ(W ) into the budget constraints (30)–(33) to obtain a sto-

chastic difference equation for the evolution of wealth. The difference equation yields a Markov pro-

cess on the intervals of wealth in the partition of W. Calculate the stationary cross-sectional wealth

distribution for this Markov process by iterating the mapping until ||Ωn+1(W )−Ωn(W )|| < 10-6.

11. Substitute the maximizing ρ(W ) into (28), weight by the stationary cross-sectional wealth distri-

bution Ω(W ) and sum, to find the per capita demand for asset income, . The per capita

supplies are given by (9) and (10). Adjust p0 and p1 in proportion to the excess demands

(72)

unless the adjustment in both prices is less than 10-6. The fraction f is chosen to stabilize the price

adjustments. If the price adjustment exceeds 10-6, return step 4 and use the new prices.

12. Fit linear approximations (about the final value for k) to the final solutions Wij(W) for the evolu-

tion of household wealth.

13. Use these linear approximations on the right side of (64) together with the asset prices18 p0(k) and

p1(k), to determine a two-dimensional approximation to the function V(W,k) for a grid of values for k.

We also obtain new mappings Wij(W,k), cij(W,k) and ρ(W,k).

14. Use Wij(W,k) in a Monte Carlo simulation over 10000 periods to obtain a distribution for k and

associated average cross-sectional wealth distributions Ω(W,k) at each value of k. Obtain the per capita

demands for asset income,  for each k in the grid. Obtain new asset prices at each k

by adjusting the previous values in proportion to the excess demands

(73)

Also, we use the pairs of values (kt–1, kt) from the last iteration of the Monte Carlo to obtain new

regression estimates of the linear relationship between kt–1 and kt. Return to step 13 unless the abso-

lute change in asset prices and regression coefficients is less than 10-4. The function estimates pre-

sented and discussed below are the final approximations evaluated at the mean value of k on the final

iteration.

The final household value function

The final approximate value for B was 66.429631. The maximum absolute difference between the

final value for V (W ) and the spline approximation at the grid of values for W is approximately

2.06×10−13 while the average absolute error at the 160 values of W is approximately 5.87×10−14.

18.Starting with p0 and p1 indpendent of k and given by the solutions to the “static expectations” problem.

κ0 and κ1

∆pi f κ i xi–( )=

κ0 k( ) and κ1 k( )

∆pi k( ) f κ i k( ) xi k( )–[ ]=
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The values for V (W ), the spline approximations to V ′(W ), V ″(W ) and the spline approximation to

the inverse of the coefficient of absolute risk aversion, , are graphed in Figure 3. The final

graph in Figure 3 also plots the difference between  and the linear approximation to 

as a measure of the departure of V (W ) from (62). The units for  are given on the left hand

scale, while the units for the residuals from the linear regression are on the right hand scale.

Result 1. The value function is quite close to constant relative risk averse in B + W. The final graph in 

Figure 3 shows that −V ′(W )/V ″(W ) is approximately linear in W, with very small percentage depar-

tures from linearity at high and low values of W.

FIGURE 3. Value function in the unconstrained economy
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Result 2. The value function is more concave than the original utility function. The inverse, Γ, of the coef-

ficient of W in the regression of  against 1 and W is an estimate of the relative risk aversion in 

V (W ). Since the γ = 1.75 whereas Γ = 4.088998, we conclude that endogenous time discounting 

makes individuals behave as if they are considerably more risk averse than U(c) would indicate.

Portfolio allocation

The proportion of wealth ρ(W ) allocated to state 0 consumption claims is graphed in the left panel of

Figure 4. The allocation of wealth is irrelevant, and thus ρ(W ) is undetermined, when W = 0.19 The

function graphed in the left panel of Figure 4 is therefore discontinuous at W = 0.

While ρ(W ) is discontinuous at W = 0, the value of the portfolio in period t+1 in either state, κ0(W )

or κ1(W ), has the same limit as W → 0 from above or below. This is illustrated in the right panel of

Figure 4, which graphs the change in the value of the portfolio in aggregate states 0 and 1, κ0(W )−W

and κ1(W )−W. When ρ(W ) takes relatively large absolute values for W close to 0, W is small in abso-

lute value so κ0(W ) and κ1(W ) have the same limit as W is approached from above or below.

Result 3. Households hold less risky asset portfolios as financial wealth increases above zero (or decreases from 

zero to about -12). A portfolio where ρ(W ) = 0.5 is riskless since it consists entirely of bonds with a 

payout that is independent of the state. As ρ tends to either 0 or 1, portfolios consist entirely of assets 

that pay off in either of the aggregate income states 0 or 1.

FIGURE 4. Portfolio allocation in the unconstrained economy

19.For this reason, we omitted W = 0 from the grid of W values we used to approximate the solution.
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If V (W )had been given by (62), it would have had the same concavity as U(c). In that case, the first

order conditions for household maximization (35)–(38) would have implied that proportional varia-

tions in total wealth, y /r +W, across states would have matched the proportional variations in con-

sumption across states. The proportional variations in financial wealth alone, however, will exceed the

proportional variations in y /r +W. Therefore, as W increases, the proportional variations in W would

have to decrease to keep the proportional variations in y /r +W and consumption the same. Hence,

consumers would choose less risky portfolios of financial assets as W increases.

We noted that the indirect utility function V (W ) is in fact approximately constant relative risk averse

in B+W, but more concave than the utility of consumption function. Since V (W ) is more concave

than U(c), the first order conditions (35)–(38) imply that the proportional variations across states in

end-of-period B +W will be smaller than the proportional variations in consumption. Nevertheless, for

B sufficiently large, proportional variations in financial wealth will have to exceed proportional varia-

tions in consumption. The extent of this additional variability in W will decline as W becomes a larger

proportion of B+W. Hence, we still obtain the result that portfolios become less risky as W increases.

Result 4. Asset income reinforces the asymmetry in labor income across aggregate states for almost all house-

holds. The right hand panel of Figure 4 illustrates the difference in asset income across states. It shows 

that when W < 0 and ρ(W ) > 0.5, the household is paying out more in the low aggregate income state 

0 than in the high aggregate income state 1. On the other hand, when W > 0, since ρ(W ) < 0.5 the 

household is receiving more asset income in state 1 than in state 0. Asset income (or payments) there-

fore offset the asymmetry in labor income only for households deeply in debt.

The disparity in asset income across states depends not only on the composition of the portfolio but

also on the total amount invested in financial assets. Specifically, expressions (28) for κ0(W ) and

κ1(W ) imply that a given departure of ρ(W ) from 0.5 produces a larger disparity of asset income

across states the higher the value of W. Thus, even though portfolios become less risky as W increases

above zero, the disparity in asset income across states 0 and 1 increases.

In equilibrium, we must have  so that, in the aggregate, households must hold more

state 1 claims than state 0 claims. The results in Figure 4 show that almost all households, however,

have κ0 < κ1. As we shall see below, the disparities across aggregate states in both consumption and

end of period financial wealth increase as W increases. In order to achieve this end, the disparity across

aggregate states in current period asset income has to reinforce the disparity in labor income.

Consumption

The final maximizing consumption choices are illustrated in Figure 5. The consumption functions in

the different states are very similar, so we have only graphed c00(W ) along with various differences in

κ0 x0 x1< κ1= =
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consumption across states as a function of financial wealth W.

Result 5. Consumption, and the marginal propensity to consume out of W, increase with W in all states. As 

wealth increases, consumers have a higher rate of time discount and therefore increase their current 

consumption more than proportionately with the increase in wealth.

Result 6. The difference in consumption across idiosyncratic states is much less than the difference in income 

across the same states. The second graph in Figure 5 plots the difference in consumption across the two 

idiosyncratic states as a function of W, and when the aggregate state is zero.20 The difference in 

income across these states is z1−z0 = 0.125. Since the consumption difference is much less than the 

FIGURE 5. Consumption in the unconstrained economy
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income difference, households manage to “insure” against the idiosyncratic income shocks even 

though they cannot trade claims contingent on the occurrence of these states. They effectively “self-

insure” by liquidating wealth in the low income state and saving in the high income state.

Result 7. Households also “insure” against aggregate income shocks, but to a lesser extent than they insure 

against idiosyncratic income shocks. The final two graphs in Figure 5 plot the differences of consump-

tion across aggregate states as a function of W. The first graph applies to the case where the idiosyn-

cratic shock is 0 (low income) in both cases, while the second graph is for the case where the 

idiosyncratic shock is 1 (high income) in both cases. The difference in income between the two aggre-

gate states is approximately y1−y0 = 0.333851. Since consumption differences across aggregate states 

fall short of the income differences, households also insure against aggregate income fluctuations.

While the difference in income across aggregate states is about 2.67 times the difference in income

across idiosyncratic states, however, the consumption difference across aggregate states is at least 3

times the consumption difference across idiosyncratic states. Someone has to bear aggregate income

risk. The attempt of households to redistribute income from state 1 to state 0 will be frustrated in

equilibrium by a rise in p0 relative to p1.

In contrast, when households suffer a negative idiosyncratic shock and dissave, other households are

enjoying a positive idiosyncratic shock and save some of the additional income. The desire to transfer

income across idiosyncratic income states is not frustrated by movements in asset prices. Nevertheless,

if assets contingent on the occurrence of idiosyncratic income shocks could be traded the outcome

would be different. Idiosyncratic income shocks would then be completely diversifiable. Households

could obtain full insurance without paying an interest premium and idiosyncratic income shocks

would not affect consumption.

Result 8. As wealth increases, households undertake less self-insurance in the sense that the disparity in con-

sumption across idiosyncratic states increases as financial wealth increases. This is illustrated in the second 

graph in Figure 5. The budget constraints in (30) and (31) imply (W01+c01)−(W00+c00) = z1−z0 = 

0.125. The change in W01−W00 as W increases therefore has to be equal in magnitude and opposite in 

sign to the change in c01−c00 as W increases:

20.The graph of the difference in consumption across the two idiosyncratic states when the aggregate state is one is very 
similar to the second graph in Figure 5 and has been omitted. Also note that the difference between the lines in the 
final two graphs in Figure 5 can be written as c11(W )-c10(W )-[c01(W )-c00(W )].
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. (74)

In the absence of the inequality constraints in (30)–(33), the first order conditions (35)–(38) imply

that U ′(c) = V ′(W ). Then since U(c) is constant relative risk averse, and V (W ) is close to constant

relative risk averse in B +W, the proportional variation in B +W across states should approximate γ /Γ
times the proportional variation in c, that is,

(75)

Since the ratio in square brackets on the right side of (75) declines as W increases, we can conclude,

using (74), that W01−W00 declines, and c01−c00 increases, as W increases.

Result 9. The disparity in consumption across aggregate states also increases as W increases, and at a rate 

that exceeds the increase in disparity in consumption across idiosyncratic states. The final two graphs in 

Figure 5 show that c10−c00 and c11−c01 increase with W. Further, the rate of increase in these differ-

ences is higher than the rate of increase in c01−c00. The first order conditions for household maximiza-

tion again imply that the proportional variation in B +W across states should approximate γ /Γ times 

the proportional variation in c. The budget constraints now imply, however, that the difference across 

aggregate states in the sum of consumption and end of period wealth will equal y1−y0+κ1(W )−κ0(W ), 

which increases with W. Hence, (W10−W00)+(c10−c00) and (W11−W01)+(c11−c01) must now both 

increase with W, so c10−c00 and c11−c01 increase faster than c01−c00 and c11−c10. Also, the first graph in 

Figure 6 shows that, while the disparities across idiosyncratic states in end of period wealth, W01−W00 

and W11−W10, decrease with increases in W, the disparities across aggregate states, W10−W00 and 

W11−W01, increase with W.
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The wealth distribution

The maximizing choices for ρ(W ) and cij(W ) lead, upon substitution into (30)–(33), to a set of four

difference equations for the evolution of household wealth. The graphs of Wij(W ) against W are virtu-

ally indistinguishable from a 45˚ line since Wij(W )−W is very small relative to W at most wealth levels.

The left panel of Figure 6 therefore plots Wij(W )−W against W. The end of period wealth increases

from the low income states (i=0, j=0 and i=0, j=1) to the high income states (i=1, j=0 and i=1, j=1).

It is clear from the graph in the left panel of Figure 6 that the mappings W → Wij(W ) each have single

fixed point Wij*. If asset prices were to remain constant, and were expected to remain constant, then house-

hold wealth would evolve according to these difference equations. Regardless of the initial cross-sec-

tional distribution, the final cross-sectional distribution of wealth would eventually end up in the

interval [W00*, W11*]. The right panel in Figure 6 graphs the stationary cross-sectional wealth distri-

bution corresponding to the stochastic difference equation represented in the left panel of Figure 6.

Asset prices

The cross-sectional wealth distribution in the right panel of Figure 6 was used with the solution for

the maximizing ρ(W ) to determine the per capita demand for asset income in states 0 and 1,

. The asset prices p0 and p1 were chosen to ensure this demand matched the state-contin-

gent per capita supply of asset income from firms.

Result 10. The risk-free interest rate is well below the rate of time preference for any of the households hold-

ing wealth in the interval [W00*, W11*]. Approximate solutions for the asset prices were p0 = 0.399793 

and p1 = 0.586180. From (21), the implied risk-free interest rate r ≅  0.014227 as opposed to 

FIGURE 6. Stochastic difference equation for wealth in the unconstrained economy
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0.107739 in the risk neutral model. When households become risk averse they have a dramatically 

increased incentive to save as a form of “self-insurance.” This increased saving leads to a lower equilib-

rium real interest rate and a higher equilibrium per capita capital stock. The equilibrium per capita 

capital stock is found, from (18), to be approximately 10.047595 compared with 2.213988 in the risk 

neutral model.

The implied risk premium that firms need to pay households is defined by (23). For current parame-

ter values, the equilibrium risk premium works out to approximately 0.0000607. This is very small

relative to the risk free rate. An endogenous rate of time preference appears incapable of producing a

high risk premium. We noted above, however, that Γ> γ, so that households behave in a more risk

averse manner when they have an endogenous rate of time preference. We also noted that while B ≅
66.429631, the expected discounted value of labor income, Ey /r ≅ 93.863282. Therefore, households

also appear risk averse in that they effectively discount uncertain labor income at a rate that exceeds

the riskless rate of interest. Our risk premium therefore may be small because the risks we are pricing

are unrealistically small compared with the risks associated with actual equity investments.21

5.2  Short-selling Constraints

Using the same parameter values, we imposed the constraints 1 ≥ ρ ≥ 0 and Wij ≥ 0. The numerical

algorithm we used was similar to the unconstrained model, although we needed to allow for corners

when solving the first order conditions. Also, while the solution to the functional equation (34) for

V (W ) is continuous with a continuous first derivative, V ″(W ) can be discontinuous at wealth levels

where the various constraints switch from being binding to becoming non-binding.22 Specifically, we

modified the algorithm as follows:

1. We approximated log(−V (W )) in two regions of W space. The upper boundary of the first region

was the maximum wealth level where a constraint was binding. In this first region, the second deriva-

tive of the spline approximation to log(−V (W )) was allowed to be discontinuous at the constraint

boundaries. In the second region, the spline approximation had a smooth second derivative, as in the

unconstrained algorithm discussed above.23

2. We chose a finer grid of values for W close to zero. Even so, some discontinuity points in V ″(W ) in

21.As we noted above, the results obtained by Aiyagari (1994) suggest that serial correlation in the idiosyncratic income 
shocks could also raise the risk premium.

22.The first derivative of V (W ), and the optimal solutions for ρ(W ) and cij(W ), can have “kinks” at the boundaries of 
the regions where the constraints are binding.

23. Continuity of V (W ) and V ′(W ) at the interior boundary of the two regions was ensured by including a cubic “link” 
polynomial to evaluate V (W ) and V ′(W ) for W values above the upper limit of the first region and the next highest W 
value, which was the lower limit of the second region.
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the first region were close together, resulting in few points being available to determine some spline

segments. Hence, the spline approximation in this region used polynomials of degree 4. The second

region used polynomials of degree 6 as in the unconstrained model.

3. We also based the spline approximations in both regions on polynomials in log(30+W). In the

unconstrained case, we used polynomials in log(B+W) and determined B iteratively.

4. The first order conditions (35)–(38) and (40) were first solved assuming (various subsets of ) the

constraints were binding. The values for the Lagrange multipliers were then calculated from (35)–(38)

and (40). For wealth levels where the multipliers were positive we have a solution to the first order

conditions. For the remaining wealth levels, the solution for the endogenous variables is interior and

the corresponding multipliers are zero. The relevant first order conditions are then solved for maxi-

mizing values of those endogenous variables.

The final household value function

Figure 7 graphs the difference between the spline approximations to V (W ) in the unconstrained and

constrained cases evaluated at the grid of W values used in the constrained case. 

Figure 8 graphs V (W ) and the approximations to V ′(W ), V ″(W ) and −V ′(W )/V ″(W ) in the con-

strained case.24 V ″(W ) has been graphed only around its discontinuity points. If this were not done,

the initial range of large negative values appears as a vertical line. We conclude:

Result 11. The short-selling constraints make households worse off at low wealth levels but high wealth 

FIGURE 7. Difference between unconstrained and constrained utility

24.In the region where the constraints bind, the maximum absolute difference between the final value for V (W ) and the 

spline approximation is 9.62×10-8, while the average absolute error over 262 values is 5.03×10-9.
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households are better off. The percentage differences are, however, very small.

Result 12. Short-selling constraints increase the degree of absolute risk aversion of the indirect utility of 

wealth function at low wealth levels where the constraints bind, but have very little effect on the concavity of 

V (W ) at higher wealth levels where they are non-binding.

Portfolio allocation

The first graph in Figure 9 plots the maximizing ρ(W ) in the economy with short-selling constraints.

This function is similar to the truncated version of ρ(W ) in the unconstrained economy (graphed in

the left panel of Figure 4). The third graph in Figure 9 plots the change in the value of the portfolio in

states 0 (low aggregate income) and 1 (high aggregate income). From these two graphs we conclude:

FIGURE 8. Value function in the constrained economy
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Result 13. Short-selling constraints affect portfolio allocations only when the constraints bind. In particular, 

households hold less risky portfolios as W increases.

Finally, Figure 9 also illustrates optimal portfolio allocations at very low wealth levels.

Result 14. When W is very low, the short-selling constraints prevent households from distributing more 

income to the low aggregate labor income state 0. The constraint ρ ≤ 1 is binding for W very close to 

zero. Since at these very low wealth levels, all wealth is invested in claims that pay off only in state 0, 

the final graph shows that Wt+1 = κ0(Wt) > Wt > κ1(Wt) = 0.

Result 15. At most wealth levels above those where the constraint ρ ≤ 1 is binding, portfolios are biased 

toward assets that pay off in the high aggregate labor income state 1. The higher return on the more risky 

assets that pay off only in state 1 makes them attractive to households once the constraints on con-

FIGURE 9. Portfolio allocation in the constrained economy
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sumption in the low labor income state are no longer binding.

Consumption

Figure 10 graphs maximizing consumption when households face short-selling constraints. We have

plotted c01(W ) rather than c00(W ) in the first graph in Figure 10 since c01(W ) is less affected by the

constraints. The second graph in Figure 10 plots the disparity in consumption across idiosyncratic

states as a function of household wealth. The third graph plots the disparity in consumption across

aggregate states as a function of household wealth. The final graph in Figure 10 focuses on the maxi-

mizing consumption functions in the initial range of wealth levels where the constraints are binding.

FIGURE 10. Consumption in the constrained economy
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Result 16. Short-selling constraints affect consumption only at wealth levels where the constraints bind. The 

first three graphs in Figure 10 resemble the graphs in Figure 5 for W > 0.

Result 17. The constraint ρ ≤ 1 ceases to bind at wealth levels considerably below those where the constraint 

W00 ≥ 0 ceases to bind. This is illustrated in the final graph in Figure 10. While the constraint ρ ≤ 1 

binds, consumptions in the high aggregate income state 1 equal current labor income and are inde-

pendent of W. Consumption in the low aggregate, low idiosyncratic state (0,0) is most constrained 

and benefits most from increasing financial wealth. Even after ρ(W ) falls below 1, consumption in the 

(0,0) state remains constrained by W00 ≥ 0. Asset as well as labor income is completely consumed in 

the (0,0) state while the constraint W00 ≥ 0 is binding.

The wealth distribution

Figure 11 shows that each of the mappings W → Wij(W ) has a single fixed point Wij*. At wealth levels

where the constraints no longer bind, the mappings are very similar to the mappings in the uncon-

strained economy, and the fixed points are virtually identical. It is then not surprising that we have:25

Result 18. The cross sectional wealth distribution is very similar in the two economies.

Asset prices

Approximate solutions for the asset prices were p0 = 0.3997933 and p1 = 0.586169. By comparison,

FIGURE 11. Stochastic difference equation for wealth in the constrained economy

25.Note that the number of bins, and the width of each bin, are different in Figure 11 and Figure 6.

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20
W

Wij−W

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 2 4 6 8 10 12 14 16 18 20
W

Ω(W)
34



Asset Demands in Incomplete Markets
the asset prices in the unconstrained case were p0 = 0.3997927 and p1 = 0.586180. Using equation

(21), the implied risk-free interest rate r ≅  0.0142375 compared with 0.0142271 in the unconstrained

case. The implied risk premium is approximately 0.00006075 compared with 0.00006068 in the

unconstrained case. These asset price differences should be interpreted with caution, however, since

they are near the margin of error inherent in our numerical approximation techniques.

6. Conclusion

We have examined the aggregate supply of assets by firms, the portfolios of heterogeneous households,

and asset prices in an intertemporal production economy with aggregate and individual uncertainty.

In order to obtain an equilibrium distribution of wealth across households, we made household rates

of time preference a function of wealth. We also examined the effects of uninsured idiosyncratic risk

and household borrowing constraints in the presence of production by firms and unrestricted trading

by financial intermediaries. We showed that firm financial policies are irrelevant even when uninsur-

able income shocks and short-selling (or borrowing) constraints make capital markets incomplete for

consumers. Modigliani-Miller leverage irrelevance holds because no single firm can alter the aggregate

set of securities supplied to households in each risk class.

We found that households demand less risky asset portfolios as their financial wealth increases. This

follows from the fact that indirect utility depends upon total wealth, which includes the capitalized

value of expected labor income. As financial wealth increases, it becomes a larger proportion of total

wealth, and thereby imparts more variability to household income. In order to achieve the desired

variability of consumption, households reduce the riskiness of their portfolios at higher wealth levels.

Endogenous rates of time preference in the presence of household risk aversion, and uninsured idio-

syncratic risk were shown to reduce the equilibrium real rate of interest. Households accumulate assets

that have such low rates of return because they want to “self-insurance” against income fluctuations.

We also showed that households are able to insure more effectively against idiosyncratic income

shocks because such shocks are diversifiable while the aggregate income shocks are not.

While the riskless real rate of interest was low relative to household rates of time preference, the risk

premium was also very low. It remains an open question whether the risk premium will remain low

for other parameter values, including different specifications for the dependence of the time discount

rate on past or future consumption or different distributions for the uninsured idiosyncratic risk.

We found that borrowing constraints affected the consumption and portfolio choices of low wealth

households who would otherwise short assets. However, the constraints had little impact on most

households, the distribution of wealth or equilibrium asset prices. We speculate that the flexibility

provided by endogenous asset supplies greatly reduces the impact of borrowing constraints in our

model.
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Our model needs to be extended to incorporate rational expectations about future asset price variabil-

ity in response to aggregate shocks. We conjecture that the means of the resulting stationary distribu-

tions for asset prices will not differ much from the constant values we have calculated in this paper.

We suspect that extending the model to include liquid assets either in the form of inside or outside

money might enable it to account for more of the evidence on household portfolio demands. Another

important extension will be to introduce taxes. Multi-period models provide the appropriate setting

in which to examine the intertemporal dimension of tax distortions including, for example, the effect

of levying capital gains taxes on realized rather than accrued income.

7. Appendix

Following Epstein and Zin (1989) or Epstein (1992) we now assume household utility is recursive26

(76)

where  is the “certainty equivalent” of the random variable  and F is called an “aggregator func-

tion,” since it aggregates current consumption with an index of the future to determine current utility.

We shall only consider the convenient functional forms

(77)

where 0 < β < 1 is the time discount factor, σ > 0 is the elasticity of substitution between current con-

sumption and future utility, and

(78)

where γ > 0 equals the degree of relative risk aversion with respect to timeless gambles. Substituting

(77) and (78) into (76), we can write current utility for our particular functional forms

(79)

Aversion toward consumption gambles increases as γ increases. In the special case where

 that is 

26.In our formulation, utility is defined prior to the resolution of uncertainty in period t. Epstein (1992) defines utility 
recursively when current consumption is known but next period’s state is still uncertain.
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household utility (76) will satisfy

. (80)

Risk neutrality with respect to consumption gambles within a period will apply as γ → 0. If both

γ → 0 and σ → ∞ consumer preferences will be both risk neutral and time additively separable. In the

numerical analysis we only examined solutions for γ > 1 and σ > 1.

Definition: For recursive household preferences as specified in (79) the household value function

V (W ) is the solution to the functional equation:

(81)

where

(82)

(83)

and the maximizations are carried out assuming p0 and p1 are constant. Given the numerical difficul-

ties we encountered with this specification of utility, we decided to examine only the interior solution.

Theorem 7: For the maximization problem (81), consumptions and end of period assets in each state 

and the household portfolio allocation ρ(W ) satisfy the first order conditions:

(84)

(85)

(86)

(87)

(88)

and the budget constraints
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1
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1
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----------

= =
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σ 1–( )
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σ 1–( )
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(89)

(90)

(91)

(92)

Proof: With no constraints, the first order conditions are analogous to (35)–(39) with ϕij = µi = 0.

Now observe that for a value function V that is concave, V ′ is monotonic decreasing and the condi-

tions (84)–(92) imply that cij and Wij will be monotonic increasing in W. Also, if we define the initial

asset holdings

(93)

(94)

for any given level of W, cij(W ) < ckl(W ) if and only if yi+zj+Ai(W ) < yk+zl+Ak(W ). We examined the

solution for parameter values which implied that y0+z0 < y1+z0 < y0+z1 < y1+z1.

As W declines, consumption levels will decline monotonically. From (88), the assumption that γ > 0

and the conclusion that c10(W ) < c11(W ) for all W, observe that if c00(W ) → 0, then c10(W ) → 0.

Further, if we are to ensure cij(W ) ≥ 0 for all values of W, and c00(W ) → 0 as W → Wm, we require

Wij(W ) ≥ Wm for all W ≥ Wm.

We examined the solution for the parameter values in Table 3. There are two major differences

between these parameter values and the ones examined earlier. In initial experimentation with differ-

ent parameter values, we discovered that household behavior is extremely sensitive to the size of the idio-

syncratic income shocks relative to the aggregate income shocks.27 In particular, the sensitivity of end-of-

period wealth levels to increases in W increased as idiosyncratic shocks were made relatively more

important. In turn, higher values of Wij′(W ) aided the numerical analysis by decreasing the range of

TABLE 3. Parameter values for the recursive utility model

Parameter β γ σ π θ z0 z1 ε0 ε1 α δ
Value 0.95 1.75 1.5 0.4 0.2 -0.75 0.1875 0.85 1.1 0.25 0.1

W00 c00+ y0 z0
ρW

ρp0 1 ρ–( )p1+
---------------------------------+ +=

W01 c01+ y0 z1
ρW

ρp0 1 ρ–( )p1+
---------------------------------+ +=

W10 c10+ y1 z0
1 ρ–( )W

ρp0 1 ρ–( )p1+
---------------------------------+ +=

W11 c11+ y1 z1
1 ρ–( )W

ρp0 1 ρ–( )p1+
---------------------------------+ +=

A0 W( ) ρW
ρp0 1 ρ–( )p1+
---------------------------------=

A1 W( ) 1 ρ–( )W
ρp0 1 ρ–( )p1+
---------------------------------=
38



Asset Demands in Incomplete Markets
wealth levels we needed to consider. Thus, we increased the size of the idiosyncratic income shocks,

and decreased the size of the aggregate income shocks by raising the capital depreciation rate δ.

For the parameter values in Table 3, and for asset all prices p0 and p1 that lead to approximate equality

in per capita asset supplies and demands, we found that W00(W )–W was monotonically decreasing,

and, for i,j ≠ 0, Wij(W )–W00(W ) was monotonically increasing, in W. Further, for all W such that

c00(W ) > 0, we found W00(W ) < Wij(W ) for i,j ≠ 0 and W00(W ) < W. We conclude that as W→Wm

we must also have W00(W )→Wm. Also, from our observations above, we must have c10(W )→0 and

W10(W )→Wm as W→Wm. We conclude that Wm and ρ(Wm) must satisfy the equations

(95)

(96)

that is,

(97)

(98)

Finally, observe that since γ and σ > 1, (84) and (86) imply V (W00) → 0 and V (W10) → 0 as

W→Wm. For the parameter values in Table 3, and the range of asset prices we encountered, we found

that Wm was approximately -2.5. We used sixth order spline functions in W, with derivatives up to the

fourth constrained to be continuous across the break points, to approximate  (W )) on a grid of W val-

ues from -2 to 250. The spline approximation was augmented by an initial quartic polynomial

defined on [Wm,-2] that is constrained to equal 0 at Wm and to equal the spline approximation, and

have identical first, second and third derivatives to the spline approximation, at W = –2.

The numerical algorithm we used to solve the model in this case can be summarized as follows.

1. Given p0 and p1, solve for k from (18), y0 and y1 from (25) and Wm and ρ(Wm ) from (97) and (98).

2. For a spline approximation to V1(W ) on [-2,250] solve for the quartic polynomial on [Wm,-2].

3. Solve (84)–(88) for cij(W ) and ρ(W ) at the fixed grid of values for W (which differ from the break-

points for the spline approximation). Wij are eliminated from (84)–(88) using (89)–(92).

27.This has the very interesting implication that the values taken by aggregate variables in this model economy are 
extremely sensitive to the properties of the idiosyncratic income shocks.

0 y0 z0

ρ Wm( )W
m

ρ Wm( )p0 1 ρ Wm( )–( )p1+
--------------------------------------------------------------+ +=

0 y1 z0

1 ρ Wm( )–( )Wm

ρ Wm( )p0 1 ρ Wm( )–( )p1+
--------------------------------------------------------------+ +=

ρ Wm( )
y0 y1–( )p1 y0 z0+( )–

y0 y1–( ) 1 p1 p0–+( ) 2 y0 z0+( )–
-----------------------------------------------------------------------=

Wm y0 z0

ρ Wm( ) y0 y1–( )
1 2ρ Wm( )–

----------------------------------+ +=
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4. Calculate Wij(W ) from (89)–(92) and the maximizing cij(W ) and ρ(W ).

5. Calculate V2(W ) by iterating (81) with fixed values of cij(W ), Wij(W ) and ρ(W ).

6. If ||V2(W )–V1(W )|| > 5x10-9, obtain a new spline approximation to V2(W ) and return to step 2.

7. Obtain the stationary wealth distribution for the 4 difference equations Wij(W ) from step 4. Use

this distribution and ρ(W ) from step 4 to calculate per capita demands for asset income, .

Per capita supplies are given by (9) and (10). Adjust p0 and p1 in proportion to the excess demands

(99)

and return to step 1, unless the adjustment in both prices is less than 10-7.

FIGURE 12. Value function with recursive utility and no short-selling constraints
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For the parameter values in Table 3, the approximate equilibrium values of asset prices were

p0 = 0.387702 and p1 = 0.564192 with Wm = -2.691275 and ρm = 0.480234. These asset prices yield a

riskless real rate of interest of 0.050536 and a risk premium of 0.000275. The asset prices had a much

larger effect on the maximizing cij(W ) and ρ(W ), and the approximation to V (W ), than was the case

with the model discussed in the text. This made it difficult to find equilibrium asset prices and was the

major reason we did not use this utility function for the main analysis in the paper.

The final approximation to the value function is graphed, along with its first and second derivatives

and the coefficient of absolute risk aversion, in Figure 12. Except for W near Wm,V is close to linear.

The non-linear segment occurs over a small range W ∈[ Wm, -1] making it difficult to approximate V.

FIGURE 13. Consumption in the recursive utility model
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Consumption in the low income state, c00(W ), is graphed in Figure 13 along with various differences

in consumption across states. The idiosyncratic income shocks now have less of an effect on consump-

tion as wealth increases. The income levels in the four states at the final asset prices were approxi-

mately y0+z0 = 0.004482, y0+z1 = 0.941982, y1+z0 = 0.226388 and y1+z1 = 1.163888. Thus, the

difference in idiosyncratic incomes is 0.9375. Households evidently manage to obtain substantial self-

insurance against these shocks, with the amount of insurance increasing with wealth.

Again, however, households are less effective at insuring against the aggregate income shocks. Since

the consumption differences across aggregate states increases monotonically with wealth, the extent of

self-insurance against these shocks declines as wealth increases. The graphs of consumption as a func-

tion of wealth also show how the idiosyncratic income shocks have a dramatic effect on household

behavior at wealth levels close to the minimum level Wm.

Figure 14 shows that households again hold less risky portfolios as their wealth increases. The differ-

ence in asset income across the two aggregate income states nevertheless increases with wealth.

Finally, Figure 15 graphs the difference equations for the evolution of household wealth in the four

states and the stationary cross-sectional wealth distribution implied by those difference equations.

While the difference equations for the two idiosyncratic states behave very similarly at low wealth lev-

els, the aggregate income shocks dominate behavior at higher wealth levels. Also, the two difference

equations for the high aggregate income state do not appear to have upper fixed points. This would

imply that there is no upper bound on household wealth. The tendency for wealth to decline in the

low aggregate income state is so pronounced, however, that the stochastic difference equation never-

theless appears to produce a stationary cross-sectional wealth distribution. The second graph in

FIGURE 14. Portfolio allocation and asset income with recursive utility

0.470

0.475

0.480

0.485

0.490

0.495

0.500

-10 20 50 80 110 140 170 200 230 260
W

ρ(W)

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

-10 20 50 80 110 140 170 200 230 260
W

κ0(W)−W

κ
1
(W)−W
42



Asset Demands in Incomplete Markets
Figure 15 nevertheless shows that this distribution is skewed toward higher wealth levels.
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