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The paper shows that integrating two players on the same side of two independent 

bilateral monopoly markets can increase their bargaining power. A leading examp

of such a situation is bargaining between cable operators and broadcasters regar

the carriage of broadcasters’ signals on cable systems in two separate markets. F

the modeling point of view, one innovation the paper introduces is to generate a c

lition’s preferences by aggregating the preferences of its members. (JEL C78, L41, 

L96, L98).

Keywords: Bargaining, Nash bargaining solution, bargaining power, cable telev

sion, MSO. 
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1 . INTRODUCTION

THIS PAPER IS ORIGINALLY MOTIVATED by a topical issue in the television industry. We ana

lyze the issue using a bargaining model that has elements not considered before. The theo

framework we develop here would be useful in addressing similar issues in other industries

well. 

The Cable Television Consumer Protection and Competition Act of 1992 (Cable Act of 

hereinafter) allowed a broadcaster to demand compensation from the cable operator that c

the broadcaster’s signal. Before this legislation, a cable operator could freely retransmit pro

which were initially broadcast over the air.2 

One interesting issue is whether there are gains from forming coalitions among cable s

operators across local markets. Some authors such as Waterman (1996) and Chipty (1994

argued, without proving it, that multiple cable system operators (or MSOs) have an advanta

over unintegrated cable system operators in negotiations with broadcasters. Policy makers

seem to be concerned about the “market power” of integrated cable systems. For instance

Cable Act of 1992 orders the Federal Communications Commission to establish a reasonab

on the number of subscribers an MSO can reach.3 Similar restrictions limit the across-local-mar-

ket integration of local distributors in other industries, such as movie theater chains. 

2. Broadcasters had been lobbying for this legislation for some time. To their disappointment, however, th
received little compensation from cable operators. Chae (1996) analyzes this problem using a bargain
model and provides an explanation for what happened. 

3. Congress of the United States (1992), Section 11(c).
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It is not clear, however, that MSOs have any advantage. Even though some bargaining m

generate gains from forming coalitions in certain environments,4 there is no bargaining theory we

are aware of that explains the advantage of integration across independent markets. In this paper, 

we consider two initially separate local markets and investigate the effect of integration bet

two players on the same side of the two markets, say the cable operators. 

The integrated cable operator or the MSO bargains with the broadcasters in the two m

simultaneously. We adapt the Nash bargaining solution to this “parallel” bargaining problem

effect, we generalize the Nash solution in two separate directions. First, we generalize it to

ation where one party is a coalition of two players. Second, we generalize it to a situation w

one party bargains with opponents on two fronts. 

Regarding the generalization of the Nash solution to a situation where one party is a co

tion, our approach differs from existing models. Existing models either assume that the coal

preferences are the same as those of an agent to whom the negotiation is delegated5 or assume that 

the coalition’s preferences are the same as those of a representative player (assuming that

ers in the coalition have the same preferences).6 By contrast, we assume that the coalition’s pre

erences are aggregated from its members’ preferences. 

The solution depends on the contract within the coalition of cable operators. We consid

types of the internal contract, one where they can costlessly write a binding contract and th

where no commitment on how to split future payoffs between the members of the coalition 

4. See, for example, Horn and Wolinsky (1988a, 1988b) and Jun (1989).
5. See the literature on strategic delegation referenced, for instance, in Segendorff (1998). 
6. See, for example, Jun (1989).
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sible. We show, for each type of contract, that the across-market integration is profitable un

certain conditions. 

There are two intuitive explanations for the results. First, when the integrated party nego

with each of the other parties, it takes the outcome of the bargaining with the other party as

This increases the integrated party’s fall-back position. To the extent that this makes the inte

party bolder in bargaining, it increases its share. This explanation can be called the fall-back posi-

tion effect. Second, splitting the risk of a breakdown between two members of a coalition ca

make both of them bolder. This increases the coalition’s share. This explanation can be cal

risk-sharing effect. 

If we define bargaining power as the relative advantage of a player due to certain charac

tics of the player or bargaining environments, we may say that forming a coalition increase

gaining power. If we define market power as one’s ability to affect market prices to one’s 

advantage, the results of this paper support the view that across-local-market integration inc

market power. In our model, this increase in the market power is due to an increase in barg

power. 

In  Section 2, we introduce the concept of risk concession, based on Zeuthen (1930)’s pio-

neering work. We then define the Nash solution in terms of marginal risk concessions.  Sec

then extends the framework to the case of an integrated player bargaining in two markets. 

section 3.2, we solve this parallel bargaining problem for the case where no-commitment is

ble in the within-coalition contract. Then we identify conditions under which the members o

coalition gain from integration. In Subsection 3.3, we solve the parallel bargaining problem

the case where the members of the coalition can write a binding within-coalition contract. U
3



  

 if cer-
the additional assumption that agents are risk averse, we show that integration is profitable

tain aggregation conditions are met. Section 4 provides the conclusion.
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2 . PRELIMINARIES ON THE BARGAINING SOLUTION

 In order to be able to generalize the Nash solution to a bargaining situation involving a

tion, we need to identify the defining characteristic of the solution which is generalizable. In

risk-preference framework, the Nash solution is equivalent to the solution proposed by Zeu

(1930). The latter is defined as follows: If there are two different positions currently maintai

by two negotiating parties, each party has a maximum probability such that the party is will

risk the probability of a breakdown by insisting on her current position rather than accepting

other party’s position. A party whose maximum such probability is not greater than the other

to make some concession. Thus, the negotiation stops at a single point where the two proba

are both equal to zero. Even though Nash introduced his solution by certain axioms requiri

some desirable properties of the solution in the utility space, it turns out that Zeuthen’s solu

yields the Nash solution in the utility space if the preferences of the negotiating parties are 

sented by expected utility functions.7 

In this paper, we will use Zeuthen’s idea to generalize the Nash solution to situations in

ing a coalition. In a pie-splitting problem, Zeuthen’s solution equalizes what we call the “mar

risk concessions” of two players. Thus we will need to define the marginal risk concession 

coalition in order to prescribe a solution for a situation where at least one of the negotiating

ties is a coalition of players. 

There is another direction in which we need to generalize the Zeuthen-Nash solution in

to be able to analyze a bargaining situation involving a coalition. In certain situations, a coa

7.  This was shown by Harsanyi (1956).
5
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may be able to write an internal contract to divide up the spoil from bargaining with another 

Since this external bargaining can result in an agreement or a breakdown, the internal contr

to specify how the spoil is divided for each contingency. Thus, during the internal bargainin

cess, the members of a coalition face the problem of bargaining over a contingent pie. We 

generalize the Zeuthen-Nash solution to this contingent-pie problem by requiring that the p

optimally share risks across different states of nature. 

The necessary generalizations will be done in the next section. In this section, we will b

(but carefully) look at a standard two-person bargaining problem to introduce our framewor

minology, and notation, which we will use in the next section. 

 2.1. Preferences over Lotteries

A lottery , where  is the set of nonnegative real numbers, is a discrete 

ability function: there exist  such that  and  if 

. The lottery space, denoted L(R+), is the set of all lotteries equipped with the fo

lowing operation: for any  and , the lottery 

:  is defined by 

 for any . 

As is well known, the lottery space is a convex linear space, that is, satisfies the follow

properties8:

L1. 

8. See Herstein and Milnor (1953).

l : R+ 0 1,[ ]→ R+

x1 … xn R+∈, , l x1( ) … l xn( )+ + 1= l x( ) 0=

x x1 … xn, ,{ }∉

l m, L R+( )∈ p 0 1,[ ]∈

p l• 1 p–( ) m•⊕ R+ 0 1,[ ]→

p l• 1 p–( ) m•⊕( ) x( ) p l x( )⋅ 1 p–( ) m x( )⋅+= x R+∈

1 l• 0 m•⊕ l=
6
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We will identify a number  with a sure lottery  such that .9 A 

player has a complete and transitive preference relation Ý on the lottery space that satisfies the 

following three axioms:

ASSUMPTION 1: (Smoothness) If m Þ l Þ n, where m B n, there exists a unique number 

 such that

(i) ,

(ii) Let  for . Then  is a smooth function of x such

that . 

ASSUMPTION 2: (Independence) If , then for any m and any , 

.

ASSUMPTION 3: (Monotonicity) If  (where ), then  B .

It is well known that an expected utility function exists under the assumptions of contin

and independence. Replacing continuity with smoothness yields a stronger set of axioms, a

an expected utility function exists under our assumptions. We introduce the smoothness as

9.  We will use the notation  only if it is necessary to make the conceptual distinction between x and .

p l• 1 p–( ) m•⊕ 1 p–( ) m• p l•⊕=

q p l• 1 p–( ) m•⊕( )• 1 q–( ) m•⊕ qp( ) l• 1 qp–( ) m•⊕=

x R+∈ x̃ L R+( )∈ x̃ x( ) 1=

x̃ x̃

h l m n, ,( ) 0 1,[ ]∈

l h l m n, ,( ) m 1 h l m n, ,( )–{ }⊕• n•∼

ĥ x m n, ,( ) h x̃ m n, ,( )= x R+∈ ĥ x m n, ,( )

∂ĥ
∂x
------ x m n, ,( ) 0>

l l ′∼ p 0 1,[ ]∈

p l• 1 p–( ) m•⊕ p l ′• 1 p–( ) m•⊕∼

x y> x y R+∈, x̃ ỹ
7
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tion because we need it to define the concept of marginal risk concession.10 A la Herstein and Mil-

nor (1953), we can represent a player’s preferences by a utility function.

 PROPOSITION 2.1:  There exists a unique function V:  that satisfies 

, and 

(i) l B m if and only if V(l) > V(m),

(ii) ,

(iii) Put  for . Then  is a smooth function of x such that 

for x > 0.

The proof of the proposition is similar to Herstein and Milnor’s (1953) and thus will be omitt

here. One may call the function V the von Neumann-Morgenstern utility function over lotteries

and the function v the von Neumann-Morgenstern utility function over prizes. The following 

proposition is obvious:

 PROPOSITION 2.2:  If   lÝ 1 then , and if l B 1 then 

.

In order to understand the concept of risk concession, which will be introduced in the n

subsection, it is necessary to study the certainty equivalent of a lottery. 

10.A smooth function is one that is differentiable as many times as one wants. For the results of this pape

is sufficient that the function  is three times differentiable with respect to .ĥ x m n, ,( ) x

L R+( ) R→

V 0( ) 0 V 1( ), 1= =

V p l• 1 p–( ) m•⊕( ) pV l( ) 1 p–( )V m( )+=

v x( ) V x̃( )= x R+∈ v x( ) v′ x( ) 0>

V l( ) h l 1 0, ,( )=

V l( ) 1 h 1 l 0, ,( )⁄=
8



 

 

.

 DEFINITION 2.1:  The certainty equivalent of a lottery  is a sure payoff

 that satisfies .

 PROPOSITION 2.3:  Let y B z. Then  is a smooth function of p such that 

.

PROOF:  is a smooth function of p such that  because it is the

inverse function of , which is a smooth function of x such that .

 Q.E.D.

 PROPOSITION 2.4:  Let y > z. If , one has 

.

PROOF: By  Assumption 1, there exists some p such that

 . 

We have only to show that . But this follows from 

Q.E.D.

p y• 1 p–( ) z•⊕

s p y z, ,( ) R+∈ s p y z, ,( ) p y• 1 p–( ) z•⊕∼

s p y z, ,( )

p∂
∂s

p y z, ,( ) 0>

x s p y z, ,( )=
p∂

∂s
p y z, ,( ) 0>

p ĥ x y z, ,( )=
∂ĥ
∂x
------ x y z, ,( ) 0>

y x z≥ ≥

x s
v x( ) v z( )–
v y( ) v z( )–
-------------------------- y z, , 

 =

x p y• 1 p–( ) z•⊕∼

p
v x( ) v z( )–
v y( ) v z( )–
--------------------------= v x( ) pv y( ) 1 p–( )v z( )+=
9
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 PROPOSITION 2.5:  Let y > z. Then .

PROOF: Differentiating the expression in Proposition 2.4 with respect to x, one obtains

.

Setting  yields 

,

from which the desired equality follows. Q.E.D.

 2.2. Two-Person Bargaining Problem

 DEFINITION 2.2:  A bargaining problem , where  and 

, is a situation where two players  split a pie of size  if they can agree on t

shares, and receive the breakdown payoffs  otherwise.

In order to introduce the solution to the bargaining problem, we first need to focus on s

properties of preferences. For simplicity, we will drop the subscripts for players until we nee

them. 

During the process of bargaining, a player typically faces a gamble 

, where x + d ( ) is her payoff in the event of an agreement, d ( ) 

is her payoff in the event of a breakdown, and  the breakdown probability.11 We will denote 

such a gamble simply by . 

∂s
∂p
------ 1 y z, ,( ) v y( ) v z( )–

v′ y( )
--------------------------=

1
∂s
∂p
------ v x( ) v z( )–

v y( ) v z( )–
-------------------------- y z, , 

  v′ x( )
v y( ) v z( )–
--------------------------⋅=

x y=

1
∂s
∂p
------ 1 y z, ,( ) v′ y( )

v y( ) v z( )–
--------------------------⋅=

i( j ), π di d j,( ), ,〈 〉 di d j, 0≥

π di d j+> i( j ), π

di d j,( )

p x d+( )• 1 p–( ) d•⊕ d≥ 0≥

1 p–

p x d+ d ), ,(
10
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 DEFINITION 2.3:  The risk concession of a player facing a gamble  is the 

amount the player is willing to pay to avoid the chance of a breakdown. It will be denoted a

defined as . 

 DEFINITION 2.4:  The marginal risk concession of a player facing a pair of payoffs 

 is the rate of change in risk concession as the breakdown probability approaches

.

It will be denoted .

 PROPOSITION 2.6: One has . 

PROOF: By Definitions 2.3 and 2.4, 

. 

Using L’Hopital’s rule, we get 

. 

By Proposition 2.5, . Q.E.D.

11.Throughout this paper, we will use the term “gamble” for a lottery which is a probability mix of an agree
ment payoff and a breakdown payoff. 

p x d+ d ), ,(

c p x d+ d, ,( ) x d s p x d+ d,,( )–+=

x d d,+( )

c p x d+ d ), ,(
1 p)–(

---------------------------------
p 1→
lim

µ x d d,+( )

µ x( d d,+ ) v x d+( ) v d( )–
v′ x d+( )

-------------------------------------=

µ x( d d,+ ) x d s p x d+ d, ,( )–+
1 p)–(

---------------------------------------------------
p 1→
lim=

µ x d+( d, ) ∂s
∂p
------ 1 x d+ d, ,( )=

∂s
∂p
------ 1 x d+ d, ,( ) v x d+( ) v d( )–

v′ x d+( )
-------------------------------------=
11
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Note that  is a smooth function of x and d. In addition to Assumptions 1-3, we 

make the following assumption throughout this paper:

ASSUMPTION 4:  is increasing in x for all x > 0.

 Assumption 4 holds for a very general class of preferences. The class includes all preferen

exhibiting risk aversion or risk neutrality. It also includes preferences that can be represent

utility functions with constant relative risk aversion.

 PROPOSITION 2.7:  The marginal risk concession  is increasing in x > 0 if and 

only if  decreases in x > 0. 

PROOF: For x > 0, one has 

, 

from which follows the desired result. Q.E.D.

That  Assumption 4 holds for all risk averse or risk neutral preferences, that is, those w

, can be easily seen from Proposition 2.7, for 

.

That  Assumption 4 is also satisfied by all utility functions v with constant relative risk aversion is

shown in  Appendix A. In particular, the concavity of the function  is not a necessary co

tion for  Assumption 4.

µ x d+( d, )

µ x d d,+( )

µ x d d,+( )

xd
d

v x d+( ) v d( )–( )log

xd
d

v x d+( ) v d( )–( )log v′ x d+( )
v x d+( ) v d( )–
------------------------------------- 1

µ x d d,+( )
---------------------------= =

v″( ) 0≤

x
2

2

d

d
v x d+( ) v d( )–( )log v′ ′ x d+( ) v x d+( ) v d( )–[ ] v′ x d+( )[ ] 2

–

v x d+( ) v d( )–[ ] 2
-----------------------------------------------------------------------------------------------------=

v x( )
12
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We will now define the Nash bargaining solution in terms of players’ marginal risk conc

sions and state two properties of the Nash solution that will be used in  Section 3.

 DEFINITION 2.5:  The Nash solution of a bargaining problem  is a vec

tor  such that  and 

.

The Nash solution will be denoted 

.

 PROPOSITION 2.8:  There exists a unique Nash solution to the bargaining problem 

.

PROOF: The Nash solution satisfies the following equation

.

If one sets , the left hand side of the above equation is zero while the right hand side

positive. If one sets , the left hand side of the above equation is positive and

right hand side is equal to zero. Since, by Proposition 2.6 and Assumption 4, the left hand 

continuously increasing in  while the right hand side is continuously decreasing in , the

exists a unique solution. Q.E.D.

i( j ), π di d j,( ), ,〈 〉

xi di xj d j )+,+( xi di xj d j π=+ + +

µi xi di di, ) µ j x j d j d j, )+(=+(

N i( j ), π di d j,( ), ,〈 〉 Ni i( j ), π di d j,( ), ,〈 〉 N j i( j ), π di d j,( ), ,〈 〉( , )=

i( j ), π di d j,( ), ,〈 〉

µi xi di di, ) µ j π xi– di– dj,( )=+(

xi 0=

xi π di– dj–=

xi xi
13
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 PROPOSITION 2.9:   is an increasing and smooth function of  fo

.

PROOF: Follows from the proof of Proposition 2.8. Q.E.D.

In the time-preference framework, Chae (1993) defines the Nash solution as a payoff v

equalizing “marginal impatience” among all players and establishes propositions analogous

above two propositions. The mathematical structure of the proofs of the above two proposit

essentially the same as that of the corresponding propositions in Chae (1993). 

 2.3. Bargaining over a Contingent Pie

In Subsection 3.3, we need to deal with a bargaining situation where players bargain o

contingent pie whose size depends on the realized state of nature. Thus in this subsection,

extend the analysis of the previous subsection to cover such a situation. For the analyses o

Subsection 3.3, we will assume that players are risk averse, that is, they prefer the expecte

of a gamble to the gamble itself. Thus we will make the same assumption in this subsectio

Suppose that there are two states of nature,  and , which occur with probabilities 

, respectively. Two players have to agree on how to split the pie  in each state 

in order to avoid the chance of a breakdown. The contingent pie  is equivalent 

lottery , where we assume that there exists some division of 

that both players prefer to their break-down payoffs. We define the bargaining problem ove

contingent pie as follows:

Ni i( j ), π di d j,( ), ,〈 〉 π

i 1 2,=

σ τ q

1 q– πs
s σ τ,{ }∈

π πσ πτ,( )=

q πσ• 1 q–( ) πτ•⊕ π π σ πτ,( )=
14
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 DEFINITION 2.6:  A contingent-pie bargaining problem , where  

 and there exist some contingent payoffs  such that Bi , Bj , and 

, is a situation where two players have to agree on how to split a contingent pie 

order to avoid a breakdown.

 Note that the breakdown position of each player is a non-contingent payoff. Without m

loss of generality, we assume that players bargain over Pareto efficient splits of the continge

That is, we require that in each state of nature the entire pie is split between the two player

that players share risks optimally across different states of nature. When players are risk a

this entails that the marginal rates of substitution between different states of nature, as form

defined below, are equalized across players. 

For any  such that , define  for sufficiently small  by the follow

ing indifference relation:

.

 DEFINITION 2.7:  The marginal rate of substitution for a fair gamble between x and y is 

denoted and defined by .

 PROPOSITION 2.10:  .

PROOF: From Definition 2.7 and the equality

i( j ), π di d j,( ), ,〈 〉

di d j R+∈, yi yj, yi di yj d j

yi yj+ π= π

x y R+∈, x y 0> > ξq δ( ) δ

q x• 1 q–( ) y•⊕ q x δ–( )• 1 q–( ) y ξq δ( )+( )•⊕∼

m x y,( ) ξ′ 1
2
---

0( )=

m x y,( ) v′ x( )
v′ y( )
------------=
15
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follows the result. Q.E.D.

Under the assumption of risk aversion, one can denote and characterize the set of Par

cient splits of the contingent pie  as 

using player i ‘s contingent payoff to denote the split of the contingent pie. The set is a one-

dimensional manifold, that is, a smooth curve. Since the bargaining will break down if eithe

player is not given a contingent payoff that will make her at least as well off as at the break

point, the relevant part of PE is the core 

C = { ;  Þi  and  Þ j }.

In the Edgeworth Box of Figure 1, PE is the solid curve from the south-west corner to the nort

east corner, and C is the thick part. 

ξ′ q 0( ) q
1 q–( )

---------------- v′ x( )
v′ y( )
------------⋅=

π πσ πτ,( )=

PE yi
σ

yi
τ,( );  q

1 q–
------------m

i
yi

σ
yi

τ,( ) q
1 q–
------------m

j
πσ

y– i
σ

πτ
y– i

τ
,( )=

 
 
 

=

yi
σ

yi
τ,( );  mi yi

σ
yi

τ,( ) mj πσ
y– i

σ
πτ

y– i
τ

,( )=
 
 
 

=

yi PE∈ yi di π yi– dj
16
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 PROPOSITION 2.11: Suppose . If  then .

PROOF: Assume otherwise, that is  and . Then risk aversion implies

  and , 

which is impossible because both  and  are Pareto efficient. Q.E.D.

During the process of bargaining over a contingent pie , a player typically f

a gamble , where  is her contingent payoff in the 

event of an agreement, di ( ) is her payoff in the event of a breakdown, and  the break

down probability. For simplicity, we will denote such a gamble by . Note here that

contingent payoff  is equivalent to the lottery . 

FIGURE 1

πτ

yi
σ

yi
τ

πσ
di

di

d j

d j

yi yi
ˆ, C∈ yi

σ
ŷi

σ> yi
τ

ŷi
τ>

yi
σ

ŷi
σ> yi

τ
ŷi

τ≤

vi ′ yi
σ( )

vi ′ yi
τ( )

----------------
vi ′ ŷi

σ( )

vi ′ ŷi
τ( )

----------------<
vj ′ πσ

y– i
σ

( )

vj ′ πτ
y– i

τ
( )

-----------------------------
vj ′ πσ

ŷi
σ

–( )

vj ′ πτ
ŷi

τ
–( )

----------------------------->

yi yi
ˆ

π πσ πτ,( )=

p yi• 1 p–( ) di•⊕ yi xi
σ

di+ xi
τ

di+,( )=

0≥ 1 p–

p yi di ), ,(

yi q xi
σ

di+( )• 1 q–( ) xi
τ

di+( )•⊕
17
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As was the case in the bargaining problem over a non-contingent pie, the extent to wh

player is willing to concede in order to avoid the chance of a breakdown plays an important r

finding the solution for a bargaining problem over a contingent pie. In order to formalize thi

notion, we have to first introduce the analogue of certainty equivalent. 

 DEFINITION 2.8:  For any gamble  where , the 

breakdown-free contingent payoff is defined as a contingent lottery 

 that satisfies

,

i.e.,

 DEFINITION 2.9:  The risk concession of a player facing a gamble , where 

, is the amount, along the core, of contingent payoff the player is willing to pay to avoi

chance of a breakdown. It will be denoted and defined as 

. 

p yi di ), ,( yi xi
σ

di+ xi
τ

di+,( )= C∈

si p yi di ), ,( si
σ

p yi di ) si
τ

p yi di ), ,(,, ,(( )= C∈

si p yi di ), ,( p yi• 1 p–( ) di•⊕∼

q si
σ

p yi di ), ,(• 1 q–( ) si
τ

p yi di ), ,(•⊕
p q xi

σ
di+( )• 1 q–( ) xi

τ
di+( )•⊕{ }• 1 p–( ) di• .⊕

∼

p yi di ), ,(

yi C∈

ci p yi di ), ,( yi si p yi di ), ,(–=
18



r 

bility 

ersion, 
 DEFINITION 2.10:  The marginal risk concession along the core, of a player facing a pai

, where , is the rate of change of the risk concession as the breakdown proba

approaches zero:

.

It will be denoted . 

The marginal risk concession is well defined because, under the assumption of risk av

C is a smooth curve. In  Appendix B, we derive the following:

 PROPOSITION 2.12: One has

,

,

 where  is the slope (and  its inverse) of the C curve at .

yi di,( ) yi C∈

ci p yi di ), ,(
1 p)–(

----------------------------
p 1→
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------------------------------
p 1→
lim
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τ
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p 1→
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=
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σ( ) q 1 q–( )
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τ( )

vi ′ yi
σ( )
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dyi

τ

dyi
σ---------⋅+

 
 
 

---------------------------------------------------------------------------------=

µi
τ
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Now we can introduce the Nash solution for a contingent-pie bargaining problem.

 DEFINITION 2.11:  The Nash solution to a contingent-pie bargaining problem 

 is a vector , where , that satisfies the following equation

.

To prove existence and uniqueness of the Nash solution for a contingent-pie bargaining

lem, the following definition is useful:

 DEFINITION 2.12: The marginal risk concession in terms of sure payoff in state  of a 

player facing a pair  is defined and denoted as

.

 measures the rate of change of the amount, measured in terms of sure payo

state , player i is willing to give up in order to avoid the chance of a breakdown as the brea

down probability approaches zero. In  Appendix C, we show the following: 

 PROPOSITION 2.13:  if and only if 

.

i( j ), π di d j,( ), ,〈 〉 yi π yi–,( ) yi C∈

µi yi di, )( µ j π yi– dj, )(=

σ

yi di,( )

µ̂i
σ

yi di, )(
qvi yi

σ( ) 1 q–( )vi yi
τ( ) v–+ i di( )

vi ′ yi
σ( )

----------------------------------------------------------------------------=

µ̂i
σ

yi di, )(

σ

µi yi di, )( µ j π yi– dj, )(=

µ̂i
σ

yi di, )( µ̂ j
σ π yi– dj, )(=
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 Appendix D derives the following proposition:

 PROPOSITION 2.14:  is increasing in  along the C curve.

 PROPOSITION 2.15:  If both players are risk averse, there exists a unique Nash soluti

for the contingent-pie bargaining problem .

The proof, shown in  Appendix E, is similar to that of Proposition 2.8.

In the non-contingent pie case, the Nash solution is often motivated as the limit of the R

stein solution for a strategic bargaining model.12 Since we introduced the contingent-pie bargai

ing problem in this subsection, it is perhaps our duty to provide a similar motivation for the 

solution for this case. In  Appendix F, we will introduce the Rubinstein solution for our conti

gent-pie bargaining problem and show that the Rubinstein solution equalizes the risk conce

of the two players. Since the Nash solution equalizes the marginal risk concessions of the two 

players, one can see easily that the Nash solution is the limit of the Rubinstein solution as 

breakdown probability goes to zero. 

12. Rubinstein’s alternating-offer model in the time-preference framework can be converted to a similar 
model where after every offer there is an exogenous probability that the game ends. This setup replac
the time cost of rejecting an offer by the risk that the game may terminate. See Binmore, Rubinstein, a
Wolinsky (1986). 

µ̂i
σ

yi di, )( yi

i( j ), π di d j,( ), ,〈 〉
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In  Appendix G, we relate the above definition of the Nash solution for a contingent-pie

gaining problem to the standard definition representing players’ preferences by von Neuma

Morgenstern utility functions as in Nash (1950). 
22
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3 . PARALLEL BARGAINING

In this section, we will investigate the consequences of integrating one type of players a

different markets. Consider two separate bilateral monopoly markets A and B. As a leading exam-

ple, we will consider markets where broadcasters and cable operators negotiate over the te

carrying broadcast channels on cable systems. In market A, cable TV operator a and broadcaster 

 bargain over the split of , their net gain from carrying the broadcast channel on the ca

system. In market B, cable TV operator b and broadcaster  bargain over the split of their surp

. In the event of a breakdown of bargaining, the profit position of player i (= a, , b, ) is . 

Formally, we have two parallel bargaining problems  and 

. 

In the benchmark case where players in markets A and B are independent firms, we posit tha

the solutions to the bargaining problems in markets A and B are the Nash solutions 

 and , where we have, without loss of generality, n

malized the initial fall back positions to be zero. 

In what follows, we will investigate how the integration of cable operators across the tw

markets affects their and the broadcasters’ payoffs. The integration pits the coalition of cab

operators against the broadcasters of markets A and B as illustrated in Table I. 

â πA

b̂

πB
â b̂ di

a â,( ) πA
da dâ,( ), ,〈 〉

b( b̂), πB
db d

b̂
,( ), ,〈 〉

N a( â) πA
0 0,( ), , ,〈 〉 N b( b̂) πB

0 0,( ), , ,〈 〉
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In order to analyze bargaining between a coalition and its opponents on two fronts, we

to modify the above solution in two different directions. First, we need to specify how the ba

ing in one market affects the bargaining in another market. In this regard, we imagine a situ

where the two bargaining problems are settled simultaneously rather than sequentially and 

that when players bargain in one market, they take the outcome of bargaining in the other m

as given. Second, we need to extend the definition of the Nash solution to a bargaining pro

between a coalition and a player. Since the Nash solution is one where the marginal risk co

sions of two players are equalized, we will have to define the marginal risk concession of a

tion. This will be defined essentially as the sum of the marginal risk concessions of the two

members of the coalition. This makes sense because the risk concession of the coalition m

how much the coalition is willing to give up to avoid the chance of a breakdown, and the am

the coalition is willing to concede will be quite naturally the sum of the amounts the membe

the coalition are willing to concede. We emphasize here that our notion of risk concession is

ural extension of Zeuthen’s idea. 

TABLE I

before inte-
gration

after inte-
gration

market A

market B

a â↔ a b,{ } â↔

b b̂↔ a b,{ } b̂↔
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 3.1. Simultaneous Nash Solution

We will denote the coalition of cable operators {a, b} simply by c. If the bargaining between

the coalition and an opponent breaks down, the coalition receives a payoff . If the bargai

ends in an agreement, the coalition receives a payoff .

In general, the marginal risk concession of a coalition will be defined as the sum of the

ginal risk concessions of the two members of the coalition. In order to measure the margin

concession of each member of the coalition, however, one needs to know how both 

 are split between a and b. 

Regarding the mechanism to divide a given pie between the two members of the coalitio

will consider two alternative scenarios. In the first scenario, we assume that the cable oper

when they are contemplating whether to form a coalition, cannot commit themselves to any

sion of the coalition’s share of the pie. In this scenario, we are assuming in effect that it is e

impossible or prohibitively costly to write a binding contract between the cable operators. In

second scenario, we assume that the cable operators, when they are contemplating wheth

form a coalition, can make a binding agreement on how to split the coalition’s share. 

Denote the division scheme under either scenario by . The scheme has to

ify the shares of a and b in both the agreement and breakdown states. Denote the agreemen

breakdown states by  and , respectively. Then 

where 

dc

xc dc+

xc dc+

dc

S xc dc dc,+( )

σ τ

S xc dc dc,+( ) Sa xc dc dc,+( ) Sb xc dc dc,+( ),( )=
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 for .

The precise form of the division scheme  under each scenario will be introduc

Subsections 3.2 and 3.3. 

 DEFINITION 3.1:  Given a division scheme , the marginal risk concession of

a coalition is defined as

Denote the coalition’s shares in markets A and B by  and , respectively. Then in marke

A, one has , for the coalition takes  as given. Similarly, in mar

B, one has .

 DEFINITION 3.2: A simultaneous Nash solution to the parallel bargaining problem with a

one-sided coalition is a vector  that satisfies the following equations:

(1) ,

(2) ,

(3) ,

Si xc dc dc,+( ) Si
σ

xc dc dc,+( ) Si
τ

xc dc dc,+( ),( )= i a b,=

S xc dc dc,+( )

S xc dc dc,+( )

µc xc dc+ dc,( ) µa Sa
σ

xc dc dc,+( ) Sa
τ

xc dc dc,+( ),( ) µb Sb
σ

xc dc dc,+( ) Sb
τ

xc dc dc,+( ),( ).+=

xc
A

xc
B

xc dc dc,+( ) xc
A

xc
B

xc
B,+( )= xc

B

xc dc dc,+( ) xc
B

xc
A

xc
A,+( )=

xc
A

xc
B

xâ x
b̂

, , ,( )

µc xc
A

xc
B

xc
B,+( ) µâ xâ 0,( )=

µc xc
B

xc
A

xc
A,+( ) µ

b̂
x

b̂
0,( )=

xc
A

xâ+ πA
=
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(4) .

In the absence of a coalition, the payoffs of cable operators a and b are 

 and , respectively. To simplify the notation, let

The coalition will actually form only if each member of the coalition gains from joining the co

tion. Thus one may consider a stronger solution to the parallel bargaining problem.

 DEFINITION 3.3: A bona fide solution to the parallel bargaining problem with a one-side

coalition is a simultaneous Nash solution  where each member of the coalitio

gains from joining the coalition, i.e.,  for .

We will now consider some desirable properties of  that may or may not h

in particular environments as will be shown in the next two subsections. 

 CONDITION 1:  for .

 CONDITION 2:  is an increasing and smooth function of .

xc
B

x
b̂

+ πB
=

Na a â) πA
0 0,( ), , ,(〈 〉 Nb b b̂) πB

0 0,( ), , ,(〈 〉

na Na a â) πA
0 0,( ), , ,(〈 〉 ,=

nb Nb b b̂) πB
0 0,( ), , ,(〈 〉 .=

xc
A

xc
B

xâ x
b̂

, , ,( )

Si
σ

xc
A

xc
B

xc
B,+( ) ni> i a b,=

µc xc dc+ dc,( )

µc dc dc,( ) 0= dc 0≥

µc xc dc dc,+( ) xc
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 LEMMA 3.1:  If Conditions 1 and 2 are satisfied, there exists a simultaneous Nash solut

to the parallel bargaining problem with a one-sided coalition.

PROOF: Taking  as given, equations (1) and (3) of Definition 3.2 define the Nash solu

to the bargaining problem in market A. Substituting (3) into (1), one has

(5) .

By Conditions 1 and 2, as  increases from 0 to , the left hand side of (5) increases fro

a positive number while the right hand side decreases from a positive number to 0. Thus th

exists a unique solution to (5). That is, for a given breakdown point , this bargaining prob

has a unique solution, which determines the payoff for the coalition in market A, . We can thus 

define an implicit function . Since  and  are smooth, 

 is smooth and thus continuous in particular. 

Symmetrically, using equations (2) and (4), we can define a continuous function 

Thus we have a continuous mapping  from  to itself. There

fore, there exists a fixed point by Brower’s fixed point theorem. Q.E.D.

 CONDITION 3: The marginal risk concession of the coalition  is non-

increasing in .

xc
B

µc xc
A

xc
B

xc
B,+( ) µâ πA

xc
A

– 0,( )=

xc
A πA

xc
B

xc
A

xc
A

x̃c
A

xc
B( )= µc ,( ) µâ ,( )

xc
A

x̃c
A

xc
B( )=

x̃c
B

xc
A( )

x̃c
A

xc
B( ) x̃c

A
xc

B( ),( ) 0 πA,[ ] 0 πB,[ ]×

µc xc dc dc,+( )

dc
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 LEMMA 3.2:  If Conditions 1, 2, and 3 are satisfied, the functions  and  in 

the proof of Lemma 3.1 are smooth and non-decreasing.

PROOF: Functions  and  are well defined and smooth by Conditions 1 and

as shown in the proof of Lemma 3.1. Condition 3 guarantees that the functions  and

 are non-decreasing as can be seen from equation (5) in the proof of Lemma 3.1. Q.E.D.

 3.2. No-Commitment Solution

Consider the case where the cable operators can make no commitment as to the divis

the coalition’s share of the pie. In this case, they bargain over the division of the total payof

coalition receives after either an agreement is reached or the bargaining ends in a breakdo

 DEFINITION 3.4: In the case where the members of a coalition can make no commitm

as to the division of the coalition’s share of the pie, the division scheme is defined as

for .

Notice that the share each member of the coalition receives in each of the two states is

mined through Nash bargaining inside the coalition. This feature is due to the assumption o

commitment. If the solution is different from the bargaining solution, one member of the coa

will have an incentive to renegotiate. One can combine Definitions 3.1 and 3.4.

x̃c
A

xc
B( ) x̃c

B
xc

A( )

x̃c
A

xc
B( ) x̃c

B
xc

A( )

x̃c
A

xc
B( )

x̃c
B

xc
A( )

Si
σ

xc dc dc,+( ) Si
τ

xc dc dc,+( ),( ) N( i a( b) xc dc+ 0 0,( ), , ,〈 〉 Ni a( b) dc 0 0,( ), , ,〈 〉 ),=

i a b,=
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 PROPOSITION 3.1: In the case where the members of a coalition can make no comm

ment as to the division of the coalition’s share of the pie, the marginal risk concession can 

written as

.

 PROPOSITION 3.2:  If no commitment is possible regarding the division of the coalitio

share of the pie, Conditions 1 and 2 are satisfied. 

PROOF: That Condition 1 is satisfied is obvious from Definitions Proposition 3.1. By Pr

osition 2.9,  is an increasing and smooth function of . Since the 

function  is an increasing and smooth function of its first argument, 

 is an increasing and smooth function of 

for each . This in turn implies that , which is the sum of  and 

an increasing and smooth function of . Q.E.D.

 THEOREM 3.1: If no commitment is possible regarding the division of the coalition’s sh

of the pie, there exists a simultaneous Nash solution to the parallel bargaining problem with

one-sided coalition.

PROOF: Follows from Lemma 3.1 and Proposition 3.2. Q.E.D.

µc xc dc dc,+( ) µi N( i a( b) xc dc+ 0 0,( ), , ,〈 〉 Ni a( b) dc 0 0,( ), , ,〈 〉 ),
i a b,=
∑=

Ni a( b) xc dc+ 0 0,( ), , ,〈 〉 xc

µi ,( )

µi N( i a( b) xc dc+ 0 0,( ), , ,〈 〉 Ni a( b) dc 0 0,( ), , ,〈 〉 ), xc

i a b,= µc xc dc dc,+( ) µa .( ) µb .( )

xc
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We now want to show that forming a coalition can be profitable under certain condition

order to establish this, we need to make two additional assumptions:

 CONDITION 4:   is decreasing in  for all .

 CONDITION 5:  .

Alternatively, one may require the following two assumptions, weakening Condition 4 a

strengthening Condition 5. 

CONDITION 4´:  is non-increasing in  for all .

CONDITION 5´:  for all .

Condition 4 says that the marginal risk concession of a player is decreasing in one’s fal

position. Unlike  Assumption 4, Condition 4 is a relatively strong assumption and rules out, 

instance, risk-neutral preferences. Condition 4´ relaxes Condition 4 to a weak inequality. 

Condition 5 says that when the breakdown point is equal to zero, doubling the amount of s

least doubles the marginal risk concession of a player. Condition 5´ requires that doubling 

amount of stake more than doubles the marginal risk concession of a player. 

Note that preferences that can be represented by von Neumann-Morgenstern utility fun

with constant relative aversion, i.e.,  where , satisfy Conditions 4 and 5, w

preferences that can be represented by von Neumann-Morgenstern utility functions with co

µi xi di di, )+( di xi 0>

2µi xi 0,( ) µi 2xi 0,( )≤

µi xi di di, )+( di xi 0>

2µi xi 0,( ) µi 2xi 0,( )< xi 0>

v x( ) x
γ

= 0 γ 1< <
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absolute aversion, i.e., , satisfy Conditions 4´ and 5´. In  Appendix H

we will show Condition 4 is in fact satisfied by a broad class of utility functions that exhibit c

stant hyperbolic absolute risk aversion (HARA), which include the class of utility functions w

constant relative aversion. 

The main issue of this paper is whether there are gains from forming a coalition. We wil

show that forming a coalition is profitable under the above assumptions. 

 THEOREM 3.2:  Suppose that either Conditions 4 -5 or Conditions 4´ -5´ are satisfied

coalition of players with identical preferences will gain as a whole in each market. Formally,

 is a simultaneous Nash solution, then  and .

PROOF: If cable operators have identical preferences, they will split any payoff of the c

tion equally. Thus Proposition 3.1 implies that 

. 

But, if Conditions 4 and 5 are satisfied, one has

(6)

since . Therefore, no  can satisfy equations (1) and (3) in Definition 3.2, for in

case one would have

v x( ) 1 e
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–( ) 1 e
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 which is absurd. A symmetric argument applies to market B, which completes the proof under 

Conditions 4 and 5. 

If Conditions 4´ and 5´ are satisfied instead, the weak and strict inequalities in (6) are 

exchanged. The proof is the same otherwise. Q.E.D.

There are two intuitive explanations as to why forming a coalition is profitable. In fact, t

proof of the above proposition is based on these two explanations. Depending on which pa

conditions, 4-5 or 4´-5´, is used, greater emphasis is placed on either of the two explanatio

The first explanation, which is highlighted by Conditions 4 and 5, is as follows: When b

gaining in one market, the breakdown point of the coalition is the outcome of the other mar

Thus, if bargaining on one frontier breaks down, the coalition still receives some payoff from

gaining on the other frontier. Due to Condition 4, this lowers the coalition’s marginal risk co

sion and thus the coalition can credibly demand a larger share of the pie. This phenomeno

be called the fall-back position effect.

The second explanation, which is highlighted by Conditions 4´ and 5´, is as follows: The

members of the coalition share the spoils from each market. Due to Condition 5´, dividing a

payment between two players leads to a lower marginal risk concession than giving the und

µc xc
A

xc
B

+ xc
B,( )

µa xc
A

0)
µa na 0),(≤

,(<

µâ πA
na– 0)

µâ πA
xc

A
– 0),,(≤

,(=
33



non 

n, 

ith 

k posi-

not 

hat 

ins, a 

grad-

one 

, how-

, 

ose 

ences, 

ous 
payment to one player. This increases the bargaining power of the coalition. This phenome

may be called the risk-sharing effect.

It is interesting to note that when players with constant relative aversion form a coalitio

there is a positive fall-back position effect but zero risk sharing effect, while when players w

constant absolute aversion form a coalition, there is a positive risk sharing but zero fall-bac

tion effect. 

Theorem 3.2 shows that forming a coalition is profitable. But a profitable coalition may 

form if there is no mechanism to divide the gains of the coalition between its members so t

each member will gain. If they could write a binding contract regarding the division of the ga

profitable coalition will always form. This case will be studied in the next subsection. 

In the current subsection, we do not allow commitment by the members of a coalition re

ing the internal division of a pie. Thus the amount an agent can receive when bargaining al

becomes irrelevant once he decides to join the coalition. Even in this no-commitment case

ever, there are some cases where profitable coalitions will actually form. For instance, if 

cable operators with identical preferences will both benefit from forming a coalition.

 THEOREM 3.3: Suppose either Conditions 4 -5 or Conditions 4´ -5´ are satisfied. Supp

that two cable operators have identical preferences, two broadcasters have identical prefer

and . Then there exists a simultaneous Nash solution. Furthermore, any simultane

Nash solution is a bona fide solution to the parallel bargaining problem.

na nb=

πA πB
=
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PROOF: By Proposition 3.2, Conditions 1 and 2 are satisfied. By Condition 4 or 4´, 

Condition 3 is also satisfied. Thus, by Lemma 3.2, the functions  and  in the p

of Lemma 3.1 are smooth and increasing. Furthermore, since the cable operators have ide

preferences, the broadcasters have identical preferences, and , the functions  and 

 are identical. Therefore, there exists a simultaneous Nash solution  s

that .

Since  and  by Theorem 3.2 and  by the symmetry of preferenc

and market sizes, one has 

 for .

Therefore,  is a bona fide solution to the parallel bargaining problem.Q.E.D.

In the scenario we studied in this subsection, the members of a coalition split the spoil a

is realized because they cannot make a commitment regarding the split. In this case, it is re

easy for the players to reach a simultaneous Nash solution once a coalition forms. But it is

difficult to insure that each member of the coalition has an incentive to join a coalition. In th

alternative scenario we will study in the next subsection, the members of a coalition can wr

binding contract. In this case, it turns out that the opposite is true. It will be more difficult fo

players to reach a simultaneous Nash solution (in the sense that establishing its existence 

stronger conditions). But the solution insures that each member gains from joining the coal
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 3.3. Commitment Solution

We now consider the solution for the case where the cable operators can write a bindin

tract when they integrate. The contract between the members of a coalition specifies how t

would split the total payoffs in two possible states of nature, one in which bargaining with a

sider, in our example a broadcaster, ends in an agreement and another in which the barga

breaks down. 

Throughout this subsection, we will assume the following:

ASSUMPTION 5: (Risk Aversion) Players prefer the expected value of a gamble to the 

gamble itself.

Recall that Assumption 4 introduced in Subsection 2.2 is satisfied for all risk averse pla

Thus in this subsection, we do not need Assumption 4 as a separate assumption. 

As in Subsection 3.1, denote the agreement and breakdown states by  and , respec

Let  and  be the probabilities of states by  and , respectively. Note that these pro

ties were irrelevant for the no-commitment solution of the previous subsection, for the within

lition bargaining occurs after either state is realized. If  and  are the coalition’s pay

in the agreement and breakdown states, respectively, the contingent pie up for bargaining b

the two members of the coalition is, by abuse of notation, 

.

When they bargain over this contingent pie, their respective breakdown points will be the pa

they expect to receive when they do not join the coalition. Since we are using the Nash sol

σ τ

q 1 q– σ τ

xc dc+ dc

π πσ πτ,( ) xc dc+ dc,( ) q xc dc+( )• 1 q–( ) dc•⊕= = =
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for any bargaining situation throughout this paper, the fall-back positions of cable operatorsa and 

b will be  and , respectively. 

We will assume that the within-coalition contract is the Nash solution of the contingent-

bargaining problem . Let

 

 for . As explained in Subsection 2.3, the Nash solution  is a pair of c

tingent shares such that the marginal risk concessions of the two members of the coalition

equalized and such that the allocation of the shares between the two members across the 

states is Pareto efficient. That is, the Nash solution satisfies the two equations

(7) ,

(8)

in addition to the two feasibility constraints

(9)

(10)

In using equation (8) above as a necessary condition for Pareto efficiency, we have used th

assumption ( Assumption 5) that the members of the coalition are risk averse. 

Note here that there was no analogue to equation (8) in the no-commitment case of the

ous subsection. Since players could not write a contract, the pie was split according to the 

na Na a â) πA
0 0,( ), , ,(〈 〉= nb Nb b b̂) πB

0 0,( ), , ,(〈 〉=

a b,( ) πσ πτ,( ) na nb,( ), ,〈 〉

yi di,( ) q yi• 1 q–( ) di•⊕ Ni a b,( ) πσ πτ,( ) na nb,( ), ,〈 〉= =

i a b,= ya da yb db, , ,( )

µ̂a
σ

q ya• 1 q–( ) da•⊕ na,( ) µ̂b
σ

q yb• 1 q–( ) db•⊕ nb,( )=

ma ya da,( ) mb yb db,( )=

ya yb+ xc dc,+=

da db+ dc.=
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solution even in a breakdown state, for otherwise one of the players would have an incentiv

renegotiate.

We are particularly interested in the Nash solution of the within-coalition bargaining for

limiting case where , the probability of the agreement state, approaches 1. In this case, e

(7) above will become 

.

The left hand side can be rewritten in utility terms as 

 .

Note that the expression on right hand side is the same as the marginal risk concession wi

contingent pies introduced in Subsection 2.2. Thus one may write

.

Therefore, equation (7) can be replaced by

(11) .

This, together with equation (9) leads to

(12) .

Once  is determined this way,  can be determined from equations (8) and (1

q

µ̂a
σ

1 ya• 0 da•⊕ na,( ) µ̂b
σ

1 yb• 0 db•⊕ nb,( )=

µ̂a
σ

1 ya• 0 da•⊕ na,( )
vi ya( ) vi na( )–

vi ′ ya( )
-----------------------------------=

µ̂a
σ

1 ya• 0 da•⊕ na,( ) µa ya na,( )=

µa ya na,( ) µb yb nb,( )=

ya yb,( ) N a b,( ) xc dc+ na nb,( ), ,〈 〉=

ya yb,( ) da db,( )
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 DEFINITION 3.5: In the case where the members of a coalition can make commitmen

to the division of the coalition’s share of the pie, the division scheme is defined as

,

where  satisfies (12), (8), and (10).

One can combine Definitions 3.1 and 3.5.

 PROPOSITION 3.3: In the case where the members of a coalition can make commitme

to the division of the coalition’s share of the pie, the marginal risk concession of the coalition

be written as

,

 where  satisfies (12) and  satisfies equations (8) and (10).

 

We want to show that in the commitment case, there exists a bona fide solution, that is

simultaneous Nash solution where each member of the coalition gains from joining the coa

In order to show this, it is necessary that  and  is well defined

outside of the bona fide solution. In particular, it is necessary that 

defined even for the case where .

S xc dc dc,+( ) ya da yb db, , ,( )=

ya da yb db, , ,( )

µc xc dc dc,+( ) µa ya da,( ) µb yb db,( )+=

ya yb,( ) da db,( )

µc xc
A

xc
B

xc
B,+( ) µc xc

B
xc

A
xc

A,+( )

N a b,( ) xc
A

xc
B

+ na nb,( ), ,〈 〉

xc
A

xc
B

+ na nb+<
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 That is, 
In order to define  for the case where , we imagine the

players sharing a loss so that (11) is satisfied, i.e.,

,

where  and . In other words, the marginal risk concession, which is ne

tive in a situation where players have to share a loss, has to be equalized across players. W

to emphasize here that this is only a technical convention. There are no losses at a bona fi

tion, whose existence we are going to establish, because the cable operators would not form

lition if there are losses. 

 PROPOSITION 3.4:  If commitment is possible regarding the division of the coalition’s 

share of the pie, Condition 1 is satisfied. 

PROOF: If , equations (8), (9), and (10) imply  by  Assumptio

5. Therefore,  and thus . Q.E.D.

For the commitment case we are analyzing in this subsection, Condition 2, which we n

for Lemma 3.1 may not hold in general. The reason is that as  increases, there are in ge

two effects. First, by Proposition 2.9, both players’ payoffs,  and , increase. This would

increase their marginal risk concessions if  remained the same. But the change in 

also affects the marginal rate of substitution between the agreement and breakdown states.

N a b,( ) ya na nb,( ), ,〈 〉 ya na nb+<

v ya( ) v na( )–

v′ ya( )
--------------------------------

v yb( ) v nb( )–

v′ yb( )
--------------------------------=

0 ya na<≤ 0 yb nb<≤

xc 0= ya yb,( ) da db,( )=

µa ya da,( ) µb yb db,( ) 0= = µc dc dc,( ) 0=

xc

ya yb

da db,( ) ya yb,( )
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us, as 

 and 
 is affected through equation (8). The direction of this effect on the marginal risk co

sion of the coalition is in general ambiguous.

 THEOREM 3.4: If commitment is possible regarding the division of the coalition’s share

the pie and Conditions 2 and 3 are satisfied, there exists a bona fide solution to the paralle

gaining problem with a one-sided coalition.

PROOF: That there exists a simultaneous Nash solution follows from Lemma 3.1, Prop

tion 3.4, and the assumption that Condition 2 is satisfied. With the additional assumption th

Condition 3 is satisfied, we can further show that there actually exists a simultaneous Nash

tion where each member of the coalition gains from joining the coalition. 

 Functions  and  are smooth and non-decreasing by Conditions 2, 3, an

Lemma 3.2, and are, respectively, bounded between  and  and between  and . Th

can be seen from Figure 2, there has to exist a simultaneous Nash solution such that 

 if one could establish  and . 

da db,( )

x̃c
A

xc
B( ) x̃c

B
xc

A( )

0 πA
0 πB

xc
A

na>

xc
B

nb> x̃c
A

nb( ) na> x̃c
B

na( ) nb>
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Thus we have only to show that 

(13) . 

By Proposition 3.3, 

where  satisfy 

(14) ,

(15) ,

(16) ,

(17) .

Note that equations (14) and (16) imply that  and . Thus

(18) .

Hence, equation (13) is satisfied if

FIGURE 2

xc
B

πB

x̃c
B

x̃c
A

nb

na πA xc
A

µc na nb nb,+( ) µa na 0,( )<

µc na nb nb,+( ) µa ya da,( ) µb yb db,( )+=

ya da yb db, , ,( )

µa ya na,( ) µb yb nb,( )=

ma ya da,( ) mb yb db,( )=

ya yb+ na nb+=

da db+ nb=

ya na= yb nb=

µc na nb nb,+( ) µa na da,( ) µb nb db,( )+=
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(19)

which is eqiuvalent to 

(20)

or in utility form,

(21)

But equation (15) implies that equation (21) is equivalent to

(22)

But, by the concavity of , equation (17), and the concavity of , one has

(23)  Q.E.D.

Theorem 3.2, which established the profitability of a coalition for the no-commitment ca

relied on two effects, the fall-back position effect and the risk-sharing effect. The proof of th

above Theorem 3.4 reveals that similar effects are at work for the commitment case. The u

Condition 3 in establishing the monotonicity of the functions  and  indicates t

presence of the fall-back position effect. For Theorem 3.2, the risk-sharing effect worked th

Condition 5´. For Theorem 3.4, however, the risk-effect works through risk aversion as can

seen from the last part of the proof. 

µa na da,( ) µb nb db,( ) µa na 0,( ),<+

µb nb db,( ) µa na 0,( ) µa na da,( ),–<

vb nb( ) vb db( )–

vb′ nb( )
-------------------------------------

va da( )
va′ na( )
-----------------.<

vb nb( ) vb db( )–

vb′ db( )
-------------------------------------

va da( )
va′ da( )
-----------------.<

vb va

vb nb( ) vb db( )–

vb′ db( )
------------------------------------- nb db–( )< da

va da( )
va′ da( )
-----------------.<=

x̃c
A

xc
B( ) x̃c

B
xc

A( )
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 Overall, the ability to write a binding contract increases the opportunity to gain from form

a coalition. The coalition becomes a more effective bargainer than an individual if certain co

tions are met. Conditions 2 and 3 in Theorem 3.4 are aggregation conditions that require th

coalition’s aggregate preferences exhibit certain desirable properties.
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4 . CONCLUSION

In this paper, we have provided theoretical explanations for bargaining power due to in

tion across local markets. We extended the Nash solution to the case of parallel bargaining

illustrate why players might gain from integration in two alternative scenarios: one in which 

ers who form a coalition cannot write a binding contract, and the other in which players can

a binding contract. We showed that the integration can increase bargaining power under ce

conditions.

From the policy standpoint, the results support the view that across-local-market integr

increases market power. Integration leads to a redistribution of some of the gains from coo

tion within the local market from the unintegrated to the integrated players. Since, however

nal players will always exhaust all possible gains from cooperation within the local market, 

is no justification, within our model, for restricting the national size of an MSO in the cable te

sion industry or restricting the size of a theater chain in the movie industry. Even though int

tion may increase their market power, it does not affect aggregate welfare. An interesting o

problem is to find a model where policy makers should be concerned about the MSOs’ and 

chains’ market power on efficiency grounds. 

Dept. of Economics-MS22, Rice University, Houston, Texas 77005, U.S.A.; chae@rice

http://www.ruf.rice.edu/~chae/
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 APPENDIX A: Constant Relative Risk Aversion implies Assumption 4

If , one has 

and thus

.

It is easy to see that for all , the numerator, and hence the derivative, is positive. The f

ing manipulation shows that the numerator is also positive for all :

 APPENDIX B: Proof of Proposition 2.12

Define a function  such that . To derive , we will use the

following proposition:

 PROPOSITION A.1: For any given Þi Þi , where  Bi , one has

.

v x( ) x
γ

=

µ x d d),+( x d+( )γ
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γ

f x d+( )γ 1–
-------------------------------=

µ x d d,+( )∂
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------------------------------ γ x d+( )γ 1–( )
2
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d
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------------------------------------------------------------------------------------------------------------------------------=
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γ 1>
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2
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d
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–{ }–
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– γ 1–( ) x d+( )γ 2–

d
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+{ }
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yi zi di yi di
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PROOF: There exists some p such that

Rewriting this expression using the utility representation in Proposition 2.1, we obtain

,

i.e., 

.

Thus, by Definition 2.8, one obtains the proposition. Q.E.D.

PROOF OF PROPOSITION 2.12: From Definitions 2.9, 2.10, and the L’Hospital’s rule, 

we have 

. 

Totally differentiating both sides of the equality in Proposition A.1 with respect to  yields

.

Setting  and rewriting gives the desired expression.  can be derived simila

Q.E.D.

q zi
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 APPENDIX C: Proof of Proposition 2.13

 From Proposition 2.12 and Definition 2.12, one has

, 

.

Along the C curve, one has , which proves the proposition.

 APPENDIX D: Proof of Proposition 2.14

 Differentiating  with respect to , gives

 

which is positive because .
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 APPENDIX E: Proof of Proposition 2.15

 Using Proposition 2.13, we have only to show that there exist a unique  satisfying

. 

From Proposition 2.14,  is increasing in . By Proposition 2.11, as  increases a

the C curve, player j receives less in both states, and thus  decreases. If  ~i , the left 

hand side of the above equation is zero, and if  ~i , the right hand side is equal to zero. 

Since the left hand side is continuously increasing in  and the right hand side continuous

decreasing in , there exist a unique solution.

 APPENDIX F: Rubinstein Solution for a Contingent-Pie Bargaining Problem

 DEFINITION A.1 : The Rubinstein solution to a contingent-pie bargaining problem 

 is a vector of payoffs, , where  such that 

(A.1) ,

(A.2) .

The Rubinstein solution consists of two pairs of payoff vectors. The first pair is the outc

that is realized when player i is the proposer in an alternating offer model and the second pai

yi
σ

µ̂i
σ

yi di, )( µ̂ j
σ π yi– dj, )(=

µ̂i
σ

yi di, )( yi yi

π yi– yi di

π yi– dj

yi

yi

i( j ), π di d j,( ), ,〈 〉 yi ŷ j,( ) ŷi yj,( ),( ) yi ŷi, C∈

ŷi si p yi di, ,( )=

ŷ j s p yj d j, ,( )=
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the outcome that is realized when player j is the proposer. Conditions (A.1) and (A.2) ensure th

each player, when he is a responder, is indifferent between accepting an offer and rejecting 

rejects, he can become a proposer but he also risks a breakdown. Here one can easily see

Rubinstein solution is the equilibrium outcome of a strategic bargaining model similar to the

in Rubinstein (1982). 

 PROPOSITION A.2: The Rubinstein solution for a contingent pie equalizes the players

risk concessions.

PROOF: From conditions (A.1) and (A.2) in the definition of the Rubinstein solution and

fact that we work with elements of C only, it follows that

, 

.

Subtracting the second equation from the first one yields

. Q.E.D.

 APPENDIX G: Nash Solution in Utilities with a Contingent Pie 

In this appendix, we will show that the Nash solution for a contingent pie we defined in t

of preferences is equivalent to the Nash solution defined in terms of the von Neumann-Mor

stern utilities. Consider the bargaining problem  as defined in the text. Ass

yi sj p yj d j, ,( )+ π=

si p yi di, ,( ) ŷ j+ π=

ci p yi di, ,( ) cj p yj di, ,( )=

i( j ), π di d j,( ), ,〈 〉
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RA), 
that players’ preferences can be represented by concave von Neumann-Morgenstern utility

tions. Then the Nash solution can be found by the following optimization problem:

 The first order conditions for this maximization problem can be rearranged to yield the

lowing two equations:

.

Note that the second equation equalizes the marginal rates of substitution between differen

of nature across agents. Thus the second equation ensures that the outcome is an elemen

PE curve. The first equation defines an outcome at which . 

 APPENDIX H: Example of Preferences Satisfying Condition 4

We will show that Condition 4 is satisfied by all preferences that can be represented by

Neumann-Morgenstern utility functions with constant hyperbolic absolute risk aversion (HA

i.e.,

max
xi
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τ,
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 where .

Here we have not normalized the function  so that  and  as we did in

text. The limiting case where  corresponds to the logarithmic utility function, i.e., 

. The restriction  ensure that agents are risk averse. This class of utili

function is broad and, for example, includes all utility functions with constant relative risk av

sion, i.e. , where . 

We want to show  for . One has

and thus
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.

First consider the case where . In this case, we have  if and only if 

This is equivalent to 

Note that for  the left hand side is equal to the right hand side. Furthermore,

, 

while

.

Thus we have , which establishes that  for . 

Similarly, one can show that Condition 4 is satisfied for the cases where  and 
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