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1. INTRODUCTION

THIS PAPER IS ORIGINALLY MOTIVATED by a topical issue in the television industry. We ana-
lyze the issue using a bargaining model that has elements not considered before. The theoretical
framework we develop here would be useful in addressing similar issues in other industries as

well.

The Cable Television Consumer Protection and Competition Act of 1992 (Cable Act of 1992
hereinafter) allowed a broadcaster to demand compensation from the cable operator that carries

the broadcaster’s signal. Before this legislation, a cable operator could freely retransmit programs

which were initially broadcast over the ir.

One interesting issue is whether there are gains from forming coalitions among cable system
operators across local markets. Some authors such as Waterman (1996) and Chipty (1994) have
argued, without proving it, that multiple cable system operators (or MSOs) have an advantage
over unintegrated cable system operators in negotiations with broadcasters. Policy makers also
seem to be concerned about the “market power” of integrated cable systems. For instance, the

Cable Act of 1992 orders the Federal Communications Commission to establish a reasonable limit

on the number of subscribers an MSO can ré&imilar restrictions limit the across-local-mar-

ket integration of local distributors in other industries, such as movie theater chains.

2. Broadcasters had been lobbying for this legislation for some time. To their disappointment, however, they
received little compensation from cable operators. Chae (1996) analyzes this problem using a bargaining
model and provides an explanation for what happened.

3. Congress of the United States (1992), Section 11(c).



It is not clear, however, that MSOs have any advantage. Even though some bargaining models

generate gains from forming coalitions in certain environnfethisre is no bargaining theory we
are aware of that explains the advantage of integration andeggendenmarkets. In this paper,
we consider two initially separate local markets and investigate the effect of integration between

two players on the same side of the two markets, say the cable operators.

The integrated cable operator or the MSO bargains with the broadcasters in the two markets
simultaneously. We adapt the Nash bargaining solution to this “parallel” bargaining problem. In
effect, we generalize the Nash solution in two separate directions. First, we generalize it to a situ-
ation where one party is a coalition of two players. Second, we generalize it to a situation where

one party bargains with opponents on two fronts.

Regarding the generalization of the Nash solution to a situation where one party is a coali-

tion, our approach differs from existing models. Existing models either assume that the coalition’s
preferences are the same as those of an agent to whom the negotiation is delegasedne that
the coalition’s preferences are the same as those of a representative player (assuming that all play-

ers in the coalition have the same preferen%Bq)contrast, we assume that the coalition’s pref-

erences are aggregated from its members’ preferences.

The solution depends on the contract within the coalition of cable operators. We consider two
types of the internal contract, one where they can costlessly write a binding contract and the other

where no commitment on how to split future payoffs between the members of the coalition is pos-

4. See, for example, Horn and Wolinsky (1988a, 1988b) and Jun (1989).
5. See the literature on strategic delegation referenced, for instance, in Segendorff (1998).
6. See, for example, Jun (1989).



sible. We show, for each type of contract, that the across-market integration is profitable under

certain conditions.

There are two intuitive explanations for the results. First, when the integrated party negotiates
with each of the other parties, it takes the outcome of the bargaining with the other party as given.
This increases the integrated party’s fall-back position. To the extent that this makes the integrated
party bolder in bargaining, it increases its share. This explanation can be catdliaek posi-
tion effect Second, splitting the risk of a breakdown between two members of a coalition can
make both of them bolder. This increases the coalition’s share. This explanation can be called the

risk-sharing effect

If we definebargaining poweias the relative advantage of a player due to certain characteris-
tics of the player or bargaining environments, we may say that forming a coalition increases bar-
gaining power. If we definmarket powers one’s ability to affect market prices to one’s
advantage, the results of this paper support the view that across-local-market integration increases
market power. In our model, this increase in the market power is due to an increase in bargaining

power.

In Section 2, we introduce the conceptisk concessionbased on Zeuthen (1930)’s pio-
neering work. We then define the Nash solution in terms of marginal risk concessions. Section 3
then extends the framework to the case of an integrated player bargaining in two markets. In Sub-
section 3.2, we solve this parallel bargaining problem for the case where no-commitment is possi-
ble in the within-coalition contract. Then we identify conditions under which the members of the
coalition gain from integration. In Subsection 3.3, we solve the parallel bargaining problem for

the case where the members of the coalition can write a binding within-coalition contract. Under



the additional assumption that agents are risk averse, we show that integration is profitable if cer-

tain aggregation conditions are met. Section 4 provides the conclusion.



2 . PRELIMINARIES ON THE BARGAINING SOLUTION

In order to be able to generalize the Nash solution to a bargaining situation involving a coali-
tion, we need to identify the defining characteristic of the solution which is generalizable. In the
risk-preference framework, the Nash solution is equivalent to the solution proposed by Zeuthen
(1930). The latter is defined as follows: If there are two different positions currently maintained
by two negotiating parties, each party has a maximum probability such that the party is willing to
risk the probability of a breakdown by insisting on her current position rather than accepting the
other party’s position. A party whose maximum such probability is not greater than the other’s has
to make some concession. Thus, the negotiation stops at a single point where the two probabilities
are both equal to zero. Even though Nash introduced his solution by certain axioms requiring
some desirable properties of the solution in the utility space, it turns out that Zeuthen'’s solution

yields the Nash solution in the utility space if the preferences of the negotiating parties are repre-

sented by expected utility functiofs.

In this paper, we will use Zeuthen'’s idea to generalize the Nash solution to situations involv-
ing a coalition. In a pie-splitting problem, Zeuthen'’s solution equalizes what we call the “marginal
risk concessions” of two players. Thus we will need to define the marginal risk concession of a
coalition in order to prescribe a solution for a situation where at least one of the negotiating par-

ties is a coalition of players.

There is another direction in which we need to generalize the Zeuthen-Nash solution in order

to be able to analyze a bargaining situation involving a coalition. In certain situations, a coalition

7. This was shown by Harsanyi (1956).



may be able to write an internal contract to divide up the spoil from bargaining with another party.
Since this external bargaining can result in an agreement or a breakdown, the internal contract has
to specify how the spoil is divided for each contingency. Thus, during the internal bargaining pro-
cess, the members of a coalition face the problem of bargaining over a contingent pie. We will
generalize the Zeuthen-Nash solution to this contingent-pie problem by requiring that the players

optimally share risks across different states of nature.

The necessary generalizations will be done in the next section. In this section, we will briefly
(but carefully) look at a standard two-person bargaining problem to introduce our framework, ter-

minology, and notation, which we will use in the next section.

2.1.Preferences over Lotteries

AlotteryI: R, - [0, 1] , whereR, is the set of nonnegative real numbers, is a discrete prob-
ability function: there exisk,, ..., x, 0 R, suchthik,) +... +I1(x,) =1 akhd) =0 if
xO{x, ..., X} . The lottery space, denote(R.,), is the set of all lotteries equipped with the fol-
lowing operation: for any, mJ L(R,) andO[0, 1] , the lottery

pelO(1-p) m:R, - [0, 1] is defined by

(pe10(Q=p)em)(x) = pO(x)+(1-p)On(x) foranyxOR, .
As is well known, the lottery space is a convex linear space, that is, satisfies the following

propertie§:

L1. 1«100em =1

8. See Herstein and Milnor (1953).



L2. pelO(1l-p)em=(1-p)emOpel
L3.ge (pe I0(1-p)emOT(1-q)em=(gp)e 10 (1-gp)em

We will identify a numbex O R, with a sure lottekyd L(R,)  such théx) = 1 °A.

player has a complete and transitive preference relgtion the lottery space that satisfies the

following three axioms:

ASSUMPTION 1: (Smoothness) If iy | £ n, where m> n, there exists a unique number

h(l, m, n) O[O0, 1] such that
OIOh(,m,nyemO{1-h(l,m n)} *n,

(i) Let h(x, m ) = h(X m, n) for xOR, . Thenh(x, m, 1) is a smooth function of x such

~

0
that a—x(x, mn>0.

ASSUMPTION 2: (Independence) IfJl" , then for any m and gy [0, 1]

pelO(1-—p)emOpel"O(1-p)es m.
ASSUMPTION 3: (Monotonicity) Ifx>y (where, yOR, ), ther >y.

It is well known that an expected utility function exists under the assumptions of continuity
and independence. Replacing continuity with smoothness yields a stronger set of axioms, and thus

an expected utility function exists under our assumptions. We introduce the smoothness assump-

9. We will use the notatior  only if it is necessary to make the conceptual distinction be@vesn .



tion because we need it to define the concept of marginal risk concEsaitanHerstein and Mil-

nor (1953), we can represent a player’s preferences by a utility function.

PROPOSITION 2.1: There exists a unique functionl{R,) - R that satisfies

V() =0,V(1) =1,and

@ I > mif and only if V(I» V(m),

(i) V(pe 10(1=p)+m) = pV() +(1-p)V(m),

(iii) Put v(x) = V(X) for x O R, . Thenv(x) is a smooth function of x such tigk) >0

for x> 0.

The proof of the proposition is similar to Herstein and Milnor’s (1953) and thus will be omitted
here. One may call the functidhthe von Neumann-Morgenstern utility function over lotteries
and the functiorv the von Neumann-Morgenstern utility function over prizes. The following

proposition is obvious:

PROPOSITION 2.2: If 15 1thenV(l) = h(l,1,0) , andif > 1 then

V(l) = 1/h(1,1,0).

In order to understand the concept of risk concession, which will be introduced in the next

subsection, it is necessary to study the certainty equivalent of a lottery.

10.A smooth function is one that is differentiable as many times as one wants. For the results of this paper, it
is sufficient that the functioh(x, m n)  is three times differentiable with respect to



DEFINITION 2.1: Thecertainty equivalenof a lotterype y[O (1 —p) ¢ z is a sure payoff

s(p Y 2 OR, that satisfies(p, y 2 Upe y(1-p)ez .

PROPOSITION 2.3: Lety> z Thens(p V, 2 is a smooth function of p such that

0s
a_p(p’ y! Z)>O'

PROOF: x = s(p y 2 is a smooth function gf such tha%( p, Yy, 2 >0 becauseitisthe

inverse function ofp = Fl(x, Yy, 2 , which is a smooth functiorxauch tha%g(x, y,2>0 .

Q.E.D.

PROPOSITION 2.4: Lety>z.Ify= x> z, one has

X =S

V(X —v(2)
)~ B

PROOF: By Assumption 1, there exists somsuch that

xOpe yO(1-p)- z.

v(x) —v(2)

We have only to show that = v(Y)—v(2)

. But this follows frarfx) = pv(y) + (1—p)v(2)

Q.E.D.



. ds _v(y)-Vv(2
PROPOSITION 2.5: Lety>z. Then==(1,y, 2) = —~£_22
y ap( Y, 2) vy

PROOF: Differentiating the expression in Proposition 2.4 with respext dme obtains

_ osty(x) —v(2) Vi(x)
L= oty —v( " 8% vz

Settingx = y vyields

1= 9501y, 2 —~W

= == O—X
op v(y) —v(2)
from which the desired equality follows. Q.E.D.

2.2.Two-Person Bargaining Problem

DEFINITION 2.2: A bargaining problem({i, j), 1t (d;, dj)D, whered,;, dj >0 and
n>d, + dj , Is a situation where two playefts j)  split a pie of size if they can agree on their

shares, and receive the breakdown payaffsd J-) otherwise.

In order to introduce the solution to the bargaining problem, we first need to focus on some
properties of preferences. For simplicity, we will drop the subscripts for players until we need

them.

During the process of bargaining, a player typically faces a gamble
pe (x+d)0O(1-p)ed,wherex+d(=d) is her payoff in the event of an agreemdr{t> 0)
is her payoff in the event of a breakdown, dndp the breakdown probabieg.will denote

such a gamble simply bip, x+ d, d)

10



DEFINITION 2.3: Therisk concessionf a player facing a gambl(g, x+ d,d) is the
amount the player is willing to pay to avoid the chance of a breakdown. It will be denoted and

defined ag(p, x+ dd) = x+d-—q p x+ dd) .

DEFINITION 2.4: Themarginal risk concessioaf a player facing a pair of payoffs
(x + d, d) is the rate of change in risk concession as the breakdown probability approaches zero:
. c(p, x+ dd)
lim 2B ——=—-2
p-1 (1-p)

It will be denotedu(x+ d, d) .

PROPOSITION 2.6: One hasu(x + d, d) = X+ d=v(d)

V' (x+d)
PROOF: By Definitions 2.3 and 2.4,
— d— p x+ dd)
x+d,d)= lim XT .
Hxrd O I —1-p)
Using L'Hopital’s rule, we get
Hu(x+d,d)= 6_5(1 x+d,d).
b ap i) )
0s v(x+ d) —v(d)

By Proposition 2.5%(1, x+d,d) = Q.E.D.

V' (X + d)

11.Throughout this paper, we will use the term “gamble” for a lottery which is a probability mix of an agree-
ment payoff and a breakdown payoff.

11



Note thatu(x + d, d) is a smooth functionfndd. In addition to Assumptions 1-3, we

make the following assumptidhroughout this paper
ASSUMPTION 4: p(x + d, d) is increasing in x for all x > 0.

Assumption 4 holds for a very general class of preferences. The class includes all preferences
exhibiting risk aversion or risk neutrality. It also includes preferences that can be represented by

utility functions with constant relative risk aversion.

PROPOSITION 2.7: The marginal risk concessiqn(x + d, d) is increasing irk> Oif and

only ifdixlog(v(x+ d) —v(d)) decreases inx0.
PROOF: Forx > 0, one has

Slog(u(x+ d) ~v(a)) =

V' (X + d) _ 1
v(x+ d)-v(d)  pu(x+d d’

from which follows the desired result. Q.E.D.

That Assumption 4 holds for all risk averse or risk neutral preferences, that is, those with

v"( ) <0, can be easily seen from Proposition 2.7, for

izlog(v(x+ d)—v(d)) = L DV(x+ d) ~v(d)] ~[V'(x+ d1*
2

dx [v(x+ d) —v(d)]?

That Assumption 4 is also satisfied by all utility functigmgth constant relative risk aversion is
shown in Appendix A. In particular, the concavity of the functr¢r) IS not a necessary condi-

tion for Assumption 4.

12



We will now define the Nash bargaining solution in terms of players’ marginal risk conces-

sions and state two properties of the Nash solution that will be used in Section 3.

DEFINITION 2.5: TheNash solutiorof a bargaining problera(i, j), m, (d;, dj)D is a vec-

tor (x; +dj, x; +d;) such that; +d; +x; +d;= 1 and

Hi(X +d;, di)= p(x; +d;, d;) .

The Nash solution will be denoted

NG, §), 76 (d, d0 = (NG, §), 7 (dg, d)ON L ), T8 (L d)D).

PROPOSITION 2.8: There exists a unique Nash solution to the bargaining problem
(i, ), . (d;, d;)0

PROOF: The Nash solution satisfies the following equation

W (% +d;, d;)= Uj(T[—Xi —d;, dj) .
If one setsx; = 0 , the left hand side of the above equation is zero while the right hand side is

positive. If one setg, = 1m—d, —dj , the left hand side of the above equation is positive and the

right hand side is equal to zero. Since, by Proposition 2.6 and Assumption 4, the left hand side is

continuously increasing i, while the right hand side is continuously decreasing in , there

exists a unique solution. Q.E.D.

13



PROPOSITION 2.9: N, i, j), m (d;, dj)D is an increasing and smooth functionof  for
i=1,2.

PROOF: Follows from the proof of Proposition 2.8. Q.E.D.

In the time-preference framework, Chae (1993) defines the Nash solution as a payoff vector
equalizing “marginal impatience” among all players and establishes propositions analogous to the
above two propositions. The mathematical structure of the proofs of the above two propositions is

essentially the same as that of the corresponding propositions in Chae (1993).

2.3.Bargaining over a Contingent Pie
In Subsection 3.3, we need to deal with a bargaining situation where players bargain over a
contingent pie whose size depends on the realized state of nature. Thus in this subsection, we will
extend the analysis of the previous subsection to cover such a situation. For the analyses of
Subsection 3.3, we will assume that players are risk averse, that is, they prefer the expected value

of a gamble to the gambile itself. Thus we will make the same assumption in this subsection.
Suppose that there are two states of natwre, tand , which occur with probapilities and
1-—q, respectively. Two players have to agree on how to split the'pie  in each [Sthte T}

in order to avoid the chance of a breakdown. The contingemt pig T, nr) is equivalent to the

lottery g+ m° O (1—q) » T, where we assume that there exists some division=offt °, ")
that both players prefer to their break-down payoffs. We define the bargaining problem over this

contingent pie as follows:

14



DEFINITION 2.6: A contingent-pie bargaining problerqi, j), 1 (d;, dj)[, where
d,, dj [0 R, and there exist some contingent paytyffsyj suchythatd, , Yj >J-dj, and
yityj = m, is a situation where two players have to agree on how to split a contingent pie in

order to avoid a breakdown.

Note that the breakdown position of each player is a non-contingent payoff. Without much
loss of generality, we assume that players bargain over Pareto efficient splits of the contingent pie.
That is, we require that in each state of nature the entire pie is split between the two players and
that players share risks optimally across different states of nature. When players are risk averse,
this entails that the marginal rates of substitution between different states of nature, as formally

defined below, are equalized across players.

Foranyx, yUR, suchthat>y>0 |, defirg(d) for sufficiently small by the follow-

ing indifference relation:
qe xO(1-0)eydge (x=0) 0 (1-0q)« (y+E4(9)).

DEFINITION 2.7: Themarginal rate of substitution for a fair gamidbetweerx andy is

denoted and defined bi(x y) = &' 1(0)
2

PROPOSITION 2.10: m(x y) = %

PROOF: From Definition 2.7 and the equality

15



follows the result. Q.E.D.

Under the assumption of risk aversion, one can denote and characterize the set of Pareto effi-

cient splits of the contingent pre = (th, T[T) as

_Dor_q o T,_ ( 0__0T__TD
PE—g(yi,yi ); —1_qmi(yi.yi)——1_qmj(ﬂ Yi , T =i )E

O] o 1.
= gyf’, v my ) = -y, -y X

using player ‘s contingent payoff to denote the split of the contingent pie. The set is a one-
dimensional manifold, that is, a smooth curve. Since the bargaining will break down if either
player is not given a contingent payoff that will make her at least as well off as at the breakdown

point, the relevant part &fE is thecore

In the Edgeworth Box of Figure PE is the solid curve from the south-west corner to the north-

east corner, an@ is the thick part.

16



FIGURE 1

PROPOSITION 2.11:Supposey;, y; 0C . 1§ >9° thew > ' .

PROOF: Assume otherwise, thatj§ >9° andy; < ;. Then risk aversion implies

~ 12 0 12 ~
W) _ W) g (n°—yi) vy = 7)

VIO WO v -y v =)

which is impossible because both afrpd are Pareto efficient. Q.E.D.

During the process of bargaining over a contingentpie (T[G, nr) , a player typically faces
agambleps y. 0 (1-p)+d, ,wherg. = (x°+d, x' +d.) is her contingent payoff in the
event of an agreememt, (= 0) is her payoff in the event of a breakdown, andp the break-

down probability. For simplicity, we will denote such a gambl€ pyy:, d;) . Note here that the

contingent payoffy, is equivalent to the lottery (x° +d;) 0 (1—q)« (x" +d;)

17



As was the case in the bargaining problem over a non-contingent pie, the extent to which a
player is willing to concede in order to avoid the chance of a breakdown plays an important role in
finding the solution for a bargaining problem over a contingent pie. In order to formalize this

notion, we have to first introduce the analogue of certainty equivalent.

DEFINITION 2.8: For any gamblép, y,,d;) wheng = (x°+d,x' +d)0C ,the

breakdown-free contingent payoff is defined as a contingent lottery

s(p Y. ) = (s7(p, ¥, d), S (P, ¥, d;)) O C that satisfies

Si(p, Y, d;) Opey, O (1-p)ed,

g+ s (p ¥, di) O0(1-q)*s(p y,d) 0
Pe{gs (x°+d) T (1-q)+ (¢ +c)} O(1-p)-d.

DEFINITION 2.9: Therisk concessionf a player facing a gambl(e, y;,d;) , where

y; O C, is the amount, along the core, of contingent payoff the player is willing to pay to avoid the

chance of a breakdown. It will be denoted and defined as

ci(p, Y, di) = vyi—si(p, Yy, dp) -

18



DEFINITION 2.10: Themarginal risk concessioalong the core, of a player facing a pair

(y;, d;), wherey, O C , is the rate of change of the risk concession as the breakdown probability

approaches zero:

_c(pynd) O c(py,d) . c(py,d)O
lim AL L R |:|||m #’ lim #D
p-1 (1-p) -1 (1-p) p-1 (1-p) O

It will be denotedu;(y;, d;) = (7 (¥;, d)), 1 (¥;, d)))

The marginal risk concession is well defined because, under the assumption of risk aversion,

Cis a smooth curve. In Appendix B, we derive the following:

PROPOSITION 2.12:0ne has

qui(y7) + (L= a)vi(y}) —vi(d;)

o) = 0 (i) _dyiO
o Vi VY i
Vi’(yi)m"'(l_Q)—}%— D——y—om
O v,"(y;) dyO

Wiy ) = qv(y.)+(2 ;J)V(y.) vild)
(L) 4 (1-gp

O v, (y,) dyI O

wheredy /dy is the slope (ardl./dy. its inverse) of the C cur(g:ay, )

19



Now we can introduce the Nash solution for a contingent-pie bargaining problem.

DEFINITION 2.11: TheNash solution to a contingent-pie bargaining problem

(i, j), m (d;, dj)D is a vector(y;, t—Yy;) , wherg; 0 C , that satisfies the following equation:

Wy, d;) = Uj(n_yiy dj)-

To prove existence and uniqueness of the Nash solution for a contingent-pie bargaining prob-

lem, the following definition is useful:

DEFINITION 2.12: The marginal risk concession in terms of sure payoff in stabéa

player facing a pai(y;, d;) is defined and denoted as

qvi(y]) + (L—-a)v;(y;) —v;(d;) |

o (v, d) = .
vi'(y;)

ﬁic(yi, d;) measures the rate of change of the amount, measured in terms of sure payoff in

stateo , playeris willing to give up in order to avoid the chance of a breakdown as the break-

down probability approaches zero. In Appendix C, we show the following:

PROPOSITION 2.13: p;(y;, di) = pj(n—yi,dj) if and only if

[ (v o) = ﬁ?(n_yi’dj) :

20



Appendix D derives the following proposition:

PROPOSITION 2.14: ﬁio(yi, d,) isincreasing iny; along the C curve.

PROPOSITION 2.15: If both players are risk averse, there exists a unique Nash solution

for the contingent-pie bargaining probleifi, j), m, (d;, dj)D

The proof, shown in Appendix E, is similar to that of Proposition 2.8.

In the non-contingent pie case, the Nash solution is often motivated as the limit of the Rubin-

stein solution for a strategic bargaining motfeSince we introduced the contingent-pie bargain-

ing problem in this subsection, it is perhaps our duty to provide a similar motivation for the Nash
solution for this case. In Appendix F, we will introduce the Rubinstein solution for our contin-
gent-pie bargaining problem and show that the Rubinstein solution equalizes the risk concessions
of the two players. Since the Nash solution equalizestrginalrisk concessions of the two

players, one can see easily that the Nash solution is the limit of the Rubinstein solution as the

breakdown probability goes to zero.

12. Rubinstein’s alternating-offer model in the time-preference framework can be converted to a similar
model where after every offer there is an exogenous probability that the game ends. This setup replaces
the time cost of rejecting an offer by the risk that the game may terminate. See Binmore, Rubinstein, and
Wolinsky (1986).
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In Appendix G, we relate the above definition of the Nash solution for a contingent-pie bar-
gaining problem to the standard definition representing players’ preferences by von Neumann-

Morgenstern utility functions as in Nash (1950).

22



3 . PARALLEL BARGAINING

In this section, we will investigate the consequences of integrating one type of players across
different markets. Consider two separate bilateral monopoly maklketdB. As a leading exam-
ple, we will consider markets where broadcasters and cable operators negotiate over the terms of

carrying broadcast channels on cable systems. In nrarkable TV operatoa and broadcaster
a bargain over the split af’ , their net gain from carrying the broadcast channel on the cable
system. In markeB, cable TV operatdp and broadcastdr  bargain over the split of their surplus

T©. In the event of a breakdown of bargaining, the profit position of pidyex, a, b, 6) isd; .
Formally, we have two parallel bargaining probleigs, 3), T[A, (d,, dg)d and
(b, b), 7, (dl,, d; ).

In the benchmark case where players in marketsdB are independent firms, we posit that

the solutions to the bargaining problems in markeasdB are the Nash solutions
N[{a, a), T[A, (0, ) and N [{ b, 6), T[B, (0, 0)J , where we have, without loss of generality, nor-

malized the initial fall back positions to be zero.

In what follows, we will investigate how the integration of cable operators across the two
markets affects their and the broadcasters’ payoffs. The integration pits the coalition of cable

operators against the broadcasters of ma¥earsdB as illustrated in Table I.
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TABLE |

before inte- after inte-
gration gration

market A ao a {a, 3 - a

market B bo b {a B - b

In order to analyze bargaining between a coalition and its opponents on two fronts, we need
to modify the above solution in two different directions. First, we need to specify how the bargain-
ing in one market affects the bargaining in another market. In this regard, we imagine a situation
where the two bargaining problems are settled simultaneously rather than sequentially and assume
that when players bargain in one market, they take the outcome of bargaining in the other market
as given. Second, we need to extend the definition of the Nash solution to a bargaining problem
between a coalition and a player. Since the Nash solution is one where the marginal risk conces-
sions of two players are equalized, we will have to define the marginal risk concession of a coali-
tion. This will be defined essentially as the sum of the marginal risk concessions of the two
members of the coalition. This makes sense because the risk concession of the coalition measures
how much the coalition is willing to give up to avoid the chance of a breakdown, and the amount
the coalition is willing to concede will be quite naturally the sum of the amounts the members of
the coalition are willing to concede. We emphasize here that our notion of risk concession is a nat-

ural extension of Zeuthen’s idea.
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3.1.Simultaneous Nash Solution
We will denote the coalition of cable operatoas} simply by c. If the bargaining between

the coalition and an opponent breaks down, the coalition receives a gayoff . If the bargaining

ends in an agreement, the coalition receives a payefd,

In general, the marginal risk concession of a coalition will be defined as the sum of the mar-

ginal risk concessions of the two members of the coalition. In order to measure the marginal risk

concession of each member of the coalition, however, one needs to know how-bdth and

d. are split betweea andb.

Regarding the mechanism to divide a given pie between the two members of the coalition, we
will consider two alternative scenarios. In the first scenario, we assume that the cable operators,
when they are contemplating whether to form a coalition, cannot commit themselves to any divi-
sion of the coalition’s share of the pie. In this scenario, we are assuming in effect that it is either
impossible or prohibitively costly to write a binding contract between the cable operators. In the
second scenario, we assume that the cable operators, when they are contemplating whether to

form a coalition, can make a binding agreement on how to split the coalition’s share.

Denote the division scheme under either scenarig(by+d, d,) . The scheme has to spec-

ify the shares of andb in both the agreement and breakdown states. Denote the agreement and

breakdown states by and , respectively. Then

S X+t dc’ dc) = (Sa(xc + dc’ dc)' So(xc + dc’ dc))

where
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S(x.+d.,d.) = (S (x.+d,dg), S(x.+d.dy)) fori =a,b.
The precise form of the division scher®gx, + d., d.) under each scenario will be introduced in

Subsections 3.2 and 3.3.

DEFINITION 3.1: Given a division schem®( x. +d_, d.) , thearginal risk concession of

a coalitionis defined as

MC(XC + dC’ dC) = “a(sg(xc + dC’ dC)’ S;(XC + dC’ dC)) + lJ'b(Sg-(XC + dC’ dC)’ S.KE)(XC + dC’ dC))

Denote the coalition’s shares in mark&tsndB by x? andx? , respectively. Then in market

A,one hagx.+d.d;) = (x + x5 for the coalition takgg as given. Similarly, in market

c’ c)

B,one hagx.+d.d.) = (XE + XC’ c)

DEFINITION 3.2: A simultaneous Nash solutida the parallel bargaining problem with a

one-sided coalition is a vect(n(c, xc, Xz, Xo ) that satisfies the following equations:

(1) uc(x +xc, c) = Ha(Xs 0),
2) Me(xe + X0 x0) = e 5(X;, 0),

3) X
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B B
4) Xe X = T

In the absence of a coalition, the payoffs of cable operatanslb are

N,{a, &), T[A, (0, O)O andN, (b, B), T[B, (0, 0)I, respectively. To simplify the notation, let

n, = N,da ), (0, 0)0

n, = Ny (b, b), ", (0, )0

The coalition will actually form only if each member of the coalition gains from joining the coali-

tion. Thus one may consider a stronger solution to the parallel bargaining problem.

DEFINITION 3.3: A bona fide solutiomo the parallel bargaining problem with a one-sided

B

coalition is a simultaneous Nash solutiog, X, X, X;) where each member of the coalition

gains from joining the coalition, i.eSO(xCA + XE, x?) >n,  for=a,b

We will now consider some desirable propertiesidfx, +d., d.) that may or may not hold
in particular environments as will be shown in the next two subsections.

CONDITION 1: p(d,, d.) = 0 ford.>0.

CONDITION 2: p.(x.+d d;) is an increasing and smooth functionxaf
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LEMMA 3.1: If Conditions 1 and 2re satisfied, there exists a simultaneous Nash solution

to the parallel bargaining problem with a one-sided coalition.

PROOF: Taking x? as given, equations (1) and (3) of Definition 3.2 define the Nash solution

to the bargaining problem in mark&tSubstituting (3) into (1), one has

A B _.B A A
(5) p'c(xc + XC’ Xc) = Iia(T[ _Xc! O) .

By Conditions 1 and 2, agA increases from &'to , the left hand side of (5) increases from 0 to

a positive number while the right hand side decreases from a positive number to 0. Thus there

exists a unique solution to (5). That is, for a given breakdown pEint , this bargaining problem
has a unique solution, which determines the payoff for the coalition in nﬁarkét We can thus

define an implicit functiorx? = if(x?) .Since,(, ) ampd(, ) aresmooth,

x? = ié(ch) is smooth and thus continuous in particular.
Symmetrically, using equations (2) and (4), we can define a continuous fuio?:(['xfr)
. ~A, By ~A, B A B :
Thus we have a continuous mappig (x;), X. (X.)) frpdnTt ] x [0, U] to itself. There-
fore, there exists a fixed point by Brower's fixed point theorem. Q.E.D.

CONDITION 3: The marginal risk concession of the coalitiog(x, + d, d.) is non-

increasing ind, .
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LEMMA 3.2: If Conditions 1, 2, and 3 are satisfied, the functigiecs) and Xo(x2) in

the proof of Lemma 3.1 are smooth and non-decreasing.

PROOF: FunctionsiCA(xCB) and RCB(XCA) are well defined and smooth by Conditions 1 and 2
as shown in the proof of Lemma 3.1. Condition 3 guarantees that the furfcﬁ(o& and

)N(E(X?) are non-decreasing as can be seen from equation (5) in the proof of Lemm@.E.D.

3.2.No-Commitment Solution

Consider the case where the cable operators can make no commitment as to the division of
the coalition’s share of the pie. In this case, they bargain over the division of the total payoff the

coalition receives after either an agreement is reached or the bargaining ends in a breakdown.

DEFINITION 3.4: In the case where the members of a coalition can make no commitment

as to the division of the coalition’s share of the pie dilission schemes defined as

(S (% +dg do), S (x.+d,d.)) = (N;[{a, b), x. +d, (0, )0 N; [{a, b), d., (0, 0)))

fori = a,b.

Notice that the share each member of the coalition receives in each of the two states is deter-
mined through Nash bargaining inside the coalition. This feature is due to the assumption of no
commitment. If the solution is different from the bargaining solution, one member of the coalition

will have an incentive to renegotiate. One can combine Definitions 3.1 and 3.4.
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PROPOSITION 3.1:In the case where the members of a coalition can make no commit-
ment as to the division of the coalition’s share of the pie, the marginal risk concession can be

written as

(X +ddo) = T (N [, b), X+ d, (0, 0] N; ({a, b), d, (0, 0)) -

i=a,b

PROPOSITION 3.2: If no commitment is possible regarding the division of the coalition’s

share of the pie, Conditions 1 and 2 are satisfied.

PROOF: That Condition 1 is satisfied is obvious from Definitions Proposition 3.1. By Prop-

osition 2.9,N; [{a, b), x. + d., (0, 0)O is an increasing and smooth functior.of . Since the
functiony;( , ) is an increasing and smooth function of its first argument,

K (N, Ha, b), x.+d_, (0, 0)JN; [{a, b),d,, (0, 0)) is an increasing and smooth functiorxpf
foreachi = a, b . Thisin turnimplies that.(x, +d. d.) ,whichisthe sumgf) i&(d) ,

an increasing and smooth functionxaf . Q.E.D

THEOREM 3.1: If no commitment is possible regarding the division of the coalition’s share
of the pie, there exists a simultaneous Nash solution to the parallel bargaining problem with a

one-sided coalition.

PROOF: Follows from Lemma 3.1 and Proposition 3.2. Q.E.D

30



We now want to show that forming a coalition can be profitable under certain conditions. In

order to establish this, we need to make two additional assumptions:

CONDITION 4: p,(x; +d;, d;) is decreasing i, for ak; >0

CONDITION 5: 2p,(x;, 0) < p;(2x;, 0) .

Alternatively, one may require the following two assumptions, weakening Condition 4 and

strengthening Condition 5.

CONDITION 47: y;(x; +d;, d;) is non-increasing i, for alk; >0

CONDITION 57 2p;(x;, 0) < p;(2x;, 0) for all x,>0.

Condition 4 says that the marginal risk concession of a player is decreasing in one’s fall-back
position. Unlike Assumption 4, Condition 4 is a relatively strong assumption and rules out, for
instance, risk-neutral preferences. Condition 4" relaxes Condition 4 to a weak inequality.
Condition 5 says that when the breakdown point is equal to zero, doubling the amount of stake at
least doubles the marginal risk concession of a player. Condition 5” requires that doubling the

amount of stake more than doubles the marginal risk concession of a player.

Note that preferences that can be represented by von Neumann-Morgenstern utility functions

Y

with constant relative aversion, i.g(X) = X whérey <1 , satisfy Conditions 4 and 5, while

preferences that can be represented by von Neumann-Morgenstern utility functions with constant
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absolute aversiomg., v(x) = (1—e_X)/(1—e_l) , satisfy Conditions 4" and 5°. In Appendix H,
we will show Condition 4 is in fact satisfied by a broad class of utility functions that exhibit con-
stant hyperbolic absolute risk aversion (HARA), which include the class of utility functions with

constant relative aversion.

The main issue of this paper is whether there are gains from forming a coalition. We will first

show that forming a coalition is profitable under the above assumptions.

THEOREM 3.2: Suppose that either Conditions 4 -5 or Conditions 4" -5 are satisfied. A

coalition of players with identical preferences will gain as a whole in each market. Formally, if

(xc, ¢+ Xar X;;) Is @ simultaneous Nash solution, thecn> n, szd> Ny

PROOF: If cable operators have identical preferences, they will split any payoff of the coali-

tion equally. Thus Proposition 3.1 implies that

A +x XBD
uc(xc +Xc’ c) = ZuaB EE

But, if Conditions 4 and 5 are satisfied, one has

3 , A xS XBD<2 D(CAOD< A g
() uag_—z—— —Z—E Uag_z—l E— Ha(xc! )

sincexcB >0 . Therefore, nm? <n, can satisfy equations (1) and (3) in Definition 3.2, for in this

case one would have
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B B
C’XC

<pa(X5, 0)

< “a(nai O)
= ué(nA—na, 0)
A A 0),

< Ha(mm =X,

A
uc(xc +X

which is absurd. A symmetric argument applies to mdakethich completes the proof under

Conditions 4 and 5.

If Conditions 4" and 5™ are satisfied instead, the weak and strict inequalities in (6) are

exchanged. The proof is the same otherwise. Q.E.D

There are two intuitive explanations as to why forming a coalition is profitable. In fact, the
proof of the above proposition is based on these two explanations. Depending on which pair of

conditions, 4-5 or 4°-57, is used, greater emphasis is placed on either of the two explanations.

The first explanation, which is highlighted by Conditions 4 and 5, is as follows: When bar-
gaining in one market, the breakdown point of the coalition is the outcome of the other market.
Thus, if bargaining on one frontier breaks down, the coalition still receives some payoff from bar-
gaining on the other frontier. Due to Condition 4, this lowers the coalition’s marginal risk conces-
sion and thus the coalition can credibly demand a larger share of the pie. This phenomenon may

be called théall-back position effect

The second explanation, which is highlighted by Conditions 4" and 57, is as follows: The two
members of the coalition share the spoils from each market. Due to Condition 57, dividing a given

payment between two players leads to a lower marginal risk concession than giving the undivided
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payment to one player. This increases the bargaining power of the coalition. This phenomenon

may be called thask-sharing effect

It is interesting to note that when players with constant relative aversion form a coalition,
there is a positive fall-back position effect but zero risk sharing effect, while when players with
constant absolute aversion form a coalition, there is a positive risk sharing but zero fall-back posi-

tion effect.

Theorem 3.2 shows that forming a coalition is profitable. But a profitable coalition may not
form if there is no mechanism to divide the gains of the coalition between its members so that
each member will gain. If they could write a binding contract regarding the division of the gains, a

profitable coalition will always form. This case will be studied in the next subsection.

In the current subsection, we do not allow commitment by the members of a coalition regrad-
ing the internal division of a pie. Thus the amount an agent can receive when bargaining alone

becomes irrelevant once he decides to join the coalition. Even in this no-commitment case, how-

ever, there are some cases where profitable coalitions will actually form. For instagce, i, :

cable operators with identical preferences will both benefit from forming a coalition.

THEOREM 3.3: Suppose either Conditions 4 -5 or Conditions 4° -5" are satisfied. Suppose

that two cable operators have identical preferences, two broadcasters have identical preferences,

A B . : , .
andt = 1 . Then there exists a simultaneous Nash solution. Furthermore, any simultaneous

Nash solution is a bona fide solution to the parallel bargaining problem.
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PROOF: By Proposition 3.2, Conditions 1 and 2 are satisfied. By Condition 4 or 4,

Condition 3 is also satisfied. Thus, by Lemma 3.2, the funcﬁﬁ@s?) icBe(rx@) in the proof

of Lemma 3.1 are smooth and increasing. Furthermore, since the cable operators have identical

preferences, the broadcasters have identical preferencem;/,A andt , the functions&?(xcB ) and
>”<CB (x? ) are identical. Therefore, there exists a simultaneous Nash sqluflpr » Xa0 Xp) such
that x? = XE :

SincexcA >n, anckf >n, by Theorem3.2and= n, by the symmetry of preferences

and market sizes, one has

X2 +x2 n +n
o, A B By, _ “*c C a b _ -
S (Xe + X5, X)) = > > =N fori =a,b.

Therefore,(xCA, x?, Xz XB) Is a bona fide solution to the parallel bargaining problemQ.E.D.

In the scenario we studied in this subsection, the members of a coalition split the spoil after it
is realized because they cannot make a commitment regarding the split. In this case, it is relatively
easy for the players to reach a simultaneous Nash solution once a coalition forms. But it is more
difficult to insure that each member of the coalition has an incentive to join a coalition. In the
alternative scenario we will study in the next subsection, the members of a coalition can write a
binding contract. In this case, it turns out that the opposite is true. It will be more difficult for the
players to reach a simultaneous Nash solution (in the sense that establishing its existence requires

stronger conditions). But the solution insures that each member gains from joining the coalition.
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3.3.Commitment Solution

We now consider the solution for the case where the cable operators can write a binding con-
tract when they integrate. The contract between the members of a coalition specifies how they
would split the total payoffs in two possible states of nature, one in which bargaining with an out-
sider, in our example a broadcaster, ends in an agreement and another in which the bargaining

breaks down.
Throughout this subsection, we will assume the following:

ASSUMPTION 5: (Risk AversiopPlayers prefer the expected value of a gamble to the

gamble itself.

Recall that Assumption 4 introduced in Subsection 2.2 is satisfied for all risk averse players.

Thus in this subsection, we do not need Assumption 4 as a separate assumption.

As in Subsection 3.1, denote the agreement and breakdown states by and , respectively.

Let g andl—q be the probabilities of statesddy and , respectively. Note that these probabili-
ties were irrelevant for the no-commitment solution of the previous subsection, for the within-coa-

lition bargaining occurs after either state is realized, ¥ d_ énd  are the coalition’s payoffs

in the agreement and breakdown states, respectively, the contingent pie up for bargaining between

the two members of the coalition is, by abuse of notation,

= (1, 1) = (x.+d,d.) =qge (x.+d)0(1-q)ed..
When they bargain over this contingent pie, their respective breakdown points will be the payoffs

they expect to receive when they do not join the coalition. Since we are using the Nash solution
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for any bargaining situation throughout this paper, the fall-back positions of cable opeeatdrs

bwill be n, = N,{a, &), ", (0, 0)J andn, = N (b, b), ", (0, 0) , respectively.

We will assume that the within-coalition contract is the Nash solution of the contingent-pie

bargaining probleni{a, b), (r*, 1), (n,, n,)0 . Let

(v d) = qey,0(1—q)*d; = N;{a b), (1, ), (ny, n,)0

fori = a,b. As explained in Subsection 2.3, the Nash solutiand,, y,, d,,) is a pair of con-

tingent shares such that the marginal risk concessions of the two members of the coalition are
equalized and such that the allocation of the shares between the two members across the two

states is Pareto efficient. That is, the Nash solution satisfies the two equations

(7) fa(de Y, 0 (1—0a)*dyny) = fo(qe y, 0 (1-q)* dy,ny),
(8) ma(ya! da) = mb(yb1 db)

in addition to the two feasibility constraints

9) YatVYp = X +d

(10)  d, +d,

I
o

In using equation (8) above as a necessary condition for Pareto efficiency, we have used the

assumption ( Assumption 5) that the members of the coalition are risk averse.

Note here that there was no analogue to equation (8) in the no-commitment case of the previ-

ous subsection. Since players could not write a contract, the pie was split according to the Nash
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solution even in a breakdown state, for otherwise one of the players would have an incentive to

renegotiate.

We are patrticularly interested in the Nash solution of the within-coalition bargaining for the
limiting case where| , the probability of the agreement state, approaches 1. In this case, equation

(7) above will become

fig(ley,00%d,n,) = fig(1ey,00¢d,n).

The left hand side can be rewritten in utility terms as

Vi (ya) - Vi (na)

~0 _
Hall* Y207 o ha) = =575

Note that the expression on right hand side is the same as the marginal risk concession with non-

contingent pies introduced in Subsection 2.2. Thus one may write

fa(ley,00°dyn,) = (Yo Ny

Therefore, equation (7) can be replaced by

(11) ua(yai na) = Hb(yb’ nb) .

This, together with equation (9) leads to

(12) (ya’ yb) =N E(a, b)’ Xc + dci (na’ nb)D'

Once(y, Y,) is determined this wald,, d,)  can be determined from equations (8) and (10).
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DEFINITION 3.5: In the case where the members of a coalition can make commitment as

to the division of the coalition’s share of the pie, dhasion schemes defined as

S( X+ dc’ dc) = (ya’ da’ Yo db) ’

where(y,, d., ¥, d,) satisfies (12), (8), and (10).

One can combine Definitions 3.1 and 3.5.

PROPOSITION 3.3:In the case where the members of a coalition can make commitment as
to the division of the coalition’s share of the pie, the marginal risk concession of the coalition can

be written as
uC(Xc + dc! dc) = ua(yai da) + Ub(ybl db) ’

where(y,, y,) satisfies (12) ardl,, d,) satisfies equations (8) and (10).

We want to show that in the commitment case, there exists a bona fide solution, that is, a

simultaneous Nash solution where each member of the coalition gains from joining the coalition.

In order to show this, it is necessary th@thA + XE, x?) ag(k? + x?, xf) is well defined
outside of the bona fide solution. In particular, it is necessar\thgd, b), x? + XS, (ng ny)d IS

, A, B
defined even for the case whege+ x; <n, +ny
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In order to defineN [{a, b), y,, (n,, ny)d for the case where<n, +n, , we imagine the

players sharing a loss so that (11) is satisfied, i.e.,

V(Ya) —V(Ny) _ V() — V(1)
V'(Ya) V' (Yp)

where0O<y,<n, and<y,<n, .Inother words, the marginal risk concession, which is nega-

tive in a situation where players have to share a loss, has to be equalized across players. We want
to emphasize here that this is only a technical convention. There are no losses at a bona fide solu-
tion, whose existence we are going to establish, because the cable operators would not form a coa-

lition if there are losses.

PROPOSITION 3.4: If commitment is possible regarding the division of the coalition’s

share of the pie, Condition 1 is satisfied.
PROOF: If x, = 0, equations (8), (9), and (10) imp{y,, ¥,) = (d, d,) by Assumption

5. Thereforep,(y,, d;) = Hp(Yp dy) = 0 and thys,(d, d;,) = 0 . Q.E.D

For the commitment case we are analyzing in this subsection, Condition 2, which we needed

for Lemma 3.1 may not hold in general. The reason is thgt as  increases, there are in general
two effects. First, by Proposition 2.9, both players’ payogffs, ynd , increase. This would

increase their marginal risk concession@lif, d,) remained the same. But the ch@nggjn

also affects the marginal rate of substitution between the agreement and breakdown states. That is,
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(d,, dp,) is affected through equation (8). The direction of this effect on the marginal risk conces-

sion of the coalition is in general ambiguous.

THEOREM 3.4: If commitment is possible regarding the division of the coalition’s share of
the pie and Conditions 2 and 3 are satisfied, there exists a bona fide solution to the parallel bar-

gaining problem with a one-sided coalition.

PROOF: That there exists a simultaneous Nash solution follows from Lemma 3.1, Proposi-
tion 3.4, and the assumption that Condition 2 is satisfied. With the additional assumption that
Condition 3 is satisfied, we can further show that there actually exists a simultaneous Nash solu-

tion where each member of the coalition gains from joining the coalition.

Functionsif(xs) anékcB(x?) are smooth and non-decreasing by Conditions 2, 3, and

Lemma 3.2, and are, respectively, bounded betWween and and betweem® and . Thus, as

can be seen from Figure 2, there has to exist a simultaneous Nash solution sx@:h that and

B : . A -
X. > N, if one could establisk; (n,) > n, amf(na) >n,

41



FIGURE 2

Thus we have only to show that

(13) p'c(na + nb! nb) < ua(na’ O) .

By Proposition 3.3,

uc(na + nb! nb): ua(ya! da) + p’b(yb’ db)

where(y,, d,, ¥, d,) satisfy

(14) p'a(ya! na) = p'b(yb’ nb) ’
(15) ma(ya! da) = mb(yb1 db) ’

(16) YatVYp = Ngtny,

(17)  d,+d, = n,.

Note that equations (14) and (16) imply tgat= n, gpd= n, . Thus

(18) uc(na + nb! nb): ua(na! da) + Ub(nb’ db) '

Hence, equation (13) is satisfied if
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(19) Ha(nal da) + ub(nb’ db) < ua(nap 0)1

which is eqgiuvalent to

(20) p'b(nb! db) < ua(na’ O) - “a(nai da),

or in utility form,

Vp(Ny) = Vyp(dp) < ACH)
V' (Ny) vy (ny)

(21)

But equation (15) implies that equation (21) is equivalent to

Vp(Np) =V, (dy) y v,(dy)

(2) Wy vy (dy)

But, by the concavity o¥, , equation (17), and the concavity, of

V(Np) —Vp(dp) _ Va(da)
L B I AT N

(23)

, one has

Q.E.D.

Theorem 3.2, which established the profitability of a coalition for the no-commitment case,

relied on two effects, the fall-back position effect and the risk-sharing effect. The proof of the

above Theorem 3.4 reveals that similar effects are at work for the commitment case. The use of

Condition 3 in establishing the monotonicity of the functi&ﬁ(sxf)

fecBr(df) indicates the

presence of the fall-back position effect. For Theorem 3.2, the risk-sharing effect worked through

Condition 5°. For Theorem 3.4, however, the risk-effect works through risk aversion as can be

seen from the last part of the proof.
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Overall, the ability to write a binding contract increases the opportunity to gain from forming
a coalition. The coalition becomes a more effective bargainer than an individual if certain condi-
tions are met. Conditions 2 and 3 in Theorem 3.4 are aggregation conditions that require that the

coalition’s aggregate preferences exhibit certain desirable properties.
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4 . CONCLUSION

In this paper, we have provided theoretical explanations for bargaining power due to integra-
tion across local markets. We extended the Nash solution to the case of parallel bargaining to
illustrate why players might gain from integration in two alternative scenarios: one in which play-
ers who form a coalition cannot write a binding contract, and the other in which players can write
a binding contract. We showed that the integration can increase bargaining power under certain

conditions.

From the policy standpoint, the results support the view that across-local-market integration
increases market power. Integration leads to a redistribution of some of the gains from coopera-
tion within the local market from the unintegrated to the integrated players. Since, however, ratio-
nal players will always exhaust all possible gains from cooperation within the local market, there
is no justification, within our model, for restricting the national size of an MSO in the cable televi-
sion industry or restricting the size of a theater chain in the movie industry. Even though integra-
tion may increase their market power, it does not affect aggregate welfare. An interesting open
problem is to find a model where policy makers should be concerned about the MSOs’ and theater

chains’ market power on efficiency grounds.

Dept. of Economics-MS22, Rice University, Houston, Texas 77005, U.S.A.; chae@rice.edu;

http://www.ruf.rice.edu/~chae/
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APPENDIX A: Constant Relative Risk Aversion implies Assumption 4

If v(x) = x', one has

)= (x d)Y —d’

H(x+d, d
f(x+d)Y !

and thus

oux+d d)_ (yx+ o) "H —y(y=1)(x+ &) [+ d)Y =d"]

ox ly(x+ )Y

It is easy to see that for afl< 1 , the numerator, and hence the derivative, is positive. The follow-

ing manipulation shows that the numerator is also positive fgraall

fy(x+ o) ™ 2oy (y—1)(x+ d)Y T3 (x + d)Y — oY
= y{y(x+ d)? TP (y—1)(x+ ) 2+ (y - 1) (x+ d)’ "2
= v{(x+d)? %+ (y=1)(x+d)’2d% >o0.

APPENDIX B: Proof of Proposition 2.12

Define a functiorz, (') such thét,z (Z')) 0C . Toderipg(y,, d;) ,we will use the

following proposition:

PROPOSITION A.1: For any givery, <; z < d,, wherey; >; d., one has

o oV(Z)+(1-a)vi(z(Z))-vi(d)) 0
Z =50

O qu(y)) + (L-q)vi(y) —vi(d)) O
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PROOF: There exists somgsuch that

qe 2 0(1-q)*Z(z)0p+{qe Y O (1-q)ey} O(1-p)+d.

Rewriting this expression using the utility representation in Proposition 2.1, we obtain

qQui(z') + (1—a)vi(z(Z))) = p{au(y]) + (1—a)vi(y))} +(1-p)vi(d)),

ie,
_ 9v(@) + (1-a)v(7(Z)) - vi(d)
avi(yy) + (L=a)vi(y) —vi(dy)
Thus, by Definition 2.8, one obtains the proposition. Q.E.D.

PROOF OF PROPOSITION 2.12:From Definitions 2.9, 2.10, and the L'Hospital’s rule,

we have

p'ic(yhdi) = Id—pll

Totally differentiating both sides of the equality in Proposition A.1 with respeft to yields

dz
av () + (1—q)vi'(z§(z?>)—i
s v (2) + (L= (2 () ~u () a7

1= o Y 4O :
pD au(yy) + (L=a)vi(y;) —vi(d;) Oy (y)) + (L-a)v;(¥) —vi(dh)
Settingz; = y, and rewriting gives the desired expresqié(yi, d,) can be derived similarly.

Q.E.D.
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APPENDIX C: Proof of Proposition 2.13

From Proposition 2.12 and Definition 2.12, one has

T

_ AC 1 O dyID
Ky, di) = By (y;, dp) — -, —1,
vi'(y;) dy, U dyl
q+(1-g)—7 0=
vi'(yy) dy;
1 0 dyO
u(m—y;, d;) = [f(m-y;, d;) ——— 0. —1.
v/ (' —yi) dy O dy;
a+(1-q)—— 0=

vi(®-yi) dy;

T
V' (y}) _ Vj'(nr—yi) . »
Along theC curve, one has = — which proves the proposition.

Vi’(yic) vj'(no—yi )

APPENDIX D: Proof of Proposition 2.14

Differentiating{i’ (y;, d:) with respect to/” , gives

dlj-io(yi' d;)
dy;
) + (=0 O] B (52) " (¥ a(5) + (L vy —v (e}

ooy

which is positive because” (y;') <0
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APPENDIX E: Proof of Proposition 2.15

Using Proposition 2.13, we have only to show that there exist a uyﬁque satisfying

ﬁiG(Ywdi) = ﬁ?("—Yi’dj)-
From Proposition 2.141?(yi, d;) isincreasingyin . By Proposition 2.1%, as increases along
the C curve, playey receives less in both states, and thusy; decreasgs.;Ifi,, the left
hand side of the above equation is zero, amtHfy;, | dj ~the right hand side is equal to zero.
Since the left hand side is continuously increasing in  and the right hand side continuously

decreasing iry, , there exist a unique solution.

APPENDIX F: Rubinstein Solution for a Contingent-Pie Bargaining Problem

DEFINITION A.1 : The Rubinstein solution to a contingent-pie bargaining problem

(i, j),  (d,, dj)D is a vector of payoffg(y;, 9j), (¥, yj)) , whese, ¥ 1 C  such that

(Al) ¥ =s(py.d),

(A2) ¥y, =s(py.dj).

The Rubinstein solution consists of two pairs of payoff vectors. The first pair is the outcome

that is realized when players the proposer in an alternating offer model and the second pair is
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the outcome that is realized when playesrthe proposer. Conditions (A.1) and (A.2) ensure that

each player, when he is a responder, is indifferent between accepting an offer and rejecting it. If he
rejects, he can become a proposer but he also risks a breakdown. Here one can easily see that the
Rubinstein solution is the equilibrium outcome of a strategic bargaining model similar to the one

in Rubinstein (1982).

PROPOSITION A.2: The Rubinstein solution for a contingent pie equalizes the players’

risk concessions.

PROOF: From conditions (A.1) and (A.2) in the definition of the Rubinstein solution and the

fact that we work with elements Gfonly, it follows that

yitsi(p,ydj) = m,
si(p. Y, di) +¥; = T

Subtracting the second equation from the first one yields

ci(p,y,d) = cj(p, yj,di). Q.E.D.

APPENDIX G: Nash Solution in Utilities with a Contingent Pie

In this appendix, we will show that the Nash solution for a contingent pie we defined in terms

of preferences is equivalent to the Nash solution defined in terms of the von Neumann-Morgen-

stern utilities. Consider the bargaining problég, j), 1t (d;, dj)D as defined in the text. Assume
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that players’ preferences can be represented by concave von Neumann-Morgenstern utility func-

tions. Then the Nash solution can be found by the following optimization problem:

max, {av(x +dp) + (L= a)v;(x; +d;)) —vi(dp)} O
Envj(n“—xf’—di) +(1—q)v,-(n‘—xf—di)-vj(dj)é.

The first order conditions for this maximization problem can be rearranged to yield the fol-

lowing two equations:

qy(x +d;) + (1 —q)v;(x; +d;) —v;(d;)

vi'(xi0+di)

_ qvj(no—xic—di) +(1-q)vy( —xiT—di) —v;(d))

o
v/ (M=% —d)

Viog +d) v -x —d)

Note that the second equation equalizes the marginal rates of substitution between different states

of nature across agents. Thus the second equation ensures that the outcome is an element of the

PE curve. The first equation defines an outcome at whfdly,, d;) = {ij (—y;, d;)

APPENDIX H: Example of Preferences Satisfying Condition 4

We will show that Condition 4 is satisfied by all preferences that can be represented by von

Neumann-Morgenstern utility functions with constant hyperbolic absolute risk aversion (HARA),

i.e.,
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v(Xx) = TEE_—H% where—o <y <1 .

Here we have not normalized the functidix) sowia) = 0 V@Yl = 1 as we did in the
text. The limiting case where - 0 corresponds to the logarithmic utility function, i.e.,
v(x) = In(x+1). The restrictiory <1 ensure that agents are risk averse. This class of utility

function is broad and, for example, includes all utility functions with constant relative risk aver-

sion, i.e.v(x) = X', wher®<y<1

We want to shové?i(%aH <0 fork>0 .Onehas

1-ya(x+d) . ad v
P o

JBx+d)
D]_y

u(x+d, d =

- lovHa(x+d), nad ., max+d Y
B ay DD]' y t% +%E +tH

- l-yHa(x+d), (x+d _ g0
iyt iy i RO i

and thus

ou(x+d, d) _ 1-yl a [a(x+ d . VDad
od ay El—y 4o C y t% k%

ya a(x+d) . 1\/Dad y-10
_1—yD 1-y t% +t%

(|
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First consider the case whdl&y <1 . In this case, we ” J:jd’ d) <0 if and only if

ad ,, 7 ad y-1
a(x+d) a(x+ d) b '
1-y 1-y

This is equivalent to

Bt B e f] <ol B B2

Note that forx = 0 the left hand side is equal to the right hand side. Furthermore,

OLHS _ [a(x+d) %V 1 a

ox Yo y
while
ORHS _ ad -1 a
ax Yooy’ t% A
Thus we hav\fau_|S ORHS , which establishes t x+d d <0 xor0
0x o0x od

Similarly, one can show that Condition 4 is satisfied for the cases wheré y <dhd
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